
Christian Vogelgsang, Ingo Scholz, G¨unther Greiner, Heinrich Niemann
lgf3 – A Versatile Framework for Vision and Image-Based Rendering Applications

appeared in:
Vision, Modeling, and Visualization 2002 (VMV 2002)

Erlangen, Germany
pp. 257–264

666



lgf3 - A Versatile Framework for
Vision and Image-Based Rendering Applications

Christian Vogelgsang∗, Ingo Scholz†, Günther Greiner‡, Heinrich Niemann§

University of Erlangen, Department of Computer Science

Computer Graphics Group
Am Weichselgarten 9

91058 Erlangen, Germany

Lehrstuhl für Mustererkennung
Martensstr. 3

91058 Erlangen, Germany

Abstract

Applications of computer vision and image-based
rendering techniques nowadays often share ideas
and algorithms. Thus the components required for
implementation show a high degree of similarity.
Unfortunately this potential is currently hardly used
and investigation of new approaches often means a
lot of new but redundant work. In this paper we
present our approach to improve software devel-
opment by describing a versatile and comprehen-
sive implementation framework called lgf3. Our
goal is to design components capable of realizing
existing and future work in this field easily and
quickly. Even advanced concepts such as dynamic
light fields were already considered during the anal-
ysis phase.

1 Introduction

Image-based rendering techniques grew more and
more popular in the last years. Both the computer
vision and computer graphics communities regard
them as a valuable tool for solving problems in dif-
ferent fields. Starting with basic image operations
in space (e.g. warping) and ranging to elaborate
4D scene structures like light fields, all approaches
have in common that they build their models basi-
cally from a set of input images. Despite the theo-
retical foundation, these methods often require sub-
tle different structural changes and — in lack of a
common environment — often enforce an expen-
sive new implementation in each new project.

∗Vogelgsang@informatik.uni-erlangen.de
†Scholz@informatik.uni-erlangen.de
‡Greiner@informatik.uni-erlangen.de
§Niemann@informatik.uni-erlangen.de

We initially encountered the same problems
while working on our collaborate research project
combining computer vision and rendering ap-
proaches. Our research focuses on light fields and
we started with the first published methods, the light
field [10] and the lumigraph [6]. Beginning with a
straight forward implementation of the described al-
gorithms, we soon found out that this platform is not
versatile enough for future ideas. This first effort
resulted inlgf1 (named after our first file format:
lumigraphfiles). We worked with our initial system
and enhanced it until version 2, but with growing
complexity of our problems expansion of the sys-
tem got more and more costly.

Thus it became necessary to design a new imple-
mentation framework, named lgf3, which should be
versatile enough to handle all our current algorithms
with ease and furthermore be a reusable foundation
for future work. We based our work on the light
field techniques we are currently investigating, but
we tried to include a very broad range of image-
based applications in our design considerations.

The creation phase of lgf3 is based on the uni-
fied process model and UML as standardized by the
Object Management Group1 and widely used for
modern software design. The rest of this paper fo-
cuses on these strategies embedded in our context
of image-based applications.

The next chapter summarizes the analysis stage
of the modeling process. Chapter 3 presents the de-
sign essentials of the required components in our
model. Chapter 4 gives details on the implemen-
tation, followed by examples in chapter 5. We fi-
nally close with conclusions and an outlook on fu-
ture work.

1http://www.omg.org/uml

VMV 2002 Erlangen, Germany, November 20–22, 2002



2 Analysis

In the analysis stage of development, the application
field of the new system is studied and key compo-
nents required for a versatile system are extracted.
It is very useful to have a common nomenclature
as it helps identifying similarities and shared con-
cepts. We investigated the common techniques of
light field calibration and image-based rendering
methods.

2.1 Light Field Calibration

In order to create a light field from a set of input
images the camera parameters of each image have
to be known. In most of the pioneering works in
this area camera locations have been obtained by
using sophisticated setups for positioning the cam-
eras at known coordinates in space [10] or by sim-
plifying calibration using calibration patterns in the
scene [6]. In contrast to that we follow a scheme in-
troduced in [8] for using arbitrary image sequences
taken by – in the most general case – a hand-held
camera.

A calibration typically consists of a three-step
processing sequence. Starting with point feature ex-
traction, followed by tracking the features and cal-
ibration of the cameras, and finally the 3D recon-
struction of the scene. The results of these steps
were passed between each other. A feedback from
later processing steps, even from the renderer, can
be used to refine the calibration. Figure 1 shows the
processing steps for calibration.

