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Abstract

Geometric object models have been widely used
for visual object tracking. In this contribution we
present particle filter based object tracking with
pose estimation using an appearance based light-
field object model. A light-field is an image-based
object representation which can be used to render a
photo realistic view of an arbitrarily shaped object
from arbitrary viewpoints. It is shown how light-
field object models can be generated and utilized.
Furthermore, we show how these models fit into
the probabilistic framework of dynamic state esti-
mation by defining an appropriate likelihood distri-
bution from an image similarity metric. Finally, we
present results and accuracy evaluations from track-
ing experiments of different objects.

1 Introduction

Object tracking is the task of sequentially estimat-
ing the internal, unknown state of a moving object
from a sequence of observations. Model based ob-
ject tracking exploits the fact that information about
the object is available in form of a model, from
which it is possible to predict what observations
should be expected, if a certain state of the object is
assumed. This predicted observation is compared to
the actual observation and the estimated state could
be updated accordingly. In 3-D object tracking, the
state of the object normally is a vector that contains
the 3-D position of the object, its velocity and ac-
celeration. Additionally, sometimes the pose of the
object is also of interest and is therefore, appropri-
ately parameterized, included in the state vector. In
this contribution we present results on the use of
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appearance based light-field object models for 3-D
object tracking with pose estimation.

The literature proposes many different kinds of
object models to use for object tracking. The classi-
cal and most common models are geometric object
models. These models mainly describe the shape of
an object by a set of lines, curves, surfaces, etc. For
example, a 3-D CAD model belongs to this class of
models. Geometric object models are well suited
to derive and predict the outline of an object given
its 3-D position and pose, i.e., when it is seen from
a certain viewpoint. Hence, those models are of-
ten successfully deployed in contour tracking appli-
cations based on segmentation information (edges,
corners, etc.) [10, 17] . One drawback of those
models is, that geometric information on the object
has to be available in order to generate the model.
This data might be difficult to achieve, or not even
available. Additionally, there are objects showing
such a geometric complexity that their shape cannot
be described appropriately. Hence, objects either
have to be shaped relatively simple (mostly, polyhe-
dral objects are preferred, e.g., [12]) or can be ap-
proximated by simple shaped geometric primitives,
like cuboids or ellipsoids.

Instead of comparing segmented edges with pre-
dicted ones, a different approach to object tracking
is to predict how the object (or parts of it) should
look like from a certain viewpoint and to com-
pare this to the actual observation. Therefore, ob-
ject models are necessary that provide information
from which any view of the object can be rendered.
Those models could either be synthesized and ap-
proximate the appearance of the object by means
of computer graphics [14], or the model could also
be built from several real images of an object. A
well known appearance based object model of this
kind is the view-based eigenspace representation of
an object (e.g., [13]), which approximates the ob-
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ject’s appearance by a linear subspace. In [2] this
object model is used for 2-D tracking (i.e., in the
image plane) of a cylindrically shaped object. In
[16] a similar approach is used to build generative
appearance models of human limbs that were used
for tracking human motion in 3-D.

In this contribution we use so called light-fields
[4, 11] to capture and store the appearance of an
object. A light-field is a view-based representa-
tion of an object from which photo-realistic images
of the object from arbitrary viewpoints can be ren-
dered in real-time by interpolating between known
views. A light-field can be easily generated for ar-
bitrarily shaped objects without any a priori knowl-
edge about the object’s geometry (details are given
in Section 2). The applicability of light-field object
models is widespread, for example, they were used
for training a statistical classifier [5], or even for vi-
sion based robot navigation [6].

The work presented here uses light-field object
models for visual 3-D tracking and pose estimation.
We show the applicability of this object model in the
framework of dynamic state estimation with parti-
cle filters. We present evaluations of the estimation
accuracy for different objects and trajectories under
controlled conditions.

This contribution is organized as follows. In the
next section we first give an introduction to light-
field object models. We describe the task of model
generation for the objects we have used. After-
wards, we state the task of 3-D object tracking in the
probabilistic framework of Bayesian state estima-
tion. We shortly review the particle filter approach
to sequential state estimation that has been used for
the tracking experiments throughout this paper. In
this context of particle filters a discussion follows
of the correlation based image similarity metric we
have chosen to define a likelihood probability den-
sity function (pdf) for weighting the individual par-
ticles. The experiments we conducted as well as the
obtained results are finally presented in Section 4.

