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Abstract

In this contribution we present a new technique of high-
light substitution. From a color image sequence, acquired
with a hand-held camera, a so-called light field is gener-
ated. Additionally, a highlight mask is calculated for each
image of the sequence. The highlight mask is then used as
a confidence map for the light field. This results in color
pixel interpolations at highlight pixels, taken from images
in which these pixels were not over-imposed by highlights,
resulting in better images. We demonstrate the technique
on medical endoscopic images and evaluate the results on
both, natural and synthetic data.

1. Introduction

When recording color image sequences of natural scenes,
highlights due to specular reflection may considerably dis-
turb the observer. This is particularly the case when med-
ical images are recorded and humid tissue is subject to
inspection. For endoscopic images the problem even in-
creases as light source and viewing direction are almost
identical; thereby, surfaces orthogonal to the viewing di-
rection are often over-imposed to such an extent, that the
physicians can only guess the tissue at that position.

In this contribution we show how highlights – as well
as other image degradations – can be removed from image
sequences when a light field is created first, that is subse-
quently used to enhance image quality at locations, where
the input images show defects. The light field is a four-
dimensional structure for rendering virtual color images
from arbitrary positions within a certain volume.
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We discuss methods of highlight detection in Sect. 2.
The idea and theory of light fields (as in [7]) is introduced
in Sect. 3; we extend the light field structure in Sect. 4
by confidence maps that allow us to integrate the results
of highlight detection into the reconstruction of an image.
We evaluate the algorithm in Sect. 5. In Sect. 6 we sum-
marize all facets of color image processing of the proposed
system and propose further aspects of our work.

2. Highlight Detection

For di-electric inhomogeneous material, a model for sep-
arating specular reflectance from diffuse reflection exists
[12], the so-called di-chromatic reflectance model. Algo-
rithms based on this model have been applied, e.g., to re-
move highlights for stereo vision [8].

In [3], color gradients are used to detect highlights.
Based on the RGB values, two new color spaces, c1c2c3

and l1l2l3, are defined [2] (assuming the di-chromatic re-
flectance model) and the color gradients are calculated in
the three color spaces RGB, c1c2c3 and l1l2l3. The new
color spaces are defined such that highlight edges are de-
tected in the RGB and c1c2c3 color spaces, but not in the
l1l2l3 color space. The disadvantage of this approach is
that only edges are detected. To obtain highlight regions,
some post-processing has to be done.

Human tissue, however, does not fit the model of di-
electric inhomogeneous material. Experiments show, that
in some cases reasonable results can still be obtained using
this (incorrect) assumption for skin, e.g. in [10]. In our
experiments, this assumption leads to poor detection of
highlights in endoscopic images taken from the abdominal
cavity. The reasons may be, that illumination is turned to
red color by inter-reflections of red mucosa.

Assuming that no over-imposure is present in the im-
ages, highlights are simply detected in the HSV color



space by thresholds on the saturation and value. The ob-
tained highlight mask is dilated (3 × 3 window) to obtain
closed highlight regions. This also detects white colored
areas as highlights; but as such areas are not present in
the abdomen, this problem does not occur in endoscopic
images taken from there.

Results for both methods are shown in Figure 1 for an
endoscopic image of the thorax. In the following we use
simple thresholds in HSV .

3. Light Field Generation and Visualization

Light fields have recently been introduced into computer
vision and graphics [4, 9] and in general describe a sam-
pled set of the plenoptic function [1] which is suitable for
the generation of novel views of a scene.

The plenoptic function

Φ = Φ(x, y, z, t, ω, φ, λ) (1)

measures the outgoing radiance of a specific wavelength λ

at every point in space (x, y, z)
T in any direction (ω, φ)

T

at any point in time t. This high dimensional space is not
practical and thus the light field reduces the complexity
to four dimensions by only measuring constant radiance
along rays and by storing three channel color data. A
ray is described by its intersection points (s, t) and (u, v)
on two parallel planes. By setting up more slabs of two
planes in space, a wide range of directions is covered. The
rays starting from a fixed point on the st-plane and passing
through all samples on the uv-plane describe all pixels of
an image taken at the fixed location. Therefore a light field
can be seen as a set of images captured at fixed locations
and all of them sharing the same image plane.

A major challenge for computer vision, image pro-
cessing, and graphics is to construct a light field from a
real world scene. First an image sequence is captured by
an uncalibrated camera moved on an unknown trajectory.
Then this sequence is calibrated.

In this application the task of the calibration is the de-
termination of camera motion from a continuously record-
ed image stream. Because of the low resolution of input
images and their low signal-to-noise ratio an approach is
required that is highly robust against mismatches and in-
accuracies of matched image parts.

Most approaches are based on the knowledge of point
correspondences between neighboring views which are de-
termined for feature windows that can be tracked in arbi-
trary directions. As we have recorded a continuous image
stream a corresponding feature in one frame appears close
to the corresponding location in the previous frame. This
property is exploited by differential tracking approaches
as for example [13] being applied here.

