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Abstract

Due to the loss of range information, projections as input data for a 3-D object recognition algorithm are expected to
increase the computational complexity. In this work, however, we demonstrate that this de�ciency carries potential for
complexity reduction of major vision problems. We show that projections provide a reduction of feature dimensions, and
lead to structures exhibiting simple combinatorial properties. The theoretical framework is embedded in a probabilistic
setting which deals with uncertainties and variations of observed features. In statistics marginal densities and the
assumption of independency prove to be the key tools when one encounters projections. The examples discussed
in this paper include feature matching, pose estimation as well as classi�cation of 3-D objects. The �nal experi-
mental evaluation demonstrates the practical importance of the marginalization concept and independency assumptions.
? 2002 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

It is well known that the recognition of 3-D objects
based on gray-level images as input data is computa-
tionally hard. In practice, several obstructions avert an
exaxt solution of the problem by simple and e9cient
algorithms, e.g. sensor data are noisy projections of
real world, objects may be rotated and translated, self
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occlusion occurs. Thus feasible algorithms have to be
based on simplifying and idealizing assumptions. For
example, feature selection algorithms are applied and
mutual statistical independency of features is assumed in
order to decrease the dimension of the parameter space
[1], segmentation downsizes the input data [2]. On the
other hand the representation of data in higher dimen-
sions, e.g. representation of points and projections maps
in homogeneous coordinates, can also lower the compu-
tational complexity [3, Chapters 2 and 10]. However, for
automatic model generation the absence of range data
obstructs the discriminating power of features. As a
consequence, most computer vision systems that work
with gray-level images concentrate on the computation-
ally expensive 3-D reconstruction. These facts show that,
while both projections and reconstruction are applied
for pattern recognition purposes, usually projections are
seen as a major source for time consuming computations.
Nevertheless, this paper demonstrates that for object

recognition and pose estimation purposes the use of
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projections can be advantageous and can lead to more
e9cient algorithms. The key ideas are:

• the projection of 2-D image features on coordinate axes
reduces the dimension of the search space for pose
parameters [4], and

• 2-D projections have to match properly on the 1-D
intersection of the projection planes [5].

Geometry tells us that there are pairs of diLerent 3-D
objects that cannot be distinguished by their 2-D projec-
tions. Therefore, 1-D projections are even more likely to
cause the occurrence of ambiguous features that make
classi�cation impossible. Obviously, there exists a trade
oL between e9ciency and the discriminating power of
features. This important issue will be addressed in the
experimental part in detail. We also argue that the use of
real image data makes the application of statistical meth-
ods indispensable. In this setting, objects are not given by
their exact shape in space but rather modeled by proba-
bility density functions which give a probability measure
on the space of object positions.
In the theoretical part we introduce a method which

combines tools from discrete and computational geo-
metry with statistics. The projection of features is for-
malized in a probabilistic framework using marginal
densities. We also show that for generic 3-D objects we
can e9ciently decide from 1-D projection data, whether
two 2-D projections belong to the same set of 3-D points.
The paper is divided into six parts: The introduction

is followed by a summary of basic facts about pro-
jections and marginals, including a discussion of
advantages and disadvantages of using marginal den-
sities. Section 3 brieMy introduces the basic ideas of
statistical object modeling, and the fundamental prob-
lems related to pose estimation and object recognition.
The description of methods for localization and identi�-
cation based on projections takes up most of Section 4.
The paper closes with a discussion of experimental data,
conclusions derived from the results and algorithms, and
motivation and directions for further research.

2. Marginal densities

Seen as objects from geometry, projections map a vec-
tor lying in some high-dimensional space to its shadow
in a low-dimensional subspace. In a probabilistic setting
vectors are considered as random vectors. Their statisti-
cal behavior is characterized by a density function, and
thus projections induce density transforms. In general,
for bijective mappings of random variables the transform
is easily computed [6, pp. 128–132]. Since a projection
is bijective if and only if it is the identity, we have to re-
sort to marginalization which allows the reduction of di-
mensions. The concept of marginalization is de�ned via

integration. In all applications of this approach the dimen-
sion n of random vectors will be 2 or 3, and (X1; : : : ; Xn)T

will describe a point in Rn. In terms of generality we
state the method for n. Assume we have a parametric
density function p(X1; : : : ; Xn;B) for the random vector
X =(X1; : : : ; Xn)T, where B denotes the set of parameters.
Let us consider the projection

