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ABSTRACT

Highlights occur especially when recording medical (color)
images during micro-invasive operations. They disturb the
physicians who can sometimes only guess the tissue at the
position of the highlights. In this contribution we present a
new technique of highlight removal. A so-called light field
is generated from the recorded image sequence. Then a bi-
nary highlight mask is computed for each image and used
as confidence map for the light field pixels. The result is a
light field in which pixels at highlight positions are interpo-
lated by pixels which were not over-imposed by highlights.
This leads to light fields with better images. We demon-
strate and evaluate the technique on medical and synthetic
image sequences.

1. INTRODUCTION

Highlights due to specular reflections may considerably dis-
turb observers of images or image sequences, respectively.
When regarding medical images, especially endoscopic im-
ages, the problem is even increased because light source and
viewing direction are almost identical; thereby, wet tissue
surfaces perpendicular to the viewing direction show high-
lights and the physicians can only guess the tissue at that
position.

In this contribution we show how highlights can be sub-
stituted in image sequences when a light field [1] is created
first, that is subsequently used to enhance image quality at
locations, where the input images show defects. The main
advantage of our technique is the substitution of highlight
pixels by real intensity values which are obtained by inter-
polations of pixels which were not over-imposed by high-
lights. Note that all detectable image degradations could
be substituted by our method, provided a robust detection
method for the degradation is known for individual images.
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2. HIGHLIGHT DETECTION

For di-electric inhomogeneous material, a model for sepa-
rating specular reflectance from diffuse reflection exists [2],
the so-called di-chromatic reflectance model. Algorithms
based on this model have been applied, e.g., to remove high-
lights for stereo vision [3]. In [4], color gradients are used
to detect highlights. Although human tissue does not fit the
model of di-electric inhomogeneous material, these meth-
ods have been applied to detect highlights for biological ma-
terial in several articles (e.g. [5]). We compared these meth-
ods to simple thresholds in HSV color space (Figure 1). As
the differences are small we used simple HSV thresholds.

3. LIGHT FIELD GENERATION AND
VISUALIZATION

Light fields [6, 7] in general describe a sampled set of the
plenoptic function [8] which is suitable for the generation of
novel views of a scene. The plenoptic function measures the
outgoing radiance of a specific wavelength at every point in
space in any direction at any point in time. By assuming
a rigid scene and only measuring radiance along rays, the
seven dimensions of the plenoptic function can be reduced
to four.

A major challenge is the construction of a light field
from a real (rigid) scene from an arbitrary captured image
sequence of the scene [9]. The estimation of the intrinsic
and extrinsic camera parameters for each frame of the se-
quence is called calibration. Most approaches are based on
the knowledge of point correspondences between neighbor-
ing views in the image sequence. Particularly when light
fields are generated from endoscopic sequences with low
resolution and low signal-to-noise ratio, a highly robust ap-
proach is required to solve the correspondence problem. As
we have continuous image streams, a corresponding point
in one frame appears close to the corresponding location in
the previous (and next) frame. This property is exploited
by differential tracking approaches, e.g. [10] which is ap-
plied here. Knowing corresponding point features, a lot of
mathematical methods exist for computing camera motion



Fig. 1. Comparison of highlight detection methods (image of a gall): original image (left), HSV thresholds (center), regions
computed from color gradients with subsequent filling of closed contours (right).

from projections assuming a rigid scene [11]. To improve
the light field quality and increase robustness, the intrinsic
camera parameters of the endoscope are determined in ad-
vance using a calibration pattern [12] and have therefore not
to be estimated. We reverse radial distortions which are con-
siderable for the wide angle lenses used in endoscopic imag-
ing. The extrinsic camera parameters (translation and rota-
tion) are estimated by the weak-perspective version [13] of
the originally orthographic factorization method [14]. This
method is very robust with respect to outliers. A non-linear
optimization step which is based on the perspective projec-
tion model is applied afterwards. The result is a sparse geo-
metrical representation of scene surface which can be inter-
polated yielding approximative dense depth maps.

Light field rendering uses the calibration information
and the sampled data set to reconstruct new views of the
scene by interpolating the stored samples. To achieve vi-
sually convincing results at interactive rates, two-plane pa-
rameterized light fields and hardware-acceleration for ren-
dering have to be used. As the cameras do not lie on the
required two-plane setup an additional warping step is re-
quired where new images from virtual cameras lying on
a plane are generated (interpolated). The approximative
dense depth maps, resulting from the factorization step, pro-
vide additional information, so that the reconstructed views
can be enhanced drastically [6].