Knowing corresponding point features, a lot of mathe-
matical methods exist for computing camera motion from
projections assuming a rigid scene [5]. The algorithms can

be divided into those that are based on knowledge about
intrinsic camera parameters (e.g. focal length) and those
that also estimate these parameters. Because of increas-
ing robustness we chose an approach of the first class in
this scenario for reducing the total number of estimated
parameters. The intrinsic camera parameters are deter-
mined in advance using a calibration pattern and applying
the method [15].

Our experiments have shown that the weak-perspective
version [11] of the originally orthographic factorization
method [14] is very robust against occurring outliers. The
bias caused by the weak-perspective approximation is re-
duced by a following non-linear optimization step that is
based on the (true) perspective projection model. As a
side product of factorization, for each point that could be
tracked over some frames the corresponding 3-D point is
reconstructed. The result is a sparse geometrical represen-
tation of scene surface. It is interpolated yielding approx-
imative dense depth maps that are used for visualization.

Finally a calibrated image stream is available and each
frame contains an image and an associated viewing frus-
tum describing the camera parameters. Unfortunately the
cameras do not lie on the required two-plane setup and
an additional warping step is required. During the warp-
ing, images of new, virtual cameras (target cameras) lying
on the st-plane are generated: all pixels of contributing
source cameras (the k nearest cameras are used; k is a
parameter and usually k = 5 is sufficient) are projected
into the 3D space and are then reprojected into the image
plane of the new camera. If more than one color value is
assigned to a 3D point, the resulting value is interpolated.
3D points lying behind other points (seen from the target
camera) are omitted, i.e. they do not contribute to the new
pixel value. The set of target camera images is then used
for visualization.

Light field rendering uses the sampled data set and
reconstructs new views of the scene by interpolating the
stored samples. For two-plane parameterized light fields
exists a hardware-accelerated rendering approach which
allows the reconstruction of novel views with interactive
rates. Visually convincing results can only be achieved by
using a dense sample set with a huge number of images.
The Lumigraph [4] extends a light field by adding geomet-
ric data about the objects placed in the scene. In our case
the approximative dense depth maps, which are a result of
the calibration (factorization) step, are used as geometric
data. With this additional information the visual quality of
the reconstructed views can be increased drastically.

4. Highlight Substitution

As block matching is usually not possible at image bor-
ders, no points can be tracked there and therefore no 3D
points are reconstructed. To discriminate between those
pixels where no reliable 3D information is available and
the others, a so-called confidence map was introduced.
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Figure 1: (a) Original image (b) highlights with HSV thresholds (c) highlights with di-chromatic reflectance model, color gradients
and subsequent filling of closed contours.

The computed confidence maps for the depth value have
the same size as the input image; they are computed for
each image. The confidence map is set to zero if no 3D
information is available and to > 0 (currently always set
to 1) if interpolated or real 3D information is available.

For rendering, the effect of a low confidence (currently
zero) in the map is as follows: during warping, pixels
with confidence value zero are projected to infinity and
are therefore not used for interpolation. To avoid black
pixels, i.e. none of the k nearest cameras can be used for
interpolation, k has to be increased, in the worst case to
the maximum number of cameras available. In our ex-
periments we set k to the maximum number of cameras
available.

The confidence map is now used for another purpose
as well; we mask out highlighted regions in the intensity
images, as we set the confidence values for the depth maps
in these locations to zero.

When a confidence value is zero, in some cases the
rendered value has to be interpolated from neighboring ob-
ject points. In many cases, the estimated value will depend
on neighbors that are very close on the object, resulting
from pixels that were visible in other views. It may even
happen that exactly this object point was visible in another
view and that the estimated intensity and color will thus be
replaced by the real value, without any interpolation.

The result is a light field that contains images in which
highlight pixels are substituted (interpolated).

5. Experiments and Evaluation

We evaluate the algorithm on synthetic and real image
sequences. For synthetic images, we compute signal-to-
noise ratios for an object with diffuse reflection in com-
parison to specular reflection. For real image sequences,
we use endoscopic images that are evaluated in a double

blind setup by medical physician.

As a first test and proof of the concept, circular spots
(20 pixels diameter) have been colored (blue) by a mask
in each image (size 256 × 256) of the input sequence as
shown in Figure 2. We set the confidence map to zero
at these locations. A light field has then been computed
from these images and maps. Figure 2c shows a rendered
image from the light field without using the mask as con-
fidence map, Figure 2d shows a rendered image from the
light field using the mask as confidence map. As can be
seen, the blind spots are filled almost completely by infor-
mation that has been taken from views that showed these
areas when they were not masked out.

Next, we rendered two times 320 synthetical images
from a scene containing a sphere and a cylinder, both with
color texture (red and blue chessboard). One set of the
synthetic images was rendered with highlight reflections
and the other set without. An example with highlights is
shown in figure Figure 3a. The reconstruction and cali-
bration was done using the highlight data set. Using this
reconstruction, three light fields were generated: one light
field using the data set without highlights for rendering
(ground truth G), one light field using the data set with
highlights for rendering (L), and one light field using the
data set with highlights and confidence map (HSV-thresh-
old) for rendering (LC). Examples of rendered images of
the light fields L and LC are shown in Figures 3b and 3c.