�j:

{
Rn → Rn−1

(X1; : : : ; Xn) �→ (X1; : : : ; Xj−1; Xj+1; : : : ; Xn)
: (1)

The density of the projected random vector results
from marginalization. An arbitrary random variable Xj
can be eliminated by considering the integral over Xj, i.e.,

p(X1; : : : ; Xj−1; Xj+1; : : : ; Xn;B)

=
∫
p(X1; : : : ; Xn;B) dXj: (2)

Example. Let the random vector X =(X1; : : : ; Xn)T be
normally distributed. Thus the parameter set B includes
the mean vector �∈Rn and the (n×n)-covariance matrix
�. A projection can be de�ned, for instance, by an a9ne
transform. The matrix R∈Rm×n (m6 n) and the vec-
tor t ∈Rm map the original n-dimensional random vector
to the m-dimensional vector Y =(Y1; Y2; : : : ; Ym)T, where
Y =RX + t. This vector is again normally distributed
with mean vector R� + t ∈Rm and covariance matrix
R�RT ∈Rm×m [7, pp. 27,28].

Potential applications of marginal densities are, for
instance:

• If the observable features are incomplete, the statistical
behavior of the available features is characterized by
the marginal density where the missing components
are eliminated by integration.

• Marginalization reduces the number of parameters of
the density function and thus leads to parameter esti-
mation problems in lower dimensional spaces and thus
of lower complexity.

An important drawback of marginals is related to the fact
that projections reduce the discriminating power of the
features. Another disadvantage is due to the fact that it
is a major problem to �nd probability density functions
which describe the statistics of features in image space
properly. In the next section we discuss this issue and
propose a statistical modeling scheme for objects and
their appearance in the image plane.

3. Statistical object and scene modeling

The following discussion is restricted to point fea-
tures which are computed automatically using a standard
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segmentation algorithm [8]. A gray-level image f is
transformed into a set of 2-D points O= {o1; o2; : : : ; om}
where ok ∈R2. These points are the input data of sub-
sequent recognition and pose estimation algorithms. The
appearance and the position of point features in the image
plane depend on illumination conditions, sensor noise,
the selected viewing direction, and the chosen point de-
tector. For that reason, 2-D point features show a prob-
abilistic behavior, and are therefore considered as 2-D
random vectors. The application of the Kolmogorov–
Smirnov test proves that point features are approximately
normally distributed [9], and we associate a Gaussian
probability density function with each 2-D point feature.
Mean vectors and covariance matrices, however, are not
su9cient to characterize the set of observable point fea-
tures. The appearance of points varies with the objects’
pose and depend on self-occlusion. Additional parame-
ters are required which incorporate pose parameters of
the object with respect to a reference world coordinate
system. Another parameter set has to describe the prob-
ability of point appearance.
We observe 2-D point features in the image plane that

are projections of 3-D points. Here rotation, translation,
and projection are de�ned by an a9ne transform given
by a rotation matrix R∈R2×3 and a translation vector
t=(t1; t2; t3)T ∈R2. The 3-D rotation has three degrees of
freedom: the rotation angles ’x; ’y and ’z around the x,
y and z-axis of the world coordinate system. If we postu-
late that the 3-D point features are normally distributed,
the 2-D projections are also Gaussian (mean vector and
covariance matrix are given by the formulas from Sec-
tion 2). If the pose parameters—implicitly given by R
and t—and the corresponding normal distribution of an
observed point feature are known, a density value can
be computed. Let us assume that C= {c1; c2; : : : ; cn} de-
notes the set of 3-D point features cl ∈R3 corresponding
to an object. We assume that these features are statisti-
cally characterized by p(c; al), where al is the parameter
associated with the lth model feature. Thus the rotated,
translated, and projected point o∈R2 has the augmented
probability density function p(o; al; R; t).
It is the basic hypothesis of our statistical modeling

scheme that 3-D point features are mutually statistically
independent and normally distributed. Note that we are
considering rigid objects and therefore the mean value
of the position of each point is determined by its relative
position to the other points. Nevertheless, this fact does
not obstruct our independency assumption. Our model
resembles the situation in solid state physics, where the
positions of the atoms are assumed to obey independent
probability distributions whose mean values form a rigid
lattice. Instead of a rigid lattice, we use the original 3-D
structure of the considered object. If the corresponding
3-D model and 2-D image features are given by the se-
quence of pairs [(k; lk)]16k6m where lk denotes the index
of the corresponding 3-D point clk and the features are

mutually independent, the density for a set of observed
2-D points O= {o1; o2; : : : ; om} is de�ned by

p(O | [(k; lk)]16k6m; a1; : : : ; an; R; t)

