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ABSTRACT

Our research concerns spoken language understandingn withi
domain of automated telecommunication services. In thentec
papers we presented a new methodology for training of Statis
language models for recognition and understanding ofaritars
from large corpora of phone sequences obtained as the awftput
a task-independent ASR-system. The advantage of thiegyrat
compared to the traditional word-based strategy is that evétd
have to manually transcribe large amounts of data in ordexto
tract acoustic morphemes to train the classifier. Since déisellme
strategy suffered high False Rejection Rates caused by
acoustic morphemes in the test data, we describe in this pape
approximate matching can be incorporated in the Bayesifilrs
to reduce FRR. The experiments are evaluated'ftmw May |
Help You?-task.

1. INTRODUCTION

The subject of our research is machine understanding ofespok
natural language. The popular methodology in this field isedw
based training which requires training corpora annotatethe
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Fig. 1. Approximate fragment instantiation as three-step preduc
tion mechanism.

2. UTTERANCE GENERATION ASPRODUCTION
MECHANISM AND STOCHASTIC PROCESS

In this section we derive a statistical formulation for tlask of
searching for acoustic morphemes in the test utteranceasgdali

is to find approximate instances of acoustic morphemes indhe
put of phone recognizer. Let us first assume that each uterian
a linear sequencsstting) of phonesS = &; ... £.. Then, if we in-
troduce the ternffragment” subsuming acoustic morphemes and
phones, the process of utterance generation can be catbider
a three-step production mechanism (Figure 1). The sourdts em
a sequenceb of fragmentsg:, ¢t = 1...7T, each of the latter
gets instantiated as, a subsequence &f, which is hypothesized

word level. Since annotation of large amounts of speech datat0 arise due to distortion of some paththrough¢. (at the mo-

is time consuming and expensive, we suggested in [4] an under
standing system that acquires lexicon, syntax and sensantio
untranscribed speech. In particular, our strategy makesfudus-

ters of semantically meaningfusdlien) phone sequences, which
we callacoustic morphemesor classification of utterances. The
representations of the utterances at the phone level aa@eltas

the output of a task-independent phone recognizer [7].

We evaluate our algorithms for tielow May | Help You?”
(HMIHY) task [3], where an automated dialogue system is de-
signed to infer appropriate machine actions upon the semée
quests made over the phone by non-expert users. Elicitechby a
open-end promptHow May | Help You?”, these requests are
made in form of natural language utterances and are to be cate
gorized into one of 15 known call-types including an opeassl|
denoted “OTHER”".

The classification of utterances is made based upon seman

tic associations of acoustic morphemes encountered imif5]l

we described our approach for extraction of salient phomasas
from a training corpus. Acoustic morphemes are then obdad@se
FSM-representations of clusters of acoustically and séozly
similar salient phone phrases. In this paper we describaghk-
cation of Bayes-classifier for the call-classification taskereby

our attention is focused on the issues of approximate magcid
EM-estimation of string-edit distances used hereby.

ment, f; are just phone phrases that make up this fragment). The
observed string can thus be represented as a sequen@efaig-
ment instances; ... s, originating from the sequendé of frag-
ment pathsf;. The inferring of the underlying sequenéefrom

S is anapproximate matchingroblem; it will be addressed in the
next sections.

The generation process can also be formulated as a triple
stochastic processp, f, s) with the only observed variable. If
we assumestatistical independencef generated fragments, the
joint likelihood of ®, F' and.S can be decomposed:

HP((bhtht) =

P(®,F,S) 1)

[1P(@0)P(filde) P(sil fo, b1) L1 PP (filpe) P(sil f2)

‘where the last equality holds since possible distortiorzatiisf;

are independent of the fragment this path is taken from.
The foregoing was based on the assumption that the phone
string S is a perfect reflection of acoustic observations. However,
the string itself is just an interpretation hypothesis a& fihone
level for the actually observed acoustic sigial= w; ...wn,
and it can be provided with an acoustic scété0|S), which is
composed of fitness scoré¥o;|¢;) of individual phones; € S



with respect too;, corresponding subsequencesf In fact, a
typical phone recognizer would output a lattice (weighteychc
graph), representing multiple concurrent phone-hypethdabat
can account folO. The arcs of such a graph (one arc repre-
sents one phone in the hypothesis) are weighted accorditinge to
fithess score. It is crucial for understanding that all infation
about conditional probabilitie®(O|.S) is contained in the graph
o, so that we can use simpler notatiod:(.S) and (for substrings
Of S) Po' (St).