The analysis phase resulted in the extraction of
the following key concepts:
• An image sequence is all the data available in

the beginning, with eachimagerepresenting a
certainviewof the scene.

• On this image sequence features are extracted
and tracked over the sequence, each leaving a
so-calledtrail through the images.

• Using these trails the image sequence is cali-
brated. Each image and the associated view is
thus assigned a set ofcameraparameters, ex-
trinsic and intrinsic.

• Each of the trails now represents a3D point
in the scene, and these points can be used to
calculate e. g.depth mapsfor each view using
stereo matching.

Further elaboration of this initial structure leads
to the following base layout for our component

Calibration Side

Rendering
Side

�
�
�
�
�
�
�
�

Sequence Recording

F
eedback

Scene

Feature Tracking

Calibration

3D Reconstruction

Figure 1: Calibration steps with main data path and
possible feedback loops.

model:
• A light field is a set ofviews.
• Each view containscamera parameters de-

scribing the recording setup for a single image.
• The capturedimage is also contained in the

view.
• Additional depth maps, usually stored as an

image, may be added to a view.
• 3-D scene pointsdescribe common scene in-

formation and should be stored globally.
• A trail describes the point correspondences

used for reconstructing a scene point and
should remember the views where it was
tracked in.

This component model for light field calibration
will be tested against different rendering applica-
tions in the following section and extended to a
complete component model in Section 2.3.

2.2 Light Field Rendering

Algorithms and methods for image-based rendering
are numerous. We have chosen some and analyzed
their requirements and their suitability for our com-
ponent model.

2.2.1 Warping

Ranging from classical image morphing [12] to var-
ious different image warping techniques [3, 4], all
these methods have in common that they require a

666



set of source input images with associated depth in-
formation and generate images for novel views out
of these values. They reproject each pixel with the
depth information into space and then sample this
grid in the target image.

For these methods, we can directly share the
components of the vision model. The main compo-
nents required are theview storing camera param-
eters (consisting of intrinsic and extrinsic parame-
ters), the attached image color information and as-
sociated depth maps. These techniques fit easily in
our current design.

2.2.2 Two Plane Light Fields

The light field as a discrete sample set of the plenop-
tic function was first introduced with a very restric-
tive two plane parameterization [10]. It requires a
fixed setup of cameras placed onto a plane sharing
the same image plane. The lumigraph [6] adds a
coarse geometric representation to improve the re-
construction quality.

The main requirement is a strict set of cameras
(views) with sheared frustum sharing a single im-
age plane. For rendering the connectivity of the
cameras is required and stored in a mesh. In this
case the mesh is a simple planar grid. For speed-up
techniques [13] and less restricted planar rendering,
general planar meshes are required. We need a new
component in our model to reflect this information
and added theview meshas a container for views
and their topology.

We identified thelight field itself as a special kind
of view mesh. It is enriched by adding extra in-
formation on the chosen parameterization and will
hint rendering algorithms. Each sheared camera is
added as a view and stores the image information.
Lumigraphs also add a geometric model (e. g. a tri-
angle mesh) or require implicit depth information in
per-view depth maps. Geometric models are placed
as new global components in our scene model. The
depth maps can already be stored in each view, but
additionally aconfidence mapcan be added to each
view to provide information about the reliability of
the depth information.

2.2.3 Other Light Field Techniques

Free form light fields [11] and unstructured lumi-
graphs [1] both relax the strict assumptions posed

on the camera layout by the two plane parameteri-
zation. They allow an almost free placement of the
views. Here, besides the image streams, the depth
information and the camera setup, the view mesh
for the camera connectivity is essential. By allow-
ing a broader range of view mesh types these mod-
els were integrated into our scene model, too.

There also exist some other forms of parameter-
ization for light fields. Spherical [9] or uniformly
sampled light fields [2] both use a parameter space
which has no immediate mapping onto a 2D image.
Other approaches use local parameters on a geomet-
ric representation of the scene. The surface light
fields [14] and light maps [5] are relevant contribu-
tions in this field.