=
m∏
k=1

p(ok ; alk ; R; t): (3)

The corresponding image and model indices (k; lk) are
formally given by the assignment function � which as-
signs features ok to the index of the corresponding 3-D
feature clk . The description of the assignment function
in terms of probabilities is based on a discrete statistical
modeling scheme introduced in Refs. [9,4]. The discrete
mapping

� :

{
O → {1; : : : ; n}
ok �→ lk ; k =1; 2; : : : ; m:

(4)

induces a discrete random vector �= (�(o1); �(o2); : : : ;
�(om))T ∈{1; : : : ; n}m. With each random vector, a prob-
ability p(�) can be associated, where the discrete proba-
bilities sum up to one, i.e.,

∑
� p(�)=1: This probability

is a statistical measure for the appearance of a special
matching between image and model features. Of course,
feature assignment is not an independent process. In 3-D
object recognition there are, for instance, features which
occlude each other. For that reason, we know if one fea-
ture is visible, the other cannot be part of the observation.
Another statistical property of features is represented in
their probabilistic modeling: due to segmentation errors
the probability of feature appearance can vary. The de-
tection of some features can be more robust, and there-
fore the probability of their appearance and assignment
is higher compared to other features.
So far we have discussed the statistical modeling of

features and assignments. Now we combine the intro-
duced statistical components to describe a compound
density for the characterization of object features within
the image space. The non-observable assignment func-
tion � can be eliminated by projection, i.e. marginal-
ization due to its statistical appearance. The probability
density function of image features with latent assign-
ments is therefore

p(O;B; R; t) =
∑
�

p(O; �;B; R; t)

=
∑
�

p(�)
m∏
k=1

p(ok ; a�(ok ); R; t): (5)

Obviously the evaluation complexity of this sum is in
O(m nm) and thus the usage of this density is computa-
tionally prohibitive.
The statistical modeling of assignment functions

shows several degrees of freedom. For simplicity and
computational eLorts, statistically independent assign-
ments are assumed. For instance, if the assignments of
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image features are mutually independent, the factoriza-
tion

p(�)=
m∏
k=1

p(�(ok)) (6)

is possible. Using this fact, the probability of the random
vector is given by the product of its component probabil-
ities. The model density for an observed set of features
O simpli�es to [9]

p(O;B; R; t) =
∑
�

p(O; �;B; R; t)

=
m∏
k=1

n∑
l=1

p(�(ok)= l)p(ok ; al; R; t): (7)

For this model density the computational complexity for
the evaluation of the model density (7) of a given ob-
servation is obviously bounded by O(nm). It allows the
computation of density values for a given observation
and a set of pose parameters in polynomial time.
In the following the model densities are assumed to be

given, i.e., the parameter set B is known (see Ref. [4] for
training algorithms). We restrict the algorithmic part of
this paper to classi�cation and pose estimation tasks. Pose
estimation using above density functions corresponds to
a parameter estimation problem which induces the global
optimization task:

{R̂; t̂ }=argmax
R; t

p(O;B; R; t): (8)

The classi�cation applies the Bayesian decision rule,
which decides for that class with highest a posteriori
probability. This rule is known to minimize the rate of
misclassi�cation based on a 0=1 cost function [7, pp.
57, 58].

4. Recognition via projection

The algorithms for classi�cation and pose estimation
of 3-D objects are dominated by two diLerent search
problems [10]: the continuous search in the pose space
and the discrete search considering various matchings
of image and model features. In this section we also
consider these strategies and describe two approaches
to 3-D object recognition via 1-D projections. Instead
of using 2-D data to reconstruct 3-D information, we
apply further projections into 1-D space. In contrast to
the elimination of assignments by marginalization (see
Eq. (7)), the following ideas are easily motivated by
geometric arguments.