In this case we have to go one step further and extend our
production model by an additional level of acoustic obskovas.
Then stochastic process beconiés f, s, 0), and joint likelihood

(1) turns into:
=1, Penr (sel.fo) Po (s1).

Conditional distributionP(f|¢) is an intrinsic characteristic of
each fragmend, which can reflect occurrence statistics of the lin-
ear phone phrases making up this fragment or/and theimsalie

In the HMIHY-framework acoustic morphemes are created not
only to compensate for possible mistakes of the phone recog-
nizer, but can also represent unionglattinctphrases having sim-
ilar acoustic and semantic characteristics. This is why we d
cided to abandon the stochastic condition for these prébebi
ZfeFP(qb) P(f|¢) = 1, whereFP(¢) is the set of paths through

¢. The new measuré’(f|¢) which we suggest to choose from the
interval[0.5, 1] and interpret as eepresentativenessf the phrase

in the fragment, will be also referred to ssoreof the correspond-
ing path through the fragment. Now, we can reduce the degree
of freedom of our production system in such a way that if it is
possible for strings; to be instantiation of; at all, then it is defi-
nitely the instantiation of that path = f;! throughé, for which
the productP(f|¢:)P(s:|f) is maximal. Since the permissible
sequencery of taken paths through fragments is now uniquely
determined by the sequencésand.S, we finally obtain stochastic
procesg ¢, s, 0), such that we can rewrite joint likelihood (2) as:

H P()P(f5160)P(siel f£351) Po(st).

The classification task implies that for each output latticeom
the phone recognizer, likelihoods of all found instancesaafustic
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Fig. 2. Computing probability of string transformation with DP-
algorithm.

s. To illustrate this, let us build a model of a noisy channelclih
takes sequences of tokens from the input stream and sends dis
torted sequences to the output stream. Thereby, the trasiemi
operationsifhapping$ that can take place within the channel shall
be restricted to the following four types:

1. identity mapping the input token is correctly forwarded to

the output (noisefree transmission);

n

substitution tokenz is absorbed from the input stream and
tokeny # x is sent to the output stream;

w

insertion given the next token: coming from the input
stream, the channel keeps it there and emits tgken

4. deletion the next token from the input streamis absorbed

without resulting in any output token.

Herex is from the alphabeL,. of input strings and; is from the
alphabetL, of output strings; furthermore, not absorbing or not
writing any tokens can be interpreted as absorbing or vg@mpty
tokene respectively, so that now we can express all mappings in
the formz — y|x ande — y|z, with next input tokerx € L, and
next output tokery € L, U {e}.

The mistakes represented by the last three types of mappings
are typical for a phone recognizer, whereas other apphicatinay
have additional types of noise (e.g. swaps in typing). Alppiags
are provided with probabilities which are sufficient to dése the
channel properties. Given these probabilities, we can avai
selves of the Viterbi-approximation to obtain probabilf(s|r).

morphemes must be estimated. The easiest way to do this is tagnoring context dependency we write:

consider thebest parsei.e. the pair of sequences, S with the
highest likelihood, given graph of acoustical observation

(®°,5%) = argmax g g P,(®,5),

and to accept all instances of fragments occurred in it fahér
processing in the classifier. For example, if for samg is frag-
ment¢ from the lexicon, then we proclaim to have found instance
of fragments in s, with likelihood:

Po(¢,50) = P(@)P(f3'|6) P (sl f3" ) Po (1)

3. APPROXIMATE STRING MATCHING

Let us now turn to the question, how to calculate the probabil
tiesP(st|f;;)? Boths; andf;; are linear phone strings, so that
we have to solve the problem of estimating likelihood of obséd
string of tokenss = &; ... {x if the source actually emitted string
r = (1...Cm. We can approximaté(s|r) as the probability of
token-wise (without context consideration) transformati into

n =TI, Pom)

with mappingsm; from the cheapest sequence of mappings trans-
forming r into s. This sequence can be determined with DP-
algorithm (see Figure 2). In the illustrated example théophility

of the chosen transformation can be calculated using timeufiar:
P(s|r) = P(C1 — &|G)P(e — &) P(C2 — &3[¢2) P(¢s —
e|¢3)P(Cs — €|¢3). We explain now how to obtain probabilities
of mappingse — ylz ande — ylzwithz € L, y € L U{e},
that is, probabilities of observing tokegnat the sink of the noisy
channel given that the next input tokenzisThe probabilities will

be inferred from two corpora: undisturbed linear input sstes
(phone transcriptions) and the corresponding sequences\aul

at the sink of the channel (output of phone recognizer).

