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Abstract

Calibration of color cameras requires that a calibration pattern is recorded and color
sensitivity curves are estimated from the recorded data. Very often, these curves are sampled
at discrete wavelength, so that the calibration problem can be written as a system of linear
equations. The solution of the – usually overdetermined – problem is subject to a constrained
optimization problem, as these curves need to have a certain shape. In this article we apply
different methods to incorporate constraints into the estimation problem while still keeping
the problem linear.

1 Introduction

Color cameras have sensors that have an unknown sensitivity functions. The sensitivity of typical
CCD chips for red, green, and blue varies over the range of wavelenghts λ. The sensors may even
vary amongst the same type as the sensitivity curves depend on the parameters of the production.
Therefore, color calibration of a camera requires the estimation of color sensitivity curves. If the
sensitivity functions are known, color pixels can be re-mapped to values of a standard observer.
Accurate color measurements require such a mapping. In many cases, accurate color values
might increase results of image analysis.

The goal is to compute these parameters automatically. Usually, this is done under known
illumination with a color checker and spectrometric measurements. Several unknown parameters
influence the image generation process. It is usually assumed that the spectral energy distribution
of the light source E(λ) is known. A calibration pattern1 with known reflectivity S(x, λ) at
spatial position x is recorded and color pixel vectors corresponding to the position x will be
used to set up an equation system for the unknonw influence of the sensor (Figure 1).

In the following we describe mathematical models for this process. As the computation of
the unknowns is an overdetermined system with constraints, [1] uses non-linear optimization to

1For example the Gretag McBeth ColorChecker, shown on the left in Figure 1
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Figure 1: Sensor, reflectivity, and measurements

compute the sensitivity functions. [2] reports on several approaches and uses Fourier basis func-
tions to approximate the sensitivity curves. In the following we will derive a linear approximation
of calibration parameters.

2 Device Sensitivity Model

The K sensors per pixel, typically red, green, and blue for a color camera, have spectral sensi-
tivity curves Rk(λ), (k = 1, . . . , K). Any sensor k thereby records light intensity at position x

using the following energy distribution (cmp. [6, Sect.. 2.2.3]):

ρk(x) =
∫

∞

0
E(λ) · S(x, λ) · Rk(λ) dλ (1)

As noted in [1], the discrete version of (1) is often written as a sum of L = 31 samples

ρk(x) =
L

∑

λ=1

Eλ · Sλ(x) · Rk,λ · ∆λ . (2)

The vector E = [Eλ]λ=1...L denotes discrete spectral energy distribution for light, S(x) =
[Sλ(x)]λ=1...L denotes discrete reflectance at position x, and the matrix R = (Rk,λ)k=1,...,K,λ=1...L

denotes the discrete spectral sensitivity curves of the sensors. Using ∆λ = 10nm, the whole vis-
ible range of light can be covered. In the following we discard the scalar constant ∆λ in the
equations for simplicity. The relation of the various variables is shown in Figure 1.

We now arrange (2) into a matrix equation, as we re-write matrix R as a vector

r = (R1,1 . . . R1,L, R2,1 . . . R2,L, . . . RK,1 . . . RK,L)



and define a (KN × LK) - matrix C consisting of sensor responses measured at N points of
either zeros or products Eλ · Sλ to get

ρ = Cr . (3)

More specifically, with K = 3 this is
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Assuming standard illumination, i.e., Eλ is known, and knowledge on the reflectivity and
surface of the object, i.e., Sλ are known, we can measure ρ and compute the unknown vector
r. Usually, standard lighting techniques are used and a color checker pattern (e.g., the Gretag
McBeth color chart) is placed in front of the camera. Correspondence of known colors and their
position in the image accounts for the positions x in (2) and for the N measurement points in
(4). In order to get a solution of the set of linear equations, the number of measurements N must
be greater than L.

An empirical result states that for K = 3 the matrix C has only rank 6 to 8 [4, 5]; in addition
to the linear equation (3) further constraints are used to obtain a resonable result by regularization
[1]:

1. sensor positivity:
Rk,λ > 0 where k ∈ {1, . . . , K}, λ ∈ {1, . . . , L}

2. sensor smoothness:
|Rk,λ − Rk,λ+1| < T for some threshold T and λ ∈ {1, . . . , L − 1}



3. unimodality:
∀k∃κ : Rk,λ < Rk,λ+1 for λ ≤ κ and Rk,λ > Rk,λ+1 for λ > κ

4. bounded prediction error:
|ρi −

∑L
j=1 Ci,j · rj| ≤ ε for i ∈ {1, . . . , N}.

To obtain a subset of these constraints, several optimization techniques have been proposed,
such as linear programming or quadratic programming.