4.1. Projection on coordinate axes

The L-shaped object shown in Fig. 1 is represented
by 2-D point features. Rotation and translation of the

Fig. 1. Projections on the x-axis.

original 3-D object induce a transform in the 2-D pro-
jection, and have to be known for classi�cation purposes
provided only point features are used. If 3-D object points
are mapped into the image plane by orthographic pro-
jection, the pose is de�ned by the �ve parameters [3, p.
51] ’x, ’y, ’z , t1, and t2 introduced in Section 3. Note
that the orthographic projection is invariant with respect
to translations t=(0; 0; t3) perpendicular to the image
plane. Further variables can be eliminated by additional
projections: considering Fig. 1 it is obvious that the 1-D
projection of 2-D image points on the x-axis is invariant
with respect to translation t2 along the y-axis and rota-
tion ’x around the x-axis. Analogous properties are valid
for the 1-D projection on the y-axis. These 1-D point
features do not change with translation along the x-axis
and rotation around the y-axis.
Now we are in position to apply projection techniques

to e9cient pose estimation. The density functions of
1-D point features are computed by marginalization. We
integrate out the x- or y-coordinates of the 2-D point
features. The resulting model densities show three de-
grees of freedom for pose parameters. Obviously, the pro-
jections reduce the search space from �ve to three dimen-
sions, but they also decrease the discriminating power
of features. There exists an in�nite number of 2-D point
con�gurations which share the same 1-D projection. For
that reason, it is not su9cient to solve the associated op-
timization problem in the projection only.
Usually, a global optimization problem is divided up

into two steps: �rst, a set of distinguished points is se-
lected in the search space. Then in a second step, local
optimization is performed in each point. For the selection
of the distinguished points several procedures are fea-
sible. For instance, points on regular grids or randomly
chosen points are used. Within the proposed method, we
take advantage of projections. We use local maxima of
lower dimensional search spaces to guide the global op-
timization in higher dimensions. We suggest the follow-
ing four-stage search algorithm [4] for solving the pose
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Fig. 2. Projection on the intersection of image planes.

estimation problem. The search is based on a paramet-
ric probability density function p(O;B; R; t) for the 2-D
point features in the image plane and its marginals over
x and y coordinates:

(i) We compute the locations (’y; ’z; t2) of the maxima
in the projection of the probability density to the
x-axis.

(ii) For the parameters ’z that occur in the list of max-
ima in step (i), we compute the maxima (’x; ’z; t1)
in the projection of the probability density to the
y-axis, i.e. we solve a 2-D optimization problem.

(iii) We perform local optimization in the points
(’x; ’y; ’z; t1; t2) whose coordinates (’x; ’z; t1)
and (’y; ’z; t2) are in the solution sets of step (i)
and step (ii), respectively.

(iv) We select the highest maximum of step (iii) as an
approximation of the global maximum.

This procedure allows the estimation of pose parameters
without knowing the matching between model and image
features. The global optimization in the 5-D pose space
is guided by the local maximization in 1-D projections
on the coordinate axes.

4.2. Projection on the intersection of image planes

The basic theoretical problem that pops up in the
second application of 1-D projections is the following:
Decide whether two given sets of n distinct points in the
real plane are images of the same set of points in R3 un-
der a diLerent orthogonal projection without explicit 3-D
knowledge. The results presented in Ref. [5] concerning
perspective projection will not be used in this paper.
In Fig. 2 the basic idea of the following theoretical

discussion is illustrated. A 3-D model point c∈R3 is pro-
jected into two diLerent image planes. The resulting pro-
jections are 1o;2 o∈R2. The orthographic projections of
those 2-D image points on the intersection line of both
image planes coincide in o∈R. We conclude: if diLerent
sets of 2-D points are orthogonal projections of the same
3-D points, the corresponding 1-D projections on inter-
section lines are identical. This result is introduced in
Ref. [5]. Their work is motivated by a diLerent albeit not
unrelated situation: In order to simplify the presentation

and provide a clear understanding of the basic geomet-
ric ideas, we �rst con�ne ourselves to the basic setting
as de�ned in Ref. [5]. Thus, at the beginning we assume
that the point features show no instabilities and are ex-
act. Later we incorporate statistical considerations which
allow to deal with uncertainties. Thereby, we answer a
question raised in Ref. [5] for an analogous algorithm in
the setting of con�gurations of points whose position is
characterized by a probability density function.

4.2.1. Geometric setup
For a subspace V ⊂ R3 we denote by �V the ortho-

graphic projection onto V . In Ref. [5] the authors start
with the following intuitive geometric observation we
have already illustrated above:

Lemma 4.1. Let V and W be two non-parallel planes
in R3 and ‘=V ∩W . Assume P ⊆ V and Q ⊆ W are
point-sets of cardinality n. There is a point-set R ⊆ R3

of cardinality n such that �V (R)=P and �W (R)=Q if
and only if �‘(P)=�‘(Q) counting multiplicities.