The solution is based on the algorithm presented in [8]. This
algorithm makes use of EM-framework [2] to estimate probabi
ities of theelementary edit operationsn tokens. It furthermore
acts on the assumption that at any moment each edit operation



is possible and the probability of seeing a particular egira-
tion doesn’t change over time. This allows for a descriptiothe
form of a simple memoryless “flower”-transducer accounfioig
all possible edit operations € Z : LU {e¢} — L U {e} (iden-
tities, deletions, insertions and substitutidnsYhe probabilities
(=) of the edit operations are then iteratively refined. Foritieta
and discussion see [1, 8].

These probabilities obey the following statistic conditio
>, 0(2) = 1. Employing our noisy channel analogy, we can now
take advantage of the fact that at each time point there istlgxa
one pending token in the input stream, and go over to comditio
probabilities. Suppose that we have determined the priitiedbi
0(z) YV(z=z —y) € Z, then conditional probability of edit op-
erationw — y given that the next input token is # ¢ (we call
such operations “mappings”) can be computed accordingéo th
following formulae:

S (1-%, 6(c —»2), fw=ag;
P(w — yla) = (e —y), if w=¢;
0, otherwise.

a)@a:a @J%a/ Spk

b:b/C(b—b)+Ci(b)

Fig. 3. FSM-transducers used in formula (5): a) FSM for acoustic
morphemep with final costCy,(¢) = C(¢) + C(M*|¢) b) flower
FSM representing noisy channel c) flower FSM with additional
cost for each phon€ (z) = C(x) + C(M*|x).

The derivation becomes easily comprehensible as soon as ONRf S they account for. Besides, if phone recognizer produces gen

thinks of the process of transformation of one string intother

as a dual stochastic process in which we first make a binaiy dec
sion whether the channel will absorb the pending token frioen t
input stream, and the second decision to make is concerrtad wi
the token generated at the sink of the channel.

4. BAYES-CLASSIFIER FOR THE TASK OF
CALL-CLASSIFICATION

In this section we show how a simple Bayes-classifier can he co
structed for the call-classification task, when the stiaastcon-
cepts described in the foregoing sections are used{ A&t k =

1... K} be the set of semantic categories in the task. To classify
phone sequenc& we consider posterior probabilities of all cate-
gories given this sentence and choose the one with maxirha va

P(M*|8) ~ P(S|M*)P(M"). 3)
Using Viterbi approximation, we replade(S|M*) in (3) by con-
ditional joint probability of the best parg@(>:¥), S) given M:
P(S|M*YP(M") ~ max P(S, ®|M*)P(M*)

P(s, @M M*) P(M")
P(S|®5% M*yP(@ SR | M7y P(M*)
P(S|25R) P(M* 135 p(a5H),

where the last equality is due to Bayes-rule R *-*) | M%) and

to the fact that the first probability term describes chamastics of
the noisy chanel modeling intrinsic characteristics ofahmloyed
phone recognizer (Section 3) and is thus independent frekn ta
semantics. Assuming statistical independence of fragenehich
constitute sequenceS*) = ¢{5* . 4{¥*) we can decompose
this formula with the chain rule into:

[T, Plselos™ P65 P(g™"). @)

Tieing up to discussion in Section 2, we rewrite it in termshaf
most likely pathsf,*"* through fragments*"*), given the parts

1See Section 5.
2Additionally we postulated(s — ) = 0

uine phone lattices and not linear phone strings, we extend the
formula by acoustic score of recognized phone strifige o.
Then (4) becomes:

[, 2= (o) Pl 1) PR 10150 POMF |6 P(67).