All these techniques use parameterizations which
are initially not suitable for storage in 2D images.
But all of them try to devise methods that are capa-
ble of using rectangular 2D parameters. The main
reason for this is the need of high rendering speeds.
They are achievable mainly by relying on hardware
support and current hardware only supports 2D or
3D rectangular image data. This restriction allows
the immediate inclusion of these techniques into our
current framework and allows us to focus on 2D im-
ages. However our design is not limited to support
only this type of image.

2.2.4 Extension of the Component Model

The component model we built up in Section 2.1
can now be extended by the additional components
required for rendering:
• Confidence mapsare added to the views.
• Views are combined toview meshesdescribing

the connectivity of the views.
• The light field is introduced as a view mesh

extended with special parameterization infor-
mation.

2.3 Component Fusion

Following the component identification we studied
a number of possible applications of light fields
with regard to the suitability of our current model
for their needs. Such applications are for example
the use of light fields as models for object recogni-
tion [7], as virtual objects in augmented reality or
the future use of light fields for modeling dynamic
scenes with multiple static light fields.

666



The conclusion was that the current components
are applicable for a wide range of computer vision
and graphics applications, but need to be extended
by one further component for handling arbitrary
numbers of light fields in a scene and linking them
together. Thisscene databasestores the light field
information and global scene data such as trails and
scene points which several light fields may have in
common.

This last component together with the ones iden-
tified in Sections 2.1 and 2.2 constitutes the com-
plete component model the design of our frame-
work is based on.

3 Design

In the design stage each entity will be defined as
a class. There the essential functionality is consti-
tuted and the interface to other components is de-
fined. Also the relationship and the usage of each
object is described.

3.1 Maps

We combine images, depth maps and other per-
pixel data structures into the common termmaps.
A map stores a discrete grid of values and has fixed
dimensionw × h. A single 2D location is called a
cell. Each cell holds a value of the same type. The
type of data in each cell defines the type of the map:
• A radiance mapstores illumination informa-

tion. Commonly referred to as a visual im-
age. Either real physical entities (radiance)
or values of a color model like RGB, HSV or
CMYK are saved.

• A depth mapstores implicit geometric infor-
mation in depth values. Either orthographic or
ray depth values are commonly used.

• A confidence mapstores per-pixel weights or
quantifiers. These values are useful to judge
the validity of depth values in the calibration
process and allows the rejection of outliers in
the rendering stage.

3.2 Camera

We use the pinhole-camera model which is widely
used. Since we try to unify the application base
for vision and rendering applications, we have to
propose a singlecameracomponent usable for both

parties. We devised a camera object with two rep-
resentations. The camera is initially defined with
one set of parameters and the other format is only
created on demand.

In computer vision a camera is usually defined
by a4× 3 matrix projecting a point in world space
directly onto a pixel coordinate. On request a split
set of rotation matrix with translation vector and a
projection matrix is provided.

Rendering applications usually describe a camera
by a local coordinate system consisting of right, up
and direction vector. In this space a frustum window
is defined at fixed distance1 along thez-axis. The
frustum window is defined by specifying the bottom
left and top right position. For rendering purposes
in OpenGL applications the modelview and projec-
tion matrix can be calculated quickly from a camera
setup.

3.3 View and Layers

A viewcombines a camera with its associated maps.
A view can hold a number of maps with different
types. We introduced the termlayer to generalize
the concept of maps. A layer also represents a 2D
grid of cells but has no knowledge about the un-
derlying storage mechanisms. A map layer always
stores all cells but other layer types may store sparse
maps for example in a list.

A view holds an arbitrary number of layers of dif-
ferent types. We require every view in a light field
to have the same layer arrangement. This simplifies
the usage of many views and makes access more
efficient. To enforce this rule, we introducedlayer
factoryobjects that control the creation and destruc-
tion of layers for a set of views. Every time a view is
added to a light field the factory will automatically
add the current layout setup. If you add a new layer
to a set of views then the layer factory will create a
new layer for each of the existing views.

Different layers of the same type in a view can be
used to store hierarchical or multi-resolution data.
E. g. multiple depth layers can cope with LDIs (lay-
ered depth images).

3.4 View Meshes and Light Fields

As we have observed in the previous section, the
different light field rendering approaches need some
connectivity information for the views. We intro-
duce theview meshobject that interconnects the

666



views by edges. More topology information can
be provided by also specifying triangle information
which often helps in rendering algorithms.