For our purposes an important conclusion of the pre-
ceding lemma is the following: If P is a set of n points in
the plane, then in order to decide, whether some set of m
pointsQ is likely to be the image of the same set of points
in R3, it su9ces to check the existence of lines ‘′ and ‘′′
in the plane such that the intersection �‘′(P) ∩ �‘′′(Q)
of the orthographic projections is large. Here, we implic-
itly identify ‘′ and ‘′′ by a suitable orientation preserv-
ing isometry of the plane mapping ‘′ to ‘′′. Moreover, if
the projections are generic, i.e., no two points of either
set are mapped to the same point on the corresponding
line, we also match the points corresponding to the same
preimage for no extra cost. Of course, knowing ‘′ and
‘′′ still leaves freedom for the position of the planes V
and W , and hence for the point-set S in R3 that projects
onto P and Q. Indeed, for �xing the point-set S, up to
a9ne transformations, in a generic situation, we need
three projections.
The key fact employed in Ref. [5] in order to reduce

the complexity of the algorithm is that the projections
of a set of n points in the plane onto a line can advanta-
geously be partitioned into O(n2) equivalence classes.
This observation and the de�nition of a suitable data
structure are borrowed from Computational Geometry
[11, pp. 29–32].
For a set P of n points in the plane one de�nes the

circular sequence circ (P) corresponding to P as the set
of permutations of the n points that occur as a projection
of P onto a line. More precisely, label the points in P in
an arbitrary but �xed way by numbers {1; : : : ; n}. Then
�x a line ‘0 through the origin. Let ‘" be the image
of ‘0 under clockwise rotation by the angle "∈ [0; �]
around the origin. The set of angles [0; �] is subdivided
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Fig. 3. DiLerent 1-D projections and critical angle.

into open intervals and critical angles according to the
order in which the points of P project on the line ‘".
Each critical angle " corresponds to the situation when
at least two points of P map to the same point on the line
‘" corresponding to the angle ". Thus, when the lines
‘" pass through a critical angle at least two points swap
their position. Fig. 3 illustrates this situation.
Obviously, there are at most ( n2 ) diLerent critical points

and hence at most ( n2 ) + 1 open intervals. The critical
points are determined by the 6 ( n2 ) lines through pairs
of points in P. Thus circ (P) can be stored in an n ×
( n2 ) array. Note, that for computational purposes only
swaps have to be stored. Hence, circ (P) can be computed
in time O(n2 log n)—sort the angles determined by the
6 ( n2 ) lines through pairs of points in P.
Before, we proceed to the part of the algorithm respon-

sible for checking existence and �nding lines satisfying
the criterion of Lemma 4.1, we make certain additional
genericity assumptions on possible point con�gurations.
A point-set P in R2 is called generic if no two subsets
of four points can be transformed into each other by an
a9ne transformation and no three points lie on a line.
Note that the set of non-generic con�gurations is a set
of measure 0 in the set of all point con�gurations of n
distinct points.
The next lemma gives a criterion for the uniqueness

of the lines ‘′ and ‘′′ [5].

Lemma 4.2. Let P andQ be two generic con>gurations
of four points in R2. Then there is at most one pair of
lines ‘′ and ‘′′ for which there is an orientation pre-
serving isometry of R2 identifying ‘ and ‘′ such that
�‘′(P)=�‘′′(Q).

In order to check existence and �nd the lines ‘′ and ‘′′
we have to solve a system of four homogeneous linear

equations in four variables. Since we are dealing with or-
thographic projections we may assume that the lines ‘′,
‘′′ are passing through the origin. Let P= {p1; : : : ; p4}
andQ= {q1; : : : ; q4}. Here the indexing is chosen accord-
ing to occurrence of the points in the circular sequences
circ(P) and circ(Q). Thus, we have to solve the system

v′pi= v′′qi; i=1; : : : ; 4 (9)

for non-zero solutions v′ and v′′ of equal length, which
then span the lines ‘′ and ‘′′. Note that any pair v′ and v′′
of non-zero solutions of the system solves the recognition
problem for scaled orthographic projection with scaling
factor given by the ratio of its lengths (see discussion in
Section 6).
By our genericity assumptions the coe9cient matrix

