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ABSTRACT

Our research concerns spoken language understanding within the
domain of automated telecommunication services. In the recent
papers we presented a new methodology for training of statistical
language models for recognition and understanding of utterances
from large corpora of phone sequences obtained as the outputof
a task-independent ASR-system. The advantage of this strategy
compared to the traditional word-based strategy is that we don’t
have to manually transcribe large amounts of data in order toex-
tract acoustic morphemes to train the classifier. Since the baseline
strategy suffered high False Rejection Rates caused by finding no
acoustic morphemes in the test data, we describe in this paper how
approximate matching can be incorporated in the Bayes-classifier
to reduce FRR. The experiments are evaluated for“How May I
Help You?”-task.

1. INTRODUCTION

The subject of our research is machine understanding of spoken
natural language. The popular methodology in this field is a word-
based training which requires training corpora annotated at the
word level. Since annotation of large amounts of speech data
is time consuming and expensive, we suggested in [4] an under-
standing system that acquires lexicon, syntax and semantics from
untranscribed speech. In particular, our strategy makes use of clus-
ters of semantically meaningful (salient) phone sequences, which
we callacoustic morphemes, for classification of utterances. The
representations of the utterances at the phone level are obtained as
the output of a task-independent phone recognizer [7].

We evaluate our algorithms for the“How May I Help You?”
(HMIHY) task [3], where an automated dialogue system is de-
signed to infer appropriate machine actions upon the service re-
quests made over the phone by non-expert users. Elicited by an
open-end prompt“How May I Help You?”, these requests are
made in form of natural language utterances and are to be cate-
gorized into one of 15 known call-types including an open-class
denoted “OTHER”.

The classification of utterances is made based upon seman-
tic associations of acoustic morphemes encountered in it. In [5]
we described our approach for extraction of salient phone phrases
from a training corpus. Acoustic morphemes are then obtained as
FSM-representations of clusters of acoustically and semantically
similar salient phone phrases. In this paper we describe theappli-
cation of Bayes-classifier for the call-classification task, whereby
our attention is focused on the issues of approximate matching and
EM-estimation of string-edit distances used hereby.
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Fig. 1. Approximate fragment instantiation as three-step produc-
tion mechanism.

2. UTTERANCE GENERATION AS PRODUCTION
MECHANISM AND STOCHASTIC PROCESS

In this section we derive a statistical formulation for the task of
searching for acoustic morphemes in the test utterances. Our goal
is to find approximate instances of acoustic morphemes in theout-
put of phone recognizer. Let us first assume that each utterance is
a linear sequence (string) of phonesS = ξ1 . . . ξL. Then, if we in-
troduce the term“fragment” subsuming acoustic morphemes and
phones, the process of utterance generation can be considered as
a three-step production mechanism (Figure 1). The source emits
a sequenceΦ of fragmentsφt, t = 1 . . . T , each of the latter
gets instantiated asst, a subsequence ofS, which is hypothesized
to arise due to distortion of some pathft throughφt (at the mo-
ment,ft are just phone phrases that make up this fragment). The
observed stringS can thus be represented as a sequence ofT frag-
ment instancess1 . . . sT , originating from the sequenceF of frag-
ment pathsft. The inferring of the underlying sequenceF from
S is anapproximate matching-problem; it will be addressed in the
next sections.

The generation process can also be formulated as a triple
stochastic process(�,f , s) with the only observed variables. If
we assumestatistical independenceof generated fragments, the
joint likelihood ofΦ, F andS can be decomposed:

P (Φ, F, S) =
Y

t

P (φt, ft, st) = (1)Y
t

P (φt)P (ft|φt)P (st|ft, φt) =
Y

t

P (φt)P (ft|φt)P (st|ft)

where the last equality holds since possible distortions ofpathsft

are independent of the fragment this path is taken from.
The foregoing was based on the assumption that the phone

stringS is a perfect reflection of acoustic observations. However,
the string itself is just an interpretation hypothesis at the phone
level for the actually observed acoustic signalO = ω1 . . . ωN ,
and it can be provided with an acoustic scoreP (O|S), which is
composed of fitness scoresP (ol|ξl) of individual phonesξl ∈ S



with respect tool, corresponding subsequences ofO. In fact, a
typical phone recognizer would output a lattice (weighted acyclic
graph), representing multiple concurrent phone-hypotheses that
can account forO. The arcs of such a graphσ (one arc repre-
sents one phone in the hypothesis) are weighted according tothe
fitness score. It is crucial for understanding that all information
about conditional probabilitiesP (O|S) is contained in the graph
σ, so that we can use simpler notations:Pσ(S) and (for substrings
of S) Pσ(st).