View meshes have a wide range of application.
Every time some views with connectivity informa-
tion are required, a local view mesh is created. E. g.
view meshes are used in the calibration stage to de-
scribe a trail and connect all the views of a tracked
feature. The rendering stage creates view meshes
— often in real-time — for reconstructing the light
field at a given view point.

We define alight field object as a view mesh
which also controls all contained resources. It man-
ages associated data of the views with all referenced
layers. Thus a layer factory is always embedded
into the light field. Any other view mesh only refer-
ences some views for local processing but it cannot
control the associated resources.

3.5 Geometric Scene Description

Geometric information about the objects captured
in a scene has quite diverse locality of data. Local
implicit depth information is stored as per-pixel val-
ues in the depth layers. All other global geometry
is stored in the scene directly.

An initial geometric data set is created while
tracking. Each tracked point is located in 3D space
after calibration and we define apoint setmodel of
the object. This coarse point set can be enriched
or exchanged with depth information found in the
layers.

Mesh creation techniques are then used to build
a topology for the unconnected point set and this
usually results in atriangle mesh. Our compo-
nent model also provides triangle meshes with hi-
erarchical setup and supports other types of geom-
etry as well. It is also possible to import geome-
try from external sources. In some IBR approaches
(e. g. [14, 5]) an exact model of the scene is re-
quired and acquired externally through spatial mea-
surement like 3D scanning.

3.6 Scene Database

All the described components are stored in a scene
database. There a list of light fields and global ge-
ometry is found. This is the common scene struc-
ture that is available to all algorithms working in the
system. Figure 2 summarizes the major entities of a
scene.

Layer
Factory

ViewMesh

Light Field

Layer
View

Object Geometry

Scene

Figure 2: Common components of a scene model.
Starting from the scene database, the arrows repre-
sent the object interconnections.

Scene

Calibration Rendering

Import Export

Figure 3: Modules of lgf3. The solid lines denote
the main data paths. The dashed lines mark the
feedback loop.

The calibration or rendering parts of an applica-
tion extend the scene and store additional informa-
tion in it. E. g. the calibration stage adds trail com-
ponents and interlinks them with existing views and
layers.

3.7 Modules

Currently we have only discussed the central data
base where all scene information is stored, but not
the organization of algorithms creating and working
with this data. All methods are sorted by field of ap-
plication, placed into components and grouped into
modules. Besides the central modulescene, four
other modules are currently found in our design (cf.
Figure 3):
• The calibration modulecombines computer

vision methods working on light fields. They
are responsible for initial data generation.
Their main task is to calibrate a video stream:

666



An image sequence is fed in and placed into an
uncalibrated light field component. The cali-
bration algorithm then supplements each view
of the light field with camera parameters and
adds an initial point set to the scene.

• The rendering moduleuses the stored scene
information to reconstruct novel views of the
scene. It may also extend the scene database
with render specific information (e. g. render
view meshes). A rendering framework is lo-
cated here and allows easy implementation for
a wide range of display methods. Every infor-
mation available in the scene database can be
rendered with purely software based or hard-
ware accelerated OpenGL methods.

• An import/export moduleis used to store and
retrieve the scene database to and from exter-
nal persistent media. Starting with file I/O in
different formats this concept is also capable
of handling inter process data exchange and
supports various network transfer strategies.

When creating or extending modules one must be
very careful where to place functionality. In gen-
eral it is reasonable to place methods of general use
and working only on a single or only a few objects
directly into the scene components. All other al-
gorithms combining very diverse scene information
to solve a problem should be placed into an exter-
nal module. E. g. a method for depth estimation in
a map is placed directly into the depth map layer
but a tracking algorithm is stored in the calibration
module.

4 Implementation

One of our major concerns while implementing the
library was efficient handling of all resources. In
image-based applications usually large amounts of
per pixel data are required and thus careful manage-
ment of the maps is very important.

We started with the implementation of a map
pool. This structure can store large amounts of
maps with the same properties very efficiently in
physical memory. With map pools it is still nec-
essary for the application programmer to explicitly
allocate and fill these buffers on demand and later
store and free maps if memory is becoming scarce.
This is very cumbersome to implement and in algo-
rithm development these mechanisms blur the algo-
rithm structure by overcrowding the code with pure

management instructions.
To solve this problem we created a map in-

put/output interface that can export and import local
map data to and from external storage media in dif-
ferent common formats. This interface is connected
to a map pool so that the pool itself can manage the
map data. The concept is further enriched by the
use of smart pointers to the maps. Now the pointer
can automatically query the pool whether a map is
available and load it on demand, completely freeing
the user from this task.