of the system has either rank three, i.e., there is a solution
and the solution—the lines determined by v′ and v′′—is
unique, or rank four, i.e., there is no solution.
Even though we assume for this paragraph that point

positions are given exactly, we here describe an algo-
rithm for solving the system in case of numerical insta-
bility of the input data. In this situation the coe9cient
matrix will usually have rank four. Note, that the set of
matrices of rank6 3 is a set of measure 0 in the set of all
(4 × 4)-matrices. Thus we need a method for deciding,
whether our data probably come from a situation where a
non-trivial solution exists. Here we propose the following
approach: Let A be a (4×4)-matrix and x∈R4. We want
to �nd non-trivial solutions of Ax=0. First, we calculate
the singular value decomposition A=U diag(w)V T of A,
where U and V are orthogonal matrices and diag(w) is
a diagonal matrix with diagonal entries from the vec-
tor w∈R4. The components of w are called the singu-
lar values of A. Now A is a rank four matrix if and
only if w has no non-zero entries. Let w′ be the vector
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obtained fromw by replacing the singular value with least
absolute value by 0, and de�ne A′=U diag(w′)V T. It is
fairly easy to see that if A is of rank four then A′ is the
rank three matrix that minimizes the distance to A in the
spectral norm. Recall, for a matrix B the spectral norm is
the largest eigenvalue of the square root of BBT. Thus if
A is a (4×4)-matrix of rank four then its deviation from
being a rank three matrix can be measured by its smallest
singular value. If the smallest singular value of A falls
below a certain threshold—depending on the singular
values of A—then we replace A by A′. Assume we have
set the fourth entry of w in w′ to zero. Let e4 be the fourth
unit vector, then we solve the system by the formula

x=Ve4: (10)

Otherwise we say that there exists no non-trivial solu-
tion.
Finally, we reduce the number of pairs of sets of cardi-

nality four that have to be considered. A counting argu-
ment [5] shows that there must be four columns in circ(P)
such that the total number of quadruples of points in these
columns is O(n). Four columns satisfying this property
can be found in time O(n2)—�nd the four columns with
the least number of points.
Now we are in position to formulate the algorithm

proposed in Ref. [5] for orthographic projections. For two
generic sets P and Q of points in R2; |P|= n; |Q|=m,
we proceed as follows:

(i) Compute circular sequences circ(P) and circ(Q);
this is in O(m2 logm+ n2 log n)

(ii) Find four columns in circ(P), (resp., in circ(Q))
such that the total number of quadruples of points
in these columns is O(n) (resp., O(m)); the search
is in O(m2 + n2).

(ii) For each of the O(nm) pairs of quadruples compute
the lines ‘′ and ‘′′—if they exist—such that the
projection of the corresponding quadruples on the
lines coincide, which is bounded by O(mn).

(iii) Among the pairs of lines constructed in Step (iii),
select the pair (‘′; ‘′′) such that �‘′(P) ∩ �‘′′(Q)
is maximal; this step is obviously bounded by
O(max(n; m)).

Note, that in our situation we can assume that circ(Q)
and the four columns in circ(Q) containing O(m) quadru-
ples have been pre-computed. The complexity of the al-
gorithm is dominated by Steps (iii) and (iv). In the worst
case Step (iv) has to be performed for all instances of Step
(iii). Thus the algorithm runs in time O(mnmax(m; n)).
Inaccuracy of real world data obstructs a straightfor-

ward implementation of the introduced algorithm. But as
mentioned before the statistical behavior of segmented
point features can be modeled by Gaussian distributions
[9]. It remains to incorporate these statistical methods in
the algorithm.

4.2.2. Statistical setup
It is the basic hypothesis of our statistical modeling

scheme that 3-D point features are mutually independent
and normally distributed (c.f. Section 3).We observe 2-D
projections of 3-D points. Since the projection is ortho-
graphic, rotation, translation and projection are charac-
terized by an a9ne mapping, the resulting 2-D features
are also normally distributed. The above introduced geo-
metric algorithm requires at least two 2-D projections for
classi�cation. It is important to note that the 3-D struc-
ture of objects is not necessarily required for the recog-
nition of the 3-D object. Generally, we assume that any
two projections are statistically independent. The reason-
ing from Ref. [7, pp. 27,28] also applies to the projection
of the 2-D points onto the lines determined by Eq. (10).
If line ‘ is de�ned by its normalized spanning vector
C=(v1; v2)T where ||C||=1, then the 2-D point o′ result-
ing from the orthographic projection of o to the line ‘ is
given by

o′=
(
o′1
o′2

)
=

(
1− v21 −v1v2
−v1v2 1− v22

) (
o1
o2

)
=Mo: (11)