We rendered 50 images from each light field at the
same position with the same camera parameters (randomly
chosen) and calculated the mean signal-to-noise ratio be-
tween the images of the light fields L and G and the im-
ages of the light fields LC and G. Let a color image f

with N rows and M columns be defined as

f =
[

f ij

]

i=0,...,N−1,j=0,...,M−1
(2)
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Figure 2: (a) mask (b) mask overlaid over an original image (c) reconstructed view from light field without using the mask as confidence
map (d) reconstructed view from light field using the mask as confidence map.

(a) (b) (c)

Figure 3: Example images of the synthetic sequence: (a) original image (b) image rendered from the light field without using the
highlight mask as confidence map (c) same image as (b) except the highlight mask was used as confidence map.

where
f ij = (rij , gij , bij)

T
. (3)

The mean signal-to-noise ratio was calculated as

SNR =
1

50

50
∑

k=1

∑

i,j

∑

s∈{r,g,b} sij
∑

i,j

∑

s,n∈{r,g,b} |sij − nij |
(4)

where the signal s was defined as the image rendered from
G and the noise |s − n| was defined as absolute value of
the image difference between the signal image s and the
noisy image n.

The mean signal-to-noise ratio (± standard deviation)
between L and G was 8.30 (±0.49) and the mean signal-
to-noise ratio between LC and G was 8.84 (±0.83).

Medical light fields were generated from two endo-
scopic sequences: a sequence of the gall and a sequence
of the thoracic cavity. The rigidity of a medical scene
is not necessarily guaranteed because of respiration and
heart activity. This fact has been ignored exploiting the

fact that the chosen calibration approach is robust against
small changes of detected point features.

Highlights were detected in the gall sequence in each
image by HSV thresholds. The possible values for H, S
and V were H ∈ [0, 359], S ∈ [0, 255] and V ∈ [0, 255].
We used the following thresholds: 0 ≤ H ≤ 359, 0 ≤
S ≤ 20 and 0 ≤ V ≤ 200. Afterwards the binary high-
light mask was dilated three times. The thresholds for the
thoracic cavity were: 0 ≤ H ≤ 359, 0 ≤ S ≤ 40 and
0 ≤ V ≤ 200 and the binary highlight mask was dilated
only two times. Figures 4 and 5 show two selected im-
ages. The images were rendered from the lights fields and
show the reduction of highlights. The difference images
(Figures 4c and 5c) clarify the effect.

In a double blind setup, medical physicians evaluated
rendered images from the gall and the thoracic cavity light
field, at each case 50 images were rendered without using
the highlight mask and 50 images (at the same positions
with the same camera parameters) were rendered using
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Figure 4: Rendered images of the gall light fields at the same camera position with the same camera parameters: (a) light field without
using the highlight mask as confidence map (b) light field using the highlight mask as confidence map (c) difference image |(a) − (b)|,
inverted and rescaled: pixel values > 100 were set to 255 and pixel values ∈ [0, 100] were transformed linearly to [0, 255].

the highlight mask. These two times 50 images were com-
pared pairwise. The physicians selected almost always the
image where the highlights were reduced to be the image
with the higher or better quality: 45 of 50 images at the
gall sequence and 50 of 50 images at the thoracic cavity
sequence.

6. Conclusion

Using light fields even invisible, disturbed, or missing in-
formation in one view can be replaced by its real value,
provided that this area on the object is visible in another
view of the image sequence. Rather than substituting the
information by heuristics, we use real information. This
will work as long as the objects and the lighting condi-
tions remain almost unchanged during recording of the se-
quence.

We showed that fixed image degradations can be re-
moved by setting the confidence map of the generated light
field at these locations to zero (cf. Figure 2). Fixed im-
age degradations do not move when the camera moves,
e.g. particles lying on the lense of the camera. In our ex-
periments the (synthetic) degradations used were colored
circles with 20 pixels diameter overlaid over the original
images of size 256× 256.

For synthetic data, we showed that the signal-to-noise
ratio could be increased substantially considering that the
number of highlight pixels is less than 10% of the object’s
area by substituting highlights. For real data the evaluation
results of the physicians demonstrate that the image qual-
ity of the endoscopic images was enhanced by the high-
light substitution.

We showed, how color image sequences can be en-
hanced by combining various strategies in computer vi-
sion and image processing. In the summary, we emphasize

again the relation of the work to color processing:

• color image sequences are enhanced,

• highlights are detected by color imaging methods,

• color light fields are generated and used for high-
light substitution,

• color interpolation is required for intensities at yet
unknown pixel locations.

Our major application of this strategy is endoscopic
medical imaging. Other applications of light fields in com-
puter vision can be found, e.g. in [6], where light fields are
used for self localization of a robot.
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