Map pools are embedded into light fields and
control the resource of one set of layers in all views.

All other resources in the scene structure are neg-
ligible in size compared to the amount of image data
and thus are kept permanently in physical memory.
Only the number of geometric data may grow very
fast, but in this case we prepared the same tech-
niques as applied for maps.

5 Examples

In this section we will present a selection of compo-
nents we have created with our framework. We will
show how difficult tasks are simplified and how es-
pecially a cooperate project like ours can profit from
a common base framework.

5.1 Example 1: Tracking Features

As described in Section 2 the primary task for
calibrating an image stream is the generation of
point correspondences between frames by conduct-
ing feature tracking. A typical tracking system in
lgf3 consists of the components shown in Figure 4
and is integrated in the calibration module.

Application Program

Tracking Scheme

Tracker

Scene

Figure 4: Setup of a tracking application.

The bottom of the application hierarchy consists
of the tracker itself, which is responsible for ex-
tracting new features from an image and tracking

666



them from one image to another. For these tasks the
tracker has access to an extensive library containing
structure-from-motion algorithms. Although it has
no knowledge about the scene itself, it can refer-
ence the set of trails stored in the scene object, and
is given the view object of each image, from which
it can extract all necessary data like the image itself.

The next hierarchy level is a control layer which
handles the scene object and the access to its data.
Different schemes of tracking over a sequence can
be implemented as different aspects of this con-
trol layer. Since the tracker itself only tracks from
one image to another, the tracking scheme decides
on the sequence of tracking. Three different types
are currently implemented. Linear tracking which
only tracks once from the beginning to the end of
an image sequence, bilinear tracking which also
tracks backwards in a sequence, and finally a tracker
which is given a known view mesh and tracks fea-
tures from one view to all neighbouring views.

5.2 Example 2: Rendering

In the following we will have a look on the inner
workings of the rendering module by describing the
integration of a free-form light field renderer in our
system with the provided renderer interface.

Every renderer module has access to a global
scene object. This is either constructed by a con-
nected calibration module or restored from external
storage with the import module. Now the rendering
environment is created by opening a render window
on a GUI or by using the direct-to-memory image
renderer interface with helper classes available in
the rendering module. The renderer module is then
initialized. The free-form light fields are selected
from the scene and the associated view meshes are
transformed into a render view mesh.

The renderer is then ready for processing. The
controlling application sends two important signals
to notify the renderer. One requests a new recon-
struction at a novel camera position and another one
signals a change in the scene database. The first one
triggers the hardware based rendering algorithm us-
ing OpenGL and 2D texturing or a software based
renderer drawing only pixels. The second signal
forces a rebuild of the render view mesh.

The actual rendering requires the image informa-
tion from the view layers and geometric object in-
formation for depth correction. Now the powerful
resource handling concept comes in handy. While

Figure 5: An example scene reconstructed and ren-
dered with lgf3. All used views with their frustums
are depicted on the left. A novel view from a free-
form light field model of the scene is on the right.

the radiance maps are accessed the underlying map
pools handle memory allocation and resource im-
port and export. The performance of these opera-
tions can be improved with map caches.

For hardware accelerated rendering using
OpenGL, a texture manager is available. This
tool shuffles the radiance map information onto
the graphics card and keeps track of the texture
memory usage. The renderer only selects maps as
textures and the manager loads and uses the right
map in an efficient way.

5.3 Module Coupling

The use of a common component model and fur-
thermore the same code base make it very easy
for computer vision and computer graphics applica-
tions to cooperate. Extra flexibility is provided by
allowing the user to choose the degree of connec-
tivity. Loose coupling is established by using the
same library in two rather distinct projects and by
exchanging all data using shared import and export
modules. This is a very powerful approach while
testing and debugging parts of a larger system. In
a later stage of development you can strengthen the
coupling of the modules by simply compiling the
code into a single application and by replacing the
file based import/export with in-memory data trans-
fer strategies.

Figure 5 illustrates the coupling process with a
sample scene. First the calibration module reads
the input images and creates the initial scene com-
ponents. The result after calibration is depicted on
the left: each view has a valid camera location and
orientation. The scene data base is then accessed by
a free-form light field renderer: a novel view point

666



is chosen and the new view is rendered interactively
(image on the right).