3 Simultaneous Optimization

In the following we derive an optimization of the criteria 1–4 where some of the criteria have to
be replaced by slightly weaker constraints. Instead of iterative optimization techniques weaker
constraints lead to a linear problem that will be solved using SVD. Inequalities are replaced by a
single objective function which has to be minimized finally. For each of the criteria we introduce
a term in the objective function.

Clearly, the criterion 4 is described by

||Cr − ρ||2 → min . (6)

The constraint for sensor smoothness in constraint 2 requires that two adjacent coefficients Rk,λ,
Rk,λ+1 differ only up to a threshold. This constraint is slightly weakened as we use

K
∑
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L−1
∑
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(Rk,λ − Rk,λ+1)
2 → min . (7)

Since the squared difference is used instead of the norm |Rk,λ − Rk,λ+1| as in constraint 2, large
differences are more penalized and imply a bias. We define a L × L matrix2
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2This matrix can be also interpreted as a second derivative, as it is used in the constraints in [2].



Then, constraint 2 can be expressed as

L
∑

k=1

L−1
∑

λ=1

(rk,λ − rk,λ+1)
2 = rTDr → min . (8)

The derivatives are
∂

∂r
rTDr = 2 · rTD , (9)

as D is symmetric. Combining (8) and (6) we get

f := ||Cr − ρ||2 + µ||rTDr|| → min (10)

for a fixed µ > 0. Computing the derivatives of (10) we get

∂f

∂r
= 2rTCTC − 2ρTC + 2µ · rTD (11)

which is a row vector of dimension K · L. We set

∂f

∂r
= 0

and solve that for r, as we will show in the following. Thus we get

rT
(

CTC + µ · D
)

= ρTC . (12)

As
(

CTC + µ · D
)

is symmetric and positive definite, we get

r =
(

CTC + µ · D
)

−1
CTρ . (13)

This regularization is similar, but not identical with the Tikhonov regularization used in [7].
We now turn to the constraint that rank (C) ≤ 8. To enforce this, we factorize C = UΣV T

using singular value decomposition, i.e. Σ is the diagonal matrix containing the singular values
σi of C , Σ = diag (σi) with σi ≥ σi+1. It is well known from linear algebra that setting
singular values to 0 in Σ yielding Σ

′ we can enforce the rank of UΣ
′V T. We introduce a matrix

P = [Pij]i,j=1...N
where Pij = 1 for the first eight elements on the diagonal and 0 everywhere

else; this matrix is used to generate Σ
′ as Σ

′ = PΣ. We check P9,9 = σ9 > θ for some small
threshold θ; if this is not true, our measurement matrix C cannot be correct or it contains too
much measurement noise. Integrating this into (13) gives the new combined equation

r =
(

V PΣ
2V T + µ · D

)

−1
V PΣUTρ . (14)

We now need to check whether the positivity of the results is valid. If not, we discard the
result.
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Figure 2: Solution with µ = 0, i.e. by pseudo inverse

4 Experiments

In [3], data are shown for K = 3 and L = 101.3 We used these data for our experiments. As can
be seen from Figure 2, regularization is required.

[2] used various basis functions such as a Fourier basis to approximate the sensitivity curves
by a linear combination of these functions. Thereby unimodality of the sensitivity curves can be
achieved. A solution of (15) without further constraints will yield a solution, that may have local
maxima, but other than that is feasible (Figure 3).

It turned out in the experiments that enforcing the rank to 8 in (14) leads to a matrix with a
very large condition number. The rank was thus enforced as in

r =
(

V Σ
2V T + µ · D

)

−1
V PΣUTρ (15)

which lead to mathematically more stable results, which where, however, not convincing, as can
be seen in Figure 4.

Forcing the rank of C to 25 by (14) results in curves that are almost identical to those of the
full rank C , which numerically is 303 (Figure 5, left). Thereby, many operations can be saved in
the computation. Forcing it to 25 by (15) mostly preservers unimodality and positivity.

5 Conclusion

From the figures it is clear that the positivity constraint can be fulfilled automatically by the
smoothness regularization, if µ < 0.01. Unimodality is not obtained without additional con-
straints or tools. In practice, it can be enforced by clipping the curves to zero when they reach
a local minimum. This is also possible, if µ > 0.01 is chosen and negative values are computed
for the three curves.

3The data are available on the internet in
http://www.cs.berkeley.edu/~kobus/research/data/camera_calibration/index.html.

http://www.cs.berkeley.edu/~ kobus/research/data/camera_calibration/index.html
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Figure 3: Solutions for µ = 0.001, µ = 0.005, µ = 0.01, and µ = 0.1
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