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Abstract Classifying unknown objects in familiar, general categories rather than
trying to classify them into a certain known, but only similar class, or rejecting
them at all is an important aspect in object recognition. Especially in tasks, where
it is impossible to model all possibly appearing objects in advance, generic object
modeling and recognition is crucial.
We present a novel approach to generic object modeling and classification based
on probabilistic principal component analysis (PPCA). A data set can be sepa-
rated into classes during an unsupervised learning step using the expectation–
maximization algorithm. In contrast to principal component analysis the feature
space is modeled in alocally linear manner. Additionally, Bayesian classification
is possible thanks to the underlying probabilistic model.
The approach is applied to the COIL-20/100 databases. It shows that PPCA is
well suited for appearance based generic object modeling and recognition. The
automatic, unsupervised generation of categories matches in most cases the cat-
egorization done by humans. Improvements are expected if the categorization is
performed in a supervised fashion.

1 Introduction

Object recognition ideally tackles the problem of identifying a certain set of objects un-
der changing illumination, camera parameters, and viewpoints, as well as under partial
occlusion. If the recognition is also unaffected by novel exemplars of a category, for
which some different exemplars are already known, we call itgeneric object recogni-
tion. For example, given a generic object model (or category) of cars, the system should
be able to classify never before seen cars into the categorycar . However, already
known cars should get their individual class label, e.g.BMW. The motivation for such a
coarse to fine strategy is that most tasks, for example in a service robot scenario, might
be solved without exactly knowing the specific class of an object. In our work we are
interested in categories that arise from appearance only and not from function.

Generic object modeling has been studied in the past (e.g. [8, 10]). Our approach
differs from segmentation based approaches followed by some sort of grouping mecha-
nism [10, 6] in that we use an appearance based approach. In contrast to image retrieval
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techniques we do not want to classify solely into generic categories but for known
objects we would like to get the specific class label, as well. This demands for a hierar-
chical, from coarse (category level) to fine (class level), strategy.

Our work starts with the idea of appearance based recognition using principal com-
ponent analysis (PCA). We review so calledfactor analysis models[1] that are a gen-
erative way of describing the images generated from a random vector (called factors),
disturbed by an arbitrary noise source — in most cases Gaussian noise. Inherently un-
certainty is modeled probabilistically. In Section 2 we will summarize the theory. Start-
ing from factor analysis models we apply the approaches from [5, 13] to the problem of
generic object modeling and recognition: both introduce mixtures of factor analyzers,
although in a slightly different manner. As a consequence the feature space is now ap-
proximated in a piecewise linear manner in contrast to the globally linear approximation
of the PCA. In [13] restrictions on the statistical model results in the so calledprob-
abilistic principal component analysis(PPCA). The underlying statistical framework
makes it possible to apply maximum likelihood or maximum a posteriori estimation for
classification of objects. However, applying PPCA to image data for generic modeling
needs some modification of the whole approach in practice (Section 3).

The benefits of the PPCA are shown in the experimental part of the paper in Sec-
tion 4: using the expectation maximization algorithm (EM–Algorithm) [4] the PPCA
can be estimated from a training set in an unsupervised manner, which results in cat-
egories of objects defined by similar appearance. Recognition rates for the COIL-100
database support the claim, that the approach is capable for hierarchical modeling and
recognition.

2 From PCA to PPCA: Factor Analysis Models

Object models based on PCA have become a popular approach for appearance based
object and face recognition in the past years [9, 2]. With respect to generic object recog-
nition the PCA has the advantage that — as a rule of thumb — eigenvectors belonging
to larger eigenvalues model the coarse appearance of an object while others are respon-
sible for finer details (see Figure 1). Thus, generic object classes should summarize
objects, whose features, when projected into the Eigenspace using eigenvectors belong-
ing to large eigenvalues, are located close together.

Figure 1.Backprojection of an object using different numbers of Eigenvectors. From left to right:
original image, backprojection using 5, 10, 15, 20 eigenvectors corresponding to the 5, 10, 15,
20 largest eigenvalues, respectively. Details are coded in the eigenvectors belonging to smaller
eigenvalues.

Disadvantages of the PCA are its global linearity assumption in the feature space
and a missing underlying statistical model that would allow soft decisions about the
membership of a certain object using probabilities. In the following we present a new
approach for appearance based recognition using factor analysis models, that — under
certain assumptions — equals PCA.