6 Conclusions and Outlook

We think it is important to investigate the algo-
rithmic infrastructure of commonly used image-
based vision and rendering approaches since the
process of unifying the environment has many ad-
vantages. It helps generalizing and merging dif-
ferent approaches and is a very valuable common
framework for future development. Our platform
allows fast and easy testing of novel ideas but also
enables the implementation of robust applications.

We have presented the core ideas of our library
called lgf3 and showed the steps we have taken to
build a versatile structure. The different stages in
development, namely analysis, design, implemen-
tation and example usages were discussed.

For the future there are two main directions of
work. One goal is to integrate more calibration and
rendering techniques in our framework, and to ex-
tend the system by exploiting the possible feedback
paths and adding new approaches such as the dy-
namic light field. By including current and novel
techniques we can study if our framework is versa-
tile enough or needs adjustment. In addition to that
we want to promote the usage of the library and see
if the framework is as useful to a wide range of ap-
plications as it is to our work.

Acknowledgements

This work was supported by the Deutsche
Forschungsgemeinschaft under grant SFB 603/C2.
Only the authors are responsible for the content.

References

[1] C. Buehler, M. Bosse, L. McMillan,
S. Gortler, and M. Cohen. Unstructured
lumigraph rendering. InProceedings of
the 28th annual conference on Computer
graphics and interactive techniques, pages
425–432. ACM Press, 2001.

[2] E. Camahort, A. Lerios, and D. Fussell. Uni-
formly sampled light fields. InRendering
Techniques ’98 (Proceedings of Eurograph-
ics Rendering Workshop ’98), pages 117–130,
New York, NY, 1998. Springer Wien.

[3] S. E. Chen. QuickTime VR — an image-
based approach to virtual environment navi-
gation.Computer Graphics, 29:29–38, 1995.

[4] S. E. Chen and L. Williams. View interpola-
tion for image synthesis.Computer Graphics,
27:279–288, 1993.

[5] W.-C. Chen, J.-Y. Bouget, M. H. Chu, and
R. Grzeszczuk. Light field mapping. InPro-
ceedings of SIGGRAPH 2002, 2002. to ap-
pear.

[6] S. J. Gortler, R. Grzeszczuk, R. Szeliski, and
M. F. Cohen. The lumigraph. InProceedings
of SIGGRAPH ’96, pages 43–54, 1996.

[7] B. Heigl, J. Denzler, and H. Niemann. On the
application of lightfield reconstruction for sta-
tistical object recognition. InEuropean Sig-
nal Processing Conference, pages 1101–1105,
1998.

[8] B. Heigl, R. Koch, M. Pollefeys, J. Denzler,
and L. Van Gool. Plenoptic modeling and
rendering from image sequences taken by a
hand–held camera. In W. F¨orstner, J.M. Buh-
mann, A. Faber, and P. Faber, editors,Muster-
erkennung 1999, pages 94–101, Heidelberg,
September 1999. Springer.

[9] I. Ihm, S. Park, and R. K. Lee. Rendering of
spherical light fields. InProceedings of Pacific
Graphics ’97, pages 59–68, 1997.

[10] M. Levoy and P. Hanrahan. Light field render-
ing. In Proceedings of SIGGRAPH ’96, pages
31–42, 1996.

[11] H. Schirmacher, C.Vogelgsang, H.-P. Sei-
del, and G. Greiner. Efficient free form
light field rendering. In T. Ertl, B. Girod,
G. Greiner, H. Niemann, and H.-P. Seidel,
editors, Workshop Vision, Modeling and Vi-
sualization, pages 249–256,528, Saarbr¨ucken,
Germany, Nov. 2001.

[12] S. M. Seitz and C. R. Dyer. View morphing.
Computer Graphics, 30:21–30, 1996.

[13] P.-P. Sloan, M. F. Cohen, and S. J. Gortler.
Time-critical lumigraph rendering. In1997
Symposium on Interactive 3D Graphics, pages
17–24, 181. ACM SIGGRAPH, April 1997.

[14] D. N. Wood, D. I. Azuma, K. Aldinger,
B. Curless, T. Duchamp, D. H. Salesin, and
W. Stuetzle. Surface light fields for 3d pho-
tography. Proceedings of SIGGRAPH 2000,
pages 287–296, July 2000.

666