2 Light-Fields

In contrast to model-based rendering light-fields use
camera images of real scenes and objects to render
new views of these scenes and objects from arbi-
trary viewpoints, without having an explicit geo-
metric model. The advantages of this technique are
that objects and scenes can be reproduced in photo-

realistic quality including even effects of specular-
ity, and that images can be rendered quickly despite
a complex geometry of the scene.

The idea behind light-fields is that each image
can be considered as a bundle of light rays, where
each ray is emitted from a certain point on the scene
surface in a certain direction towards the center of
projection of the camera. Thus the light-field con-
sists of a collection of light rays, where every sur-
face point has been sampled from a number of dif-
ferent directions. An image from a new and previ-
ously unsampled viewpoint is then constructed by
looking for the closest known rays to each of the
light rays in the image and interpolating their inten-
sity over them.

Storing a light-field is a question of parameter-
izing the known light rays. In the original papers
[4, 11] light-fields have been parameterized using
two planes, although other parameterizations have
been proposed (see [15] for references). Each plane
consists of a regular grid in world space, where one
grid holds the positions of the cameras of each view,
and the other is usually set to the distance of the im-
age planes.

The problem with this parameterization is that ei-
ther the cameras have to be set to these grid posi-
tions while sampling the scene, which can be done
using a sophisticated mechanical setup, or that the
images are warped after recording such that they fit
into the two-plane grid, introducing a loss in qual-
ity. Therefore the light-fields used here are stored as
so-called free form light-fields as described in [7].
They are a generalization of the two-plane approach
as they allow cameras to be situated on an arbitrary
but convex mesh around the scene.

This configuration is very suitable for the object
representation here, as the camera used for record-
ing the images of the objects was mounted on a
moving robot arm above a turntable so that the cam-
era positions are situated on a hemisphere around
the object. By using the hardware acceleration
schemes described in [15] it is possible to render
several images of the object per second using a free
form light-field.

Another way to improve the results of light-field
rendering is to use depth information, as it allows
to identify the exact location on the surface of the
scene where it is intersected by a certain light ray
and to find the corresponding known light rays nec-
essary for interpolation. Nevertheless in the experi-
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ments described later the scene depth for each view
is approximated by a plane through the object, re-
sulting at some points in a superpositioning of sev-
eral images, also referred to as ghosting artifacts.

2.1 Light-Fields as Object Models

In the remainder of this section we describe the gen-
eration of the light-field object models. In order to
record the images of each object we use the setup
shown in Figure 1. A camera is mounted on a robot
arm above a turntable which both can be moved
(tilted or rotated respectively) by step motors.

Camera

Robot arm

Object
Turntable

Figure 1: Turntable and robot arm assembly for
light-field sampling.

Using this setup the cameras of the samples for
reconstructing the light-field are placed on a hemi-
sphere around the object as shown in Figure 2. To
reach a uniform sampling, the number of samples
taken for each rotation was reduced the higher up
the camera position was on the hemisphere. The
intrinsic camera parameters were calibrated auto-
matically from the sample images using a procedure
similar to [9]. For the focal length an initial value
was used which is close to the real value to reach
more stable results. In general this initialization can

φ

Object location

Camera position (θi, φi)
T

θ

Figure 2: Geometric configuration for light-field
sampling.

be an arbitrary value. The camera positions were
then computed using the angles θ and φ of the robot
arm and the turntable.

While it is possible to use automatic camera cali-
bration for the extrinsic camera parameters as well,
in many cases it does not lead to satisfying re-
sults. Especially on objects with specular surface
or mostly uniform texture the feature tracking al-
gorithm often fails to generate enough point cor-
respondences for calibrating the whole hemisphere
of images. Therefore we decided against this auto-
matic calibration, as otherwise the choice of objects
would be reduced too much. Calibration would also
yield depth information for the point correspon-
dences as a byproduct, which is thus unavailable.
Instead we approximate depth information using
planes at the mean distance of the object from the
cameras. Each plane is parallel to the image plane
of the corresponding camera, i.e., a local depth map
as in [7] without depth correction [4].