2.1 Factor Analysis
In factor analysis [1] the assumption is that an observation (for example, an image)
ti ∈ IRd is generated by aq–dimensional random vectorxi (the elements ofxi are
called factors) according to the following linear mapping

ti = Wxi + µ + ε . (1)

Like in PCA the vectorti is built up from an image by concatenating the rows or
columns of the image. The vectorµ is a constant displacement vector andε is a noise
vector. The assumption is thatxi ∼ N (0, Iq) as well asε ∼ N (0, Ψ ) are zero mean
Gaussian distributed random vectors. The matrixIq denotes theq × q–dimensional
identity matrix. The covariance matrixΨ is assumed to be diagonal. As a consequence
the observationti is also Gaussian distributed. Given a set ofn observationsti (i.e., for
example images of a certain class; we will consider the unsupervised case in Section 4)
the unknown parameters of the factor modelW , µ, andΨ can be estimated using the
EM algorithm. Details for the computations during the E–step and the M–step can be
found in [5].

2.2 Mixture of Factor Analyzers
The described factor analysis model in (1) can be extended to a mixture model ofm
Gaussian distributions. The observation vectorsti are now modeled by

ti =
m∑

k=1

ωk(Wkxi + µk + εk) (2)

with xi ∼ N (0, Iq) andεk ∼ N (0, Ψk). The quantityωk is the weight of thekth
mixture component,Ψk again a diagonal covariance matrix of the observation noise.
Similar to the factor analysis model, the EM–algorithm can be applied to estimate the
unknown parameters of the mixture model,ωk, Wk, µk, andΨk. Due to lack of space
we will not go into detail of the computations in the E–step and the M–step. The reader
is referred to [5].

2.3 Probabilistic Principal Component Analysis
In [13] it has been shown that factor analysis and principal component analysis will
coincide under special conditions. Coincidence means that the columns of the factor
loadings matrixW contain the eigenvectors of the covariance matrix of the observa-
tions. Even if the exact correspondence is only guaranteed under specific conditions,
practically there are no differences in the expression capabilities of the factor analyzer
and the PCA models. However, the probabilistic approach by factor analysis has the
advantage that soft decisions can be made based on probabilities. In the case of the
mixture of factor analyzer, the feature space is approximated in a locally linear way,
instead of a global linear one as in standard PCA.

In order to optimally approximate principal component analysis in practice without
fulfilling the strict conditions, the diagonal covariance matrixΨ is restricted to have
identical diagonal elements, i.e.Ψ = σ2Id [13]. The log–likelihood function of the
overall model

L =
n∑

i=1

ln p(ti) where p(ti) =
m∑

k=1

ωkp(ti|k) (3)



with n observations andm Gaussian distributions (submodels) will be maximized by a
few EM–Iteration steps. The overall model can be divided into categories using a ML
classifier with the likelihood distribution of the observationti given the submodelk

p(ti|k) = (2π)−d/2|C−1/2
k | exp

(
−1

2
(ti − µk)T C−1

k (ti − µk)
)

(4)

with Ck := WkW T
k + σ2Id or by a Bayes classifier with the a posteriori probability

p(k|ti) =
ωkp(ti|k)

p(ti)
(5)

of the submodelk given the observationti. These probabilities will be exploited for
building a hierarchy from categories to specific classes and for performing generic ob-
ject recognition (see Section 4).

3 PPCA for Generic Object Modeling and Recognition

Armed with the theory and estimation technique of the PPCA from the last section,
we can now apply this framework to generic object modeling and recognition. First,
some technical problems are discussed that occur when applying PPCA to large data
sets of high–dimensional data. Then, we present an approach that applies first a stan-
dard dimensionality reduction by PCA, and then models the resulting features in the
eigenspace by PPCA. The results of this approach with respect to generic object mod-
eling are presented in Section 4.

Up to now, the PPCA has only been applied to observation vectors of a dimension
less than 64. This prevents us from applying PPCA directly to images, since only images
up to a size of8 × 8 pixel could be processed.

The main reason for this restriction is that the computation of the determinant of
the inverse covariance matrix depends on the dimension of the data. As a consequence,
one gets numerical instabilities in the computation for large and/or small variances.
For example, for an image size of16 × 16 a variance larger than 16 will result in
a determinant value that cannot longer be represented by a 64–bitdouble value on
standard machines. Some solutions for these problems are discussed in [7].