ProbabilitiesP(¢) and P(M*|¢) can be Maximum-Likelihood-
estimated from the training corpus. Instead of probabdgitive
can also compare cost§i(-) = —log P(-). Then the utterance
represented by graph will be mapped by the classifier into the
category with the smallest cost:

argmin Z (C’g (s1) + C(se| f5F)
t

MFE

M* =

+ C(ft(s”“)lczﬁis”“)) + C(Mk|¢§s,k)) + C(CZ?iS’k)))

In our experiments we udéinal State Machine§FSM) to imple-
ment the classifier. Let FSN¥ represent phone lattice. With
FSM-operations:U (unior), o (compositiol), - (concatenatiol
(-)* (concatenative closuyandbestpaththe decision rule is car-
ried out by comparison of costs of FSM§ = bestpatliF* o S)
for each category/*, where

©)

Here following notations are used (see Figure 3) is the
“flower” -transducer reflecting channel characteristigs” ac-
counts additionally for priors of the phones and probadbgitof

MP* given these phone&? is an FSM representing acoustic mor-
phemep; along with its prior and probability? (M *|¢, ), andZ#s
andO¥i are special “parentheses” FSMs, which will indicate be-
gin and end of acoustic morphemes in the sequence of laloglg al
the best path. In general casxéc, has arbitrary arc and final costs,
whereby it is convenient to think of the arc cost as reflectiboc-
currence statistics of linear salient phone phrases witnoktitute

¢4, and of final costs as containing priors and semantic prébabi
ities. S can also be an arbitrary acyclic weighted graph. We also
recommend to use only those acoustic morphemes to compite th
optimal cost of the utterance for given category, which &yrifi-
cantly salient for this category.

Fr=wru Uj(ﬂf (@ ow) - 0%))".
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Fig. 4. Effect of approximate matching by call-classification

5. EXPERIMENT

We conducted our classification experiments on the HMIHY-
database, a collection of recordings of callers respontinipe
prompt“AT&T. How may | help you?” [3]. There are 7642 and
1000 sentences in our training and test sets respectivelythe
classification experiment FSM-toolkit [6] was used.

Our experiments evaluate the utility of approximate matghi
(AM) on the stage of classification. To do this, we decided to
consider a simple Bayes-classifier (as opposed to expetsmen
scribed in our previous publications, where a more somfaited
classifier was used). Figure 4 shows ROC-curves (rank 1)dsr c
sification on best paths through lattices produced by the &R
test utterances, where a) AM was not allowed at all, b) AM was
used with mapping costs optimized as described in Sectiord3 a
c) EM-estimated mapping costs were additionally rescatedts
of identity mappings were all set to zero, and the rest wagimul
plied by factorA € [2; 4] (in the shown plof\ = 3 is used).

We see that direct use of AM impairs true classification rates
(TCR) of the recognizer while making classification with Itaise
rejection rates (FRR) possible. The latter effect is duénéofact
thatitis possible to instantiate anything anywhere wheteftosts
for all phone mappings are given. As for the decreasing TGR, w
explain it by noting that the estimation of mapping costs tesn
done without consideration of task semantics. With thescoét
mapping altered as shown in plot c) however, it was possibbgt
timize performance of the AM-classifier so that it produceZiRT

surpassing baseline measures by 3 percent points by same FRR [5]

values. The maximal achievable percentage of correctbsiflad
and correctly rejected utterances grew from 42.8% to 46.8€6 a
was reached with no false rejections.

In [5] we had already reported on classification experiments
on lattices instead of best paths. Figure 5 compares RO&sur
achieved with the simple Bayes-classifier described abavex-
act instantiation on 100-best lattices and for AM on the pasits.

As expected, lattices still reveal superior performancenev

though they were not able to operate in the area of low FRRs.

However, if we combine both approaches and look for approxi-
mate instantiations of acoustic morphemes in lattices resealt
appears to combine advantages of both strategies. The mlaxim
achievable percentage of correctly classified or rejectieslances
rises to 49.2% with no false rejections.
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Fig. 5. Classification with lattices and approximate matching

6. CONCLUSION

Our experiments showed that the straightforward appbtiocatf
approximate matching for call-type classification can bedui
one would like to keep the false rejection rate as small asipos
ble. To achieve improvement of true classification rateditemhal
rescaling of costs of phone mappings is needed. The clagific
on phone lattices remains superior compared to classditain
best paths using approximate matching of acoustic morpheme
however the combination of both strategies allows for ojiregan

the area of low FRRs and improves TCR at the same time.
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