Once the light-field of the object model is cre-
ated, arbitrary views can be rendered from it. The
virtual camera coordinates are parameterized using
the two angles on the hemisphere at a standard dis-
tance from its center. Variations in size of the ob-
ject to track may originate from a changing distance
of the camera or a different focal length. Due to
constraints in the hardware-accelerated free form
light-field renderer we use, we model size variations
by adjusting the field-of-view of the camera, which
corresponds to a change in focal length.
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3 Object Tracking by Particle Filters

Visual 3-D Object tracking is in general seen as a
sequential state estimation problem. The unknown,
varying state of the object at a certain timestep,
e.g., its current 3-D position, its velocity, or its
pose, has to be estimated from a sequence of ob-
servations made by one or more cameras up to this
time. Formulating the problem in a Bayesian frame-
work, object tracking means the sequential estima-
tion of the a posteriori pdf p( �

t
|〈 � 〉t) at time t of

the states �
t

given the the sequence of observations
〈 � 〉t = � t . . . � 1.

The posterior pdf p( �
t
|〈 � 〉t) can be recursively

calculated using Bayes’ formula

p( �
t
|〈 � 〉t) =

1

c
p( � t|

�
t
)p( �

t
|〈 � 〉t−1) (1)

with c being a normalizing constant. Equation (1)
involves two pdfs, first of which is the so called tem-
poral prior p( �

t
|〈 � 〉t−1) that realizes the recursion

and that is obtained by

p( �
t
|〈 � 〉t−1) =

∫

p( �
t
| �

t−1
)p( �

t−1
|〈 � 〉t−1) d �

t
.

(2)
The pdf p( �

t
| �

t−1
), the state transition, models

the evolution of the object’s state over time. It is
assumed that the state depends only on its direct
predecessor and therefore state evolution shows the
Markovian property.

The second pdf needed in (1) is the likelihood
p( � t|

�
t
). The likelihood is used to model the pro-

cess that generates an observation given a certain
state of the object. For example, it could model the
perspective projection of the object onto the image
plane of a camera by additionally taking into ac-
count background clutter and sensor noise. Eval-
uating the likelihood for an observation measures
how likely this observation is, given a certain state.
In the context of (1) the likelihood can be seen as
weighting the predicted states from the temporal
prior according to the actual available observation

� t. In Section 3.2 we present the likelihood pdf that
has been used later on for the experiments.

3.1 Particle Filters

The problem with equations (1) and (2) for sequen-
tial state estimation is, that for most cases, they can
not be evaluated in closed form. In general not

only the posterior pdf but also the likelihood pdf is
multimodal and not analytically describable. These
two properties finally make the integral in (2) in-
tractable. Only in few special cases there exists a
solution to the recursion and the posterior pdf can
be computed. One of these special cases is han-
dled by the Kalman filter and its relatives [1]. If all
involved pdfs are Gaussian and if the state transi-
tion and the observation process can be described by
linear equations superimposed by white Gaussian
noise, then the posterior pdf remains Gaussian with
the mean and covariance calculated by the Kalman
filter equations.

This special case of state estimation is not sat-
isfactory for applications in computer vision. For
example, just the use of the simple pinhole camera
model introduces a nonlinearity in the observation
process. Additionally, the likelihood pdf is multi-
modal in general due to clutter, i.e., detected fea-
tures not originating from the object but from the
background. This all causes the posterior pdf to be-
come multimodal and therefore prohibits the use of
the Kalman filter.

Particle Filters (PF) – firstly introduced to the
computer vision community under the name Con-
densation algorithm by [8] – offer a way out of this
situation. In PFs the posterior pdf is approximated
by a finite set of N weighted samples. Each sam-
ple represents a certain state and its weight is pro-
portional to the value of the posterior for this state.
The PF propagates these samples through time ac-
cording to the following scheme. At first, in the
so called prediction step, N new i.i.d. samples are
drawn from the current posterior sample set. To
each of these new samples the dynamic model is
applied (t → t + 1). According to the Monte-Carlo
method of composition [18] this leads to i.i.d. sam-
ples from the temporal prior (cf. (2)). Afterwards, in
the update step, these samples get weighted with re-
spect to the current observation and the likelihood.
Now, a sample set representation of the posterior at
time t + 1 exists, and the filter restarts with the pre-
diction step.

3.2 Likelihood Computation

We model the distribution of the observations given
a certain state by a Gibbs distribution, which is a
commonly used technique [3]. The pdf of the dis-
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tribution is given by

p( � t|
�

t
) =

1

z
exp [−E( � t|

�
t
)] (3)

with z being a normalizing constant. The term
E( � t|

�
t
) (with E( � t|

�
t
) ≥ 0) can be interpreted

as an energy. This energy should be high, if the im-
age data � t does not correspond well to the data that
is predicted from the state �

t
. The energy should be

low for a good match.
In our case, the light-field object model predicts

an image of the object assuming a certain state. This
image has to be compared to the actual observation.
Therefore, the energy term E( � t|

�
t
) has to mea-

sure the similarity between the predicted observa-
tion and a certain target region in the actually ob-
served image.