To escape the curse of dimensionality we apply a normal PCA [9] in advance to
reduce the input dimension for the PPCA algorithm to a maximum of 100, which is the
maximum to be numerically manageable according to our experiments. In other words,
the images are projected onto a lower dimensional space by PCA, on which a PPCA is
performed in the following.

Besides the dimensionality reduction and the possibility to apply algorithms from
standard eigenspace approaches one gets an additional degree of freedom in selecting
features. Choosing different transformation matrixes ofq successive eigenvectors,not
starting with the first one, enables us to focus on different parts within the feature space
and might be exploitable for generic object models. A systematic evaluation of such a
procedure, especially on which eigenvectors to focus on, is under current investigation.

4 Experiments

We present results on experiments done with one of the standard database in the ob-
ject recognition community: the COIL-20/100 databases (see [11], for the COIL-20),



which contain images from 20 resp. 100 objects rotated on a turntable (72 images for
each object, i.e. images taken every 5 degree). We performed the following experi-
ments: unsupervised categorization, hierarchical model generation, and generic object
recognition.

Unsupervised categorization.The objects in the COIL-20 database are modeled with
mixtures of PPCA. In Figure 2 a subset of the resulting categorization is shown. The
number of mixture components has been set to 20. The expectations with respect to

Figure 2.Subset of 5 out of 20 categories of the automatic categorization of the COIL-20 database
by PPCA using 20 mixture components. For each category a representative subset of views of the
contained objects is presented

unsupervised categorization holds for most object classes, for example the cars and the
pots. Interesting is the subsumption of dug and the wooden part, which have similar
shapes from the given viewpoint. These results show that categorization based on ap-
pearance can be done automatically with the proposed approach. Similar results have
been achieved for the COIL-100 database. The reader should note, that a pure vector
quantization produces similar but marginally worse results. However, we get a com-
plete probabilistic model out of the training data, that is optimized with respect to the
likelihood. This gets more important in the case of generic object recognition, as a mere
vector quantization can not provide adequate information for identifying previously un-
seen objects. This will be shown in the experiments on generic classification later on
(Figure 4 and 5).

Hierarchical model generation.We constructed up to three levels of mixtures of PPCA
using all 20 objects of the COIL-20 database. For each level (0,1,2) a 5–dimensional
Eigenspace is used and the 5–dimensional feature vectors of the projected training data
is used as input for the PPCA algorithm. Each mixture component of the PPCA at one
level is used to select those views that are modeled at the next level by an individual
mixture of PPCA. With these experiments we like to show, that a coarse (category level)
to fine (class level) graduation can be realized by our approach in an unsupervised
manner. In Table 1 the categorization at the first and second level is shown for one of
the five formed categories. The entries in the table show the number of objects filled
into one category at the first level and the split into five categories at the next level.
One can see, that for this example already at the second level the objects are put into
distinct categories. Another example is shown in Table 2. Here, at the second level still
some visually similar objects from different classes are in the same category. The cream
cheese box (cat1-2) and the cars in category cat1-3 are separated. The category cat1-
0 contains the cars and the medication box (anacin) that look similar at that level of
representation. At the third level (not shown in the table) category cat1-0 is subdivided
into another five categories where finally the anacin box is separated from the cars
into separate categories. One interesting aspect can be observed during generation of
the hierarchies: as soon as the objects are separated into distinct categories the PPCA
starts separating the different poses of the objects. This behavior is no surprise since the



manifold of the images of one object is then approximated in a piecewise linear manner
by the mixture components of the PPCA.

objects
category “vaseline” “wooden part3” “piggy bank”

cat0 14 34 48

cat0-0 26
cat0-1 9
cat0-2 34
cat0-3 14
cat0-4 13

Table 1. Category 0 (cat0): The en-
tries in the table show the number of
objects from the training set, classified
into that category at level 0 and into the
five categories at level 1.

objects
category “cup” “cream cheese” “car1” “anacin” “car2” “tylenol”

cat1 48 48 41 37 39 33

cat1-0 3 24 3
cat1-1 5 28
cat1-2 48
cat1-3 27 25
cat1-4 48 11 8 11 5

Table 2. Category 1 (cat1): The entries in the
table show the number of objects from the train-
ing set, classified into that category at level 0 and
into the five categories at level 1.

Although we can not generalize from these results that the different objects in a
training set get separated as above, it can be seen, that the categorization is able to form
meaningful visual classes. This is a prerequisite for the generic recognition shown in
the next paragraph.