Also the 1-D coordinate of the projection is normally
distributed, since the 1-D coordinate �‘(o) is de�ned by
the a9ne mapping:

�‘(o)=− C
||C||2 o=− C∈R: (12)

The point positions on the lines are normally distributed
1-D random variables. The mean value is−vM�∈R and
the covariance CM�(CM)T ∈R.
The lines determined by Eq. (10) are computed using

the detected 2-D features. Clearly, the statistical behavior
of the 2-D point features inMuence the computation of
the lines.
We have to neglect these instabilities, since we do not

know of any result that relates the distribution of the
entries of the matrix A to the behavior of the matrix V
from Eq. (10). For recent results that show how di9cult
it is to obtain such estimates we refer the reader to Ref.
[12]. Moreover, we think that this omission is justi�ed
by the fact that our method for solving the system with
instable parameters is based on a method that optimizes
the accuracy of the solution (see Section 4.2.1).
The above transform shows how to compute densities

for 1-D projections on lines. Now we are in position to
formulate the �nal algorithm for classi�cation.
Assume we are given a database of objects which are

described by their density functions in a 2-D project-
ion—these density functions will be Gaussian distri-
butions described by their mean vector and covariance
matrix. These densities can result from 3-D models as
well as from simple 2-D models as for instance used in
appearance based approaches to vision [13]. Within a
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Fig. 4. 1-D projection of observed point features and a database density function.

pre-processing step, gray-level images are transformed
into segmentation results which provide geometric fea-
tures including the 2-D point features attached to the ob-
ject. In the next step we give a probabilistic estimate for
an object from the database which is most likely to be
the origin of the observation. To a given object in the
database we associate the point feature that is given by
the mean vector of the density function. We run the al-
gorithm described in Section 4.2 to check the existence
and compute lines ‘data in the plane of the database ob-
ject and ‘observe in the observation plane for which the
respective projections of a pair of quadruples of point
features match. Then we calculate the marginal density
of the database object on the line ‘data. We project the
point features of the observed object onto ‘observe (see
Fig. 4).We identify the line ‘data with the line ‘observe by
identifying the centers of gravity of the quadruples that
where used to compute the lines (orientation described by
the order of points). Now we evaluate the marginal den-
sity function on ‘data at the point features on ‘observe. We
maximize an objective function calculated from density
values over the objects in the database. The object where
the maximum is obtained will then provide the estimate.
In the experimental evaluation in Section 5 we have used
as the objective function the weighted matching between
observed points and points of the database object multi-
plied with the ratio 6 1 of observed and model points.
The weights are given by the density values of the ob-
served points.

5. Experimental evaluation

According to the theoretical description, the experi-
mental evaluation is divided up into two parts: The results
concerning pose estimation using 1-D projections on co-
ordinate axes (see algorithm in Section 4.1), and the eval-
uation of the recognition algorithm based on 1-D point
features in the intersection of two projection planes (see
algorithm in Section 4.2). Two important things which
have to be taken into consideration are the impact of am-

biguities and the relation between achieved speed-up and
reduction of discriminating power.

5.1. Pose estimation experiments

In this section we describe pose estimation experi-
ments using an implementation of the algorithm proposed
in Section 4.1. Let us consider a probability density func-
tion associated with an object characterized by ten 3-D
points. Each point is assumed to be normally distributed.
Obviously, the global optimization of this function is a
non-trivial problem. Even by visual inspection of this
multi-model density there is no maximum with a “large”
area of attraction. This is even worse using 1-D projec-
tion. Nevertheless, it is advantageous to start the global
optimization based on 1-D features due to the reduced di-
mension of the search space. But not only the dimension
is decreased. DiLerent projections lead to optimization
problems in diLerent sub-spaces. Unfortunately, these
sub-spaces depend on each other, and therefore a �nal
veri�cation stage using the original 2-D projections is
required. An appreciated side-eLect, however, is due to
the fact that the time required for density evaluations is
reduced by 15% using 1-D instead of 2-D features. For
that reason the search related to 1-D features proceeds in
a lower dimensional parameter space and with more e9-
cient function evaluation. Since there exist no theoretical
mathematical tool to compare the estimates based on 2-D
with estimates using 1-D projection we run an experi-
mental comparison. We use 400 2-D views and measure
the rate of correct estimates. The optimization using 1-D
projections is done by an adaptive random search tech-
nique combined with local optimization using the down-
hill simplex algorithm [14, Chapter 10:4]. The local opti-
mization in 5-D search space is also done by the simplex
method. Experiments show that 87% of all global opti-
mizations succeed in �nding the global maximum. The
average number of function evaluations using 1-D fea-
tures is 5400 and in case of 2-D features about 260 eval-
uations are su9cient. Compared to a pure 5-D search the
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Fig. 5. Polytopes: cube, dodecahedron, icosahedron, and 3-D permutahedron.