The energy E( � t|
�

t
) was defined by means of

the normalized correlation coefficient (NCC). NCC
is a common similarity metric between images used
for template matching. Because the likelihood def-
inition (3) requires high positive energy for bad
matches, we used the reciprocal of the absolute
NCC. Additionally, the absolute NCC is increased
to the power of α with α > 1. We call α a strictness
parameter because the higher this parameter is cho-
sen, the better the match has to be to finally achieve
a high likelihood.

4 Experimental Results

We used three different objects for our experi-
ments (cf. Figure 3): a stuffed elk (elk), a Santa
Claus made of porcelain (santa), and a tape cassette
(tape).

Figure 3: Objects used for experiments. From left
to right: elk, santa, tape

For each of these objects a light-field object mod-
els has been constructed. Each object was recorded
from 817 camera positions on a hemisphere with the
turntable-arm assembly described in Section 2.

To evaluate accuracy of the proposed tracking
technique ground truth data needs to be available.
Therefore, we recorded the objects again from cam-
era positions on the hemisphere that were different
from those used for the generation of the light-field
object models. We used 687 images for the elk,
507 images for the santa, and 508 images for the
tape. The camera positions were stored with the im-
ages. Afterwards, object motion can be simulated
by defining different paths through those camera
positions. For our experiments we used three differ-
ent paths of length 72 that were defined by sampling
sinusoidal curves over the arm and turntable angles.
The corresponding camera position to each sample
has been obtained by using the respective nearest
neighbor, therefore some camera positions may ap-
pear multiple times in one path. Figure 4 depicts the
camera positions together with the paths.

Path 1 Path 2 Path 3

0
0 π/4

2π

robot arm angle θ

tu
rn

ta
bl

e
an

gl
e

φ

Figure 4: Three different paths of length 72 through
the camera positions (dots) on the hemisphere for
the object elk. For the other objects the paths are
similar.

We deployed a particle filter for tracking the ob-
jects on their paths (i.e., actually, the camera posi-
tions are estimated). At each timestep the estimated
state is taken to be the sample mean of the posterior
density, hence a minimum mean square estimator
(MMSE) is realized. For the experiments presented
here, we restrict the state to only contain the 3-D
pose parameters, namely, the two angles φ and θ,
their velocity, and their acceleration, i.e.,

�
t
=

(

φ, φ̇, φ̈, θ, θ̇, θ̈
)T

. (4)
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For these experiments here scaling is not yet con-
sidered. The distance of the cameras on the hemi-
sphere to the center of gravity of the objects is as-
sumed to be fixed. Therefore, no position informa-
tion is included in the state vector. The dynamic of
the object is modeled by a linear equation whereby
the state transition noise was estimated from the
paths.

In advance to the tracking experiments we de-
termined the best suited strictness parameter α (cf.
Section 3.2). Each object was tracked on all three
paths at an image resolution of 1282 with α =
1, . . . , 10 using 100 samples for the particle filter.
The estimation errors in θ and φ for each of the 90
runs were evaluated and averaged. To enable com-
parison of the results, the averaged estimation errors
for a certain α were weighted by the number of suc-
cessfully completed trackings with this α (e.g., for
α = 1 only 2 out of the 9 trackings succeeded, for
α = 2 it were 6). The best results were achieved
for α = 8, so we decided to use this value for all
subsequent experiments.

In our main experiments we investigated how the
performance of the tracking depends on the num-
ber of samples and on the chosen image resolution.
Each object was tracked on each path using three
different image resolutions: 642 , 1282, and 2562 ,
and three different numbers of samples for the par-
ticle filter: 50, 100, and 200, resulting in a total of
81 experiments.

For some of the combinations it occurred that the
tracker lost the object and did not keep tracking it
along the whole path. The numbers of successful
trackings for different resolutions and numbers of
samples are summarized in Table 1. The figures in
the table support the expected: the higher the num-
ber of samples, the higher the number of successful
trackings. Detailed evaluation has shown that the
elk was the most difficult object to track.

n out Resolution
of 9 642 1282 2562

50 6 5 5

Sa
m

pl
es

100 8 8 7
200 9 9 8

Table 1: Number of successfully tracked paths over
all objects for different resolutions and numbers of
samples.