In this case we have to go one step further and extend our
production model by an additional level of acoustic observations.
Then stochastic process becomes(�,f , s,o), and joint likelihood
(1) turns into:

Pσ(Φ, F, S) =
Y

t
P (φt)P (ft|φt)P (st|ft)Pσ(st). (2)

Conditional distributionP (f |φ) is an intrinsic characteristic of
each fragmentφ, which can reflect occurrence statistics of the lin-
ear phone phrases making up this fragment or/and their salience.
In the HMIHY-framework acoustic morphemes are created not
only to compensate for possible mistakes of the phone recog-
nizer, but can also represent unions ofdistinctphrases having sim-
ilar acoustic and semantic characteristics. This is why we de-
cided to abandon the stochastic condition for these probabilities:P

f∈FP(φ) P (f |φ) ≡ 1, whereFP(φ) is the set of paths through

φ. The new measurẽP (f |φ) which we suggest to choose from the
interval [0.5, 1] and interpret as arepresentativenessof the phrase
in the fragment, will be also referred to asscoreof the correspond-
ing path through the fragment. Now, we can reduce the degree
of freedom of our production system in such a way that if it is
possible for stringst to be instantiation ofφt at all, then it is defi-
nitely the instantiation of that pathf = fst

φt
throughφt, for which

the productP̃ (f |φt)P (st|f) is maximal. Since the permissible
sequenceF S

Φ of taken paths through fragments is now uniquely
determined by the sequencesΦ andS, we finally obtain stochastic
process(�, s, o), such that we can rewrite joint likelihood (2) as:

Pσ(Φ, S) =
Y

t
P (φt)P̃ (fst

φt
|φt)P (st|f

st

φt
)Pσ(st).

The classification task implies that for each output latticeσ from
the phone recognizer, likelihoods of all found instances ofacoustic
morphemes must be estimated. The easiest way to do this is to
consider thebest parse, i.e. the pair of sequencesΦ, S with the
highest likelihood, given graph of acoustical observations σ:

(Φ∗
, S

∗) = argmax(Φ,S) Pσ(Φ, S),

and to accept all instances of fragments occurred in it for further
processing in the classifier. For example, if for somet φt is frag-
mentφ from the lexicon, then we proclaim to have found instance
of fragmentφ in st with likelihood:

Pσ(φ, st) = P (φ)P (fst

φ |φ)P (st|f
st

φ )Pσ(st).

3. APPROXIMATE STRING MATCHING

Let us now turn to the question, how to calculate the probabili-
tiesP (st|f

st

φk )? Bothst andfst

φk are linear phone strings, so that
we have to solve the problem of estimating likelihood of observed
string of tokenss = ξ1 . . . ξK if the source actually emitted string
r = ζ1 . . . ζM . We can approximateP (s|r) as the probability of
token-wise (without context consideration) transformation r into
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Fig. 2. Computing probability of string transformation with DP-
algorithm.

s. To illustrate this, let us build a model of a noisy channel which
takes sequences of tokens from the input stream and sends dis-
torted sequences to the output stream. Thereby, the transmission
operations (mappings) that can take place within the channel shall
be restricted to the following four types:

1. identity mapping: the input token is correctly forwarded to
the output (noisefree transmission);

2. substitution: tokenx is absorbed from the input stream and
tokeny 6= x is sent to the output stream;

3. insertion: given the next tokenx coming from the input
stream, the channel keeps it there and emits tokeny;

4. deletion: the next token from the input streamx is absorbed
without resulting in any output token.

Herex is from the alphabetLr of input strings andy is from the
alphabetLs of output strings; furthermore, not absorbing or not
writing any tokens can be interpreted as absorbing or writingempty
tokenε respectively, so that now we can express all mappings in
the formx → y|x andε → y|x, with next input tokenx ∈ Lr and
next output tokeny ∈ Ls ∪ {ε}.

The mistakes represented by the last three types of mappings
are typical for a phone recognizer, whereas other applications may
have additional types of noise (e.g. swaps in typing). All mappings
are provided with probabilities which are sufficient to describe the
channel properties. Given these probabilities, we can avail our-
selves of the Viterbi-approximation to obtain probabilityP (s|r).
Ignoring context dependency we write:

P (s|r) =
Y

mi

P (mi)

with mappingsmi from the cheapest sequence of mappings trans-
forming r into s. This sequence can be determined with DP-
algorithm (see Figure 2). In the illustrated example the probability
of the chosen transformation can be calculated using the formula:
P (s|r) = P (ζ1 → ξ1|ζ1)P (ε → ξ2|ζ2)P (ζ2 → ξ3|ζ2)P (ζ3 →
ε|ζ3)P (ζ4 → ε|ζ3). We explain now how to obtain probabilities
of mappingsx → y|x andε → y|x with x ∈ L, y ∈ L ∪ {ε},
that is, probabilities of observing tokeny at the sink of the noisy
channel given that the next input token isx. The probabilities will
be inferred from two corpora: undisturbed linear input sequences
(phone transcriptions) and the corresponding sequences observed
at the sink of the channel (output of phone recognizer).