Table 1
Models, generated quadruples, and average runtime

Object # # points # quadruples Runtime (s)

1 8 28 47
2 24 277 48
3 12 67 108
4 20 191 372

Table 2
Recognition rates (in %) for varying variances

Object # +2 = 0 +2 = 0:1 +2 = 0:5 +2 = 1:0 +2 = 1:5

1 100 100 100 99 95
2 100 100 100 100 100
3 100 100 100 100 96
4 100 98 90 93 88

three-stage optimization method is twice as fast. In the
presence of additional point features, which do not be-
long to the object, the global maximization based on 1-D
projections is even four times as fast.

5.2. Recognition experiments

Before we analyze the algorithm for classi�cation from
Section 4.2 on real data, we run experiments based on
synthetic data; here we use some standard polytopes. 4

Fig. 6. Real objects.

4 Coordinate calculations and visualization were performed
using the software package POLYMAKE [15].

The objects are shown in Fig. 5, and the average width
and height are 30 pixels. We use 100 random views of
each object, where the point features are normally dis-
tributed. We run the classi�cation procedure based on
the 1-D projections introduced in Section 4.2.1. Since we
have prior 3-D models and the presented method matches
two 2-D views we also generate the second view ran-
domly. The interesting question to compute the most dis-
criminating model view for a given observation was not
part of this investigation. The number of model points,
the cardinality of generated quadruples, and the runtime
on an SGI O2, R10000 are shown in Table 1. The recog-
nition rates for varying variances of the 1-D point fea-
tures are summarized in Table 2.
Sample views of real objects used for classi�cation

experiments are shown in Fig. 6. The distance to the
camera is kept constant such that no scaling appears and
perspective distortion is minimal. For corner detection
we use a standard algorithm which is based on the max-
imization curvatures of detected lines. The segmentation
results show that half of the observed point features be-
long to artifacts and show no correspondence to a real
3-D point of the object. The achieved recognition rate
using nine views of each object is more than 86%. 5 The
number of points detected in our pictures by the seg-
mentation process varies from 5 to 60. Correspondingly,
the runtime of the algorithm is in the range from 80 s
to 4 h.

5 The data �les used for experiments can be found in
http:==www.mathematik.uni-marburg.de= ∼welker=hwn.
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Due to the fact that the segmentation results are not
improved by manual manipulation and that there is no
need to compute 3-D data, the recognition rate is remark-
ably high on real data.
The obtained experimental results prove that the usage

of 1-D point features is useful for both recognition and
pose estimation.

6. Summary and conclusions

The main result of the paper is that 1-D projections
can simplify the combinatorial structure of the pose esti-
mation and classi�cation problem. Even though the pre-
sented algorithms still carry the drawback that projec-
tions reduce the discriminating power of the features,
the simpli�cation of the combinatorial structure leads to
a remarkable speed up of existing algorithms for object
recognition.
Our current approach is restricted to point features.

This restriction requires the robust detection of the point
features. Thus future research on classi�cation algorithms
relying on 1-D projections will concentrate on features
avoiding this prerequisite. A potential approach could be
based on the projection of gray-level images on the 1-D
intersection of planes by integrating over gray levels. In a
second thread it is desirable to design hybrid mechanisms
that combine the advantages of existing algorithms using
2-D and 1-D projections, automatically selecting optimal
strategies. In a separate thread it seems worthwhile to in-
vestigate the potential of our approach from Section 4.2.1
for scaled orthographic projections. This approach ap-
pears to be promising since it is known that the error made
by replacing a perspective projection by a scaled ortho-
graphic is negligible under certain circumstances [16].
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