After having sorted out the experiments for
which tracking failed, accuracy of the tracker can
be evaluated. Accuracy is measured by calculating
the mean absolute estimation error in the angles θ
and φ against the known ground truth data of the
constructed motion paths. The results of the eval-
uations are given in Table 2 for the angle θ and in
Table 3 for the angle φ. From these tables it can be
seen that the angle θ was estimated more accurately
than the angle φ. The averaged mean absolute es-
timation error for θ is 2.522 degrees by a standard
deviation of 0.085 degrees. This small variation in
error suggests that the accuracy in estimating θ is
nearly independent on the chosen number of sam-
ples and resolution. But, this is not the case for the
angle φ. The averaged mean absolute estimation
error is 3.281 degrees by a standard deviation of
0.36 degrees. The figures in Table 3 show that es-
timation becomes more accurate with an increasing
number of samples, but it becomes more inaccurate
with higher image resolution. This effect – of which
the cause we have not yet fully understood – is very
useful for the purpose of real-time object tracking
where computation time is limited and in general a
compromise between accuracy and speed needs to
be implemented. In our case the processing of one
sample, including the rendering of an image from
the light-field, takes about 0.14 seconds at a resolu-
tion of 642, 0.19 seconds at 1282 , and 0.21 seconds
at 2562 on a Pentium III, 800 MHz. Therefore, the
figures suggest to use 100 samples for the particle
filter and an image resolution of 642 to achieve the
desired compromise.

Error Resolution
in θ 642 1282 2562 Mean

50 2.913 2.441 2.154 2.503

Sa
m

pl
es

100 2.543 2.707 2.767 2.672
200 2.610 2.324 2.242 2.392

Mean 2.688 2.491 2.388

Table 2: Mean absolute estimation errors of
turntable angle θ for different resolutions and num-
bers of samples, given in degrees averaged over all
successfully tracked paths and objects.

The qualities of the tracking and the rendered im-
ages are demonstrated in Figure 5 exemplarily for
the object elk on path 1 tracked with 100 samples at
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Error Resolution
in φ 642 1282 2562 Mean

50 3.562 4.618 4.320 4.167

Sa
m

pl
es

100 3.144 3.173 3.323 3.213
200 2.400 2.375 2.614 2.463

Mean 3.035 3.388 3.419

Table 3: Mean absolute estimation errors of robot
arm angle φ for different resolutions and numbers
of samples, given in degrees averaged over all suc-
cessfully tracked paths and objects.

a resolution of 642. For each timestep we rendered
an image from the light-field object model corre-
sponding to the sample mean of the posterior dis-
tribution, i.e., corresponding to the estimated state.
These images are placed beside the original images
from the sequence to allow for visual comparison. It
can be seen that the object’s pose is estimated nearly
accurate.

5 Conclusion

In this contribution we demonstrated how light-field
object models could be used for 3-D object track-
ing with pose estimation. The main advantages of
the light-field approach are, first, that model gener-
ation is simple compared to geometric object mod-
els, and second, that models could be generated for
nearly every kind of object without any prior knowl-
edge about the object’s geometry. We showed, how
these models fit easily into the framework of statisti-
cal object tracking by defining a likelihood function
based on a Gibbs distribution. The presented ex-
perimental results circumstantiate that the proposed
approach is suitable for the task of pose estimation.

In future experiments the effect of decreasing ac-
curacy of the state estimator at increasing image
resolution needs further investigations. Perhaps, the
effect is due to some kind of noise reduction or blur-
ring that arises from image scaling. Especially, it
should be examined, if accuracy still increases with
a further image size reduction.

Additional improvements could be applied to the
light-field and the model generation process. It has
been mentioned before in Section 2 that the camera
positions need not be calibrated by hand but can be
calibrated automatically by tracking point features

resulting in point correspondences between the im-
ages. The benefits would be on the one hand a re-
duction of the amount of interaction required, and
on the other hand the resulting availability of depth
information from the calibration process. Neverthe-
less for calibration to work well on a wide enough
variety of objects tracking and calibration algo-
rithms still need to be improved. Apart from that,
depth maps could also be generated by the applica-
tion of stereo algorithms, which may even yield the
better results.

Currently, we are working on experiments with
tracking the objects in image sequences recorded
in an office environment with varying illumination
and background. To accomplish this task, we have
to deal with problems that occur in this general sit-
uation, e.g., object scaling, automatic initialization
of the tracking process, calibration of the camera
and registration of the calibration parameters to the
light-field parameters.
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