The solution is based on the algorithm presented in [8]. This
algorithm makes use of EM-framework [2] to estimate probabil-
ities of theelementary edit operationson tokens. It furthermore
acts on the assumption that at any moment each edit operation



is possible and the probability of seeing a particular edit opera-
tion doesn’t change over time. This allows for a descriptionin the
form of a simple memoryless “flower”-transducer accountingfor
all possible edit operationsz ∈ Z : L ∪ {ε} → L ∪ {ε} (iden-
tities, deletions, insertions and substitutions)1. The probabilities
δ(z) of the edit operations are then iteratively refined. For details
and discussion see [1, 8].

These probabilities obey the following statistic condition2:P
z δ(z) ≡ 1. Employing our noisy channel analogy, we can now

take advantage of the fact that at each time point there is exactly
one pending token in the input stream, and go over to conditional
probabilities. Suppose that we have determined the probabilities
δ(z) ∀(z = x→ y) ∈ Z, then conditional probability of edit op-
erationw → y given that the next input token isa 6= ε (we call
such operations “mappings”) can be computed according to the
following formulae:

P (w → y|a) =

8<: δ(a→y)P
x δ(a→x)

(1 −
P

x δ(ε → x)), if w = a;

δ(ε → y), if w = ε;
0, otherwise.

The derivation becomes easily comprehensible as soon as one
thinks of the process of transformation of one string into another
as a dual stochastic process in which we first make a binary deci-
sion whether the channel will absorb the pending token from the
input stream, and the second decision to make is concerned with
the token generated at the sink of the channel.

4. BAYES-CLASSIFIER FOR THE TASK OF
CALL-CLASSIFICATION

In this section we show how a simple Bayes-classifier can be con-
structed for the call-classification task, when the statistical con-
cepts described in the foregoing sections are used. Let{Mk, k =
1 . . . K} be the set of semantic categories in the task. To classify
phone sequenceS we consider posterior probabilities of all cate-
gories given this sentence and choose the one with maximal value

P (Mk|S) ≃ P (S|Mk)P (Mk). (3)

Using Viterbi approximation, we replaceP (S|M i) in (3) by con-
ditional joint probability of the best parse(Φ(S,k), S) givenM i:

P (S|Mk)P (Mk) ≈ max
Φ

P (S, Φ|Mk)P (Mk)

:= P (S, Φ(S,k)|Mk)P (Mk)

= P (S|Φ(S,k)
, M

k)P (Φ(S,k)|Mk)P (Mk)

= P (S|Φ(S,k))P (Mk|Φ(S,k))P (Φ(S,k)),

where the last equality is due to Bayes-rule forP (Φ(S,k)|Mk) and
to the fact that the first probability term describes characteristics of
the noisy chanel modeling intrinsic characteristics of theemployed
phone recognizer (Section 3) and is thus independent from task
semantics. Assuming statistical independence of fragments which
constitute sequenceΦ(S,k) = φ

(S,k)
1 . . . φ

(S,k)
T we can decompose

this formula with the chain rule into:Y
t
P (st|φ

(S,k)
t )P (Mk|φ

(S,k)
t )P (φ

(S,k)
t ). (4)

Tieing up to discussion in Section 2, we rewrite it in terms ofthe
most likely pathsf (S,k)

t through fragmentsφ(S,k)
t , given the parts

1See Section 5.
2Additionally we postulate:δ(ε → ε) ≡ 0
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Fig. 3. FSM-transducers used in formula (5): a) FSM for acoustic
morphemeφ with final costCk(φ) = C(φ)+C(Mk|φ) b) flower
FSM representing noisy channel c) flower FSM with additional
cost for each phoneCk(x) = C(x) + C(Mk|x).

of S they account for. Besides, if phone recognizer produces gen-
uine phone latticesσ and not linear phone strings, we extend the
formula by acoustic score of recognized phone stringsS ∈ σ.
Then (4) becomes:Y

t
Pσ(st)P (st|f

(S,k)
t )P (f

(S,k)
t |φ

(S,k)
t )P (Mk|φ

(S,k)
t )P (φ

(S,k)
t ).