Generic object modeling and recognition.In order to test the ability of our models to
classify previously unseen objects we also used the whole COIL-20 database but we
completely omitted two objects during the training stage. Both objects leave similar
objects in the training set (see Figure 3). The “uncovered pot” has the “half covered
pot” as a moderately similar object. The left out “car3” has two other similar cars in the
training set. For these items we evaluated the ability of our models to classify seen and
unseen objects.

UP P1 UC C1 C2
Figure 3. The two unknown objects “car3” (UC) and “uncovered pot” (UP) omitted from the
training set together with their visually most similar objects (according to the distance within the
Eigenspace) “car1” (C1), “car2” (C2) and “half covered pot” (P1) contained in the training set.

For generic object recognition the PPCA mixture models have to provide two dif-
ferent kinds of information: to which visual class a test image is assigned to and how
well the corresponding submodel is able to model the object in terms of visual class
membership. As we descend the hierarchy levels from the categories to the distinct ob-
ject classes the consistency with the submodel should increase for known objects, as
the models get more specialized, and it should get worse for unknown objects, as the
ability of modeling the unknown appearance decreases being closer to the class level.

Figure 4 shows the log–likelihood for the hierarchy level 0 to 2 and Figure 5 does
the same for the “distance from feature space” function used as quality criteria for a
nearest–neighbor classification. Both diagrams show the averaged curves over all test
images for the two unknown objects “uncovered pot” and “car3” as well as for the three
known objects “half covered pot”, “car1” and “car2”.

In Figure 4 the two unknown objects can be easily identified with the “uncovered
pot’s” log–likelihood decreasing rapidly with each level. The unknown car fits as good
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Log–likelihood (Figure 4) and distance function plot (Figure 5) for the two cars (C1,C2)
and the pot (P1) which are part of the training set as well as for the unknown car (UC)
and the unknown pot (UP).

to level 1 as the known cars, but the log–likelihood also decreases at the last level. The
log–likelihood for the known objects increase or remain constant through all levels, as
expected.

Figure 5 demonstrates that an eigenspace approach with a nearest neighbor (NN)
classification is not able to show similar behavior as the log–likelihood criteria. The
distance gives no information on when to assign a given view to a category at a certain
level and when to descend to the next level.

Finally experiments were done to show how well PPCA is suited for classification
of known object classes. We equally divided the COIL-100 dataset into training and
test. The training set has been used for unsupervised construction of the hierarchy of
categories. For all images put into the same category at the lowest level we performed a
standard (supervised) PCA which is used for the actual assignment to a class. With a 3–
dimensional PCA in the preprocessing step (compare Section 3), the recognition rate on
the test set at level 0 of the hierarchy is80.5%, at level 188.2% and at level 291.2%.
With respect to the dimension of the feature space, this appears to be a reasonable
result. In the case of a 15–dimensional PCA the recognition rate at level 0 is already
98.7%, slightly decreasing to97.0% at level 2. This unwanted phenomenon is mainly
due to small numbers of examples particularly falling into one category at level 2, thus
preventing a reasonable 15-dimensional PCA.

5 Conclusions

In this paper we presented a novel way of using mixtures of PPCA (MPPCA) models
for hierarchical generic object recognition, where the term “generic” aims at visually
similar classes and not functional ones.

During the training step the MPPCA is computed for all input images of all different
classes. The single mixture components define a disjunctive partition of the training
set into visual classes according the maximum likelihood of each training vector. The
elements of each partition are then used as input data for creating MPPCA models at
the next, more specialized, hierarchy level.

Unlike in former publications we do not subsample the training data in order to
reduce the input dimension but perform a Karhunen–Lo`eve–Transformation into a low-
dimensional Eigenspace. This preserves more information on high resolution input im-
ages than using a maximum input image size of8 × 8 as done up to now.



The results of our experiments show that the unsupervised partition gives reason-
able classes which are appropriate for building hierarchical MPPCA models suitable
for generic recognition of previously unseen objects. Classification on large data sets
(COIL-100) benefits from the hierarchical approach, as a recognition rate of up to
98.7% can be achieved already with low–dimensional feature vectors.

Further, experiments on other image databases with more objects and evaluations of
the presented algorithm together with a robust feature calculation for handling partially
occluded objects will be performed. Also, nonlinear PCA for generic object modeling,
for example Kernel PCA introduced in [12], is one topic of our further investigation.

Although beyond the scope of generic object modeling a combination of the pre-
sented approach with a contour based representation of objects, introduced in [3], seems
to be very promising for object representation and segmentation in general.
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