4. HIGHLIGHT SUBSTITUTION

A confidence map for each image is calculated using the
depth map in order to distinguish real depth information
from interpolated or not available depth information. The
confidence map has the same size as the input image and is
set to zero if no depth information is available, e.g. at the
border of the image. Currently, the confidence values for
interpolated and real depth information are in both cases set
to 1.

During warping, only pixels with confidence values > 0
are used to interpolate the images of the new virtual cam-

eras. The number of original cameras contributing to inter-
polation has to be chosen large enough to avoid black pixels
(i.e. no information for interpolation is available).

It is seen easily that the confidence map can be used to
substitute highlight pixels by setting their confidence value
to zero. This means that highlight pixels are not used for
interpolation during the warping step, i.e. no highlight pix-
els occur in the interpolated images of the new virtual cam-
eras. If the object point of a highlight pixel was not over-
imposed by highlights in the contributing views, the inter-
polated value will be very close or even identical to the real
value at that position.

The resulting light field uses images for rendering in
which highlight pixels are substituted (interpolated).

5. EXPERIMENTS AND EVALUATION

The algorithm was evaluated on synthetic and real image
sequences.

Signal-to-noise ratios could only be calculated for the
synthetic sequences as only there ground truth data was avail-
able. For a synthetic sequence of a sphere and a cube with
color texture, the value calculated from 50 images was in-
creased by 6.6% (8.30 vs. 8.85) for the whole image and by
17.3% (5.21 vs. 6.11) at highlight positions (also see Fig-
ure 2). Note that the generally low signal-to-noise ratios are
due to the black background of the synthetic images.

Two medical light fields were generated, one from a
sequence of a gall (61 frames), the other from a sequence
of the thoracic cavity (97 frames). The non-rigidity of the
scenes during recording has been ignored exploiting the fact
that the chosen calibration approach is robust against small
changes of detected point features.

Highlights were detected by HSV thresholds where H ∈
[0, 359], S ∈ [0, 255] and V ∈ [0, 255]. We used the fol-
lowing thresholds for the gall sequence: 0 ≤ H ≤ 359,
0 ≤ S ≤ 20 and 0 ≤ V ≤ 200. Afterwards the binary
highlight mask was dilated three times. The thresholds for
the thoracic cavity were: 0 ≤ H ≤ 359, 0 ≤ S ≤ 40 and



Fig. 2. Example images of the synthetic sequence: in contrast to image left, the image right was generated by using the
highlight mask as confidence map.

0 ≤ V ≤ 200 and the binary highlight mask was dilated
only two times.

Figure 3 shows two selected images of the gall light field
(and their difference image). The images were rendered
from the lights fields and show the reduction of highlights.

In a double blind setup, physicians evaluated rendered
images from the gall and the thoracic cavity light field. For
each light field 50 images were rendered with the normal
confidence map and another 50 images were rendered (us-
ing the same camera parameters) setting the detected high-
light pixels in the confidence map to zero (XOR-operation
between confidence map and highlight mask). These two
times 50 images were compared pairwise. The physicians
selected almost always the image where the highlights were
reduced to be the image with the higher or better quality:
45 of 50 images at the gall sequence and 50 of 50 images
at the thoracic cavity sequence. This shows very clearly the
gained enhacement by substituting highlights.

6. CONCLUSION

We presented a new technique for highlight substitution.
After the generation of a light field from a color image se-
quence of the scene, a highlight mask for each frame of the
sequence is calculated by simple HSV thresholds. To sub-
stitute highlights, the confidence value of highlight pixels is
set to zero. Thereby these pixels are not used at the interpo-
lation during the warping step. The result is a light field in
which pixels at highlight positions are interpolated by pixels
which were not over-imposed by highlights.

The algorithm fails to substitute highlights if they do not
move over the surface of the regarded object because then
no real information is available. The algorithm works nicely
as long as the highlights move and the objects and the light-
ing conditions remain almost unchanged during recording
of the sequence.

For synthetic data, the calculated signal-to-noise ratios
show that the image quality could be increased substantially,
especially at highlight regions. The evaluation results of the
physicians demonstrate that the image quality of endoscopic
images rendered from light fields was enhanced by highlight
substitution.

Up to now, highlights can only be substituted in images
rendered from the light field which do not look exactly like
the original images. In the future, we want to apply our al-
gorithm to the original images directly, i.e. we want to sub-
stitute only the highlight regions in the original images by
using the geometric information of the light field to obtain
the real information for these pixels.
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Fig. 3. Rendered images of the gall light field at the same camera position with the same camera parameters with and without
using the highlight mask as confidence map. Left: normal light field, center with substition, right differences of the two
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