ProbabilitiesP (φ) andP (Mk|φ) can be Maximum-Likelihood-
estimated from the training corpus. Instead of probabilities we
can also compare costs:C(·) = − log P (·). Then the utterance
represented by graphσ will be mapped by the classifier into the
category with the smallest cost:

M
∗ = argmin

Mk

X
t

�
Cσ(st) + C(st|f

(S,k)
t )

+ C(f
(S,k)
t |φ

(S,k)
t ) + C(Mk|φ

(S,k)
t ) + C(φ

(S,k)
t )

�
In our experiments we useFinal State Machines(FSM) to imple-
ment the classifier. Let FSMS represent phone latticeσ. With
FSM-operations:∪ (union), ◦ (composition), · (concatenation),
(·)∗ (concatenative closure) andbestpath, the decision rule is car-
ried out by comparison of costs of FSMsBk = bestpath(Fk ◦ S)
for each categoryMk, where

Fk = (Wk ∪
[

j
(Iϕj · (ϕk

j ◦ W) · Oϕj ))∗. (5)

Here following notations are used (see Figure 3):W is the
“flower” -transducer reflecting channel characteristics,Wk ac-
counts additionally for priors of the phones and probabilities of
Mk given these phones,ϕk

j is an FSM representing acoustic mor-
phemeφj along with its prior and probabilityP (Mk|φj), andIϕj

andOϕj are special “parentheses” FSMs, which will indicate be-
gin and end of acoustic morphemes in the sequence of labels along
the best path. In general case,ϕk

j has arbitrary arc and final costs,
whereby it is convenient to think of the arc cost as reflectionof oc-
currence statistics of linear salient phone phrases which constitute
φj , and of final costs as containing priors and semantic probabil-
ities. S can also be an arbitrary acyclic weighted graph. We also
recommend to use only those acoustic morphemes to compute the
optimal cost of the utterance for given category, which are signifi-
cantly salient for this category.
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Fig. 4. Effect of approximate matching by call-classification

5. EXPERIMENT

We conducted our classification experiments on the HMIHY-
database, a collection of recordings of callers respondingto the
prompt “AT&T. How may I help you?” [3]. There are 7642 and
1000 sentences in our training and test sets respectively. For the
classification experiment FSM-toolkit [6] was used.

Our experiments evaluate the utility of approximate matching
(AM) on the stage of classification. To do this, we decided to
consider a simple Bayes-classifier (as opposed to experiments de-
scribed in our previous publications, where a more sophisticated
classifier was used). Figure 4 shows ROC-curves (rank 1) for clas-
sification on best paths through lattices produced by the ASRfrom
test utterances, where a) AM was not allowed at all, b) AM was
used with mapping costs optimized as described in Section 3 and
c) EM-estimated mapping costs were additionally rescaled:costs
of identity mappings were all set to zero, and the rest was multi-
plied by factorλ ∈ [2; 4] (in the shown plotλ = 3 is used).

We see that direct use of AM impairs true classification rates
(TCR) of the recognizer while making classification with lowfalse
rejection rates (FRR) possible. The latter effect is due to the fact
that it is possible to instantiate anything anywhere when finite costs
for all phone mappings are given. As for the decreasing TCR, we
explain it by noting that the estimation of mapping costs hasbeen
done without consideration of task semantics. With the costs of
mapping altered as shown in plot c) however, it was possible to op-
timize performance of the AM-classifier so that it produced TCR
surpassing baseline measures by 3 percent points by same FRR
values. The maximal achievable percentage of correctly classified
and correctly rejected utterances grew from 42.8% to 46.9% and
was reached with no false rejections.

In [5] we had already reported on classification experiments
on lattices instead of best paths. Figure 5 compares ROC-curves
achieved with the simple Bayes-classifier described above for ex-
act instantiation on 100-best lattices and for AM on the bestpaths.

As expected, lattices still reveal superior performance even
though they were not able to operate in the area of low FRRs.
However, if we combine both approaches and look for approxi-
mate instantiations of acoustic morphemes in lattices, theresult
appears to combine advantages of both strategies. The maximal
achievable percentage of correctly classified or rejected utterances
rises to 49.2% with no false rejections.
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Fig. 5. Classification with lattices and approximate matching

6. CONCLUSION

Our experiments showed that the straightforward application of
approximate matching for call-type classification can be used if
one would like to keep the false rejection rate as small as possi-
ble. To achieve improvement of true classification rates, additional
rescaling of costs of phone mappings is needed. The classification
on phone lattices remains superior compared to classification on
best paths using approximate matching of acoustic morphemes,
however the combination of both strategies allows for operating in
the area of low FRRs and improves TCR at the same time.
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