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Abstract

Adaptive control is a field with a long tradition sine the early 1950’s. Despite the fact that

Bayesian networks offer attractive properties, proven in other domains like data mining, they

are seldom used in adaptive control. This paper develops a new type of controller, based on

Bayesian networks. It is shown that controllers, trained with impulse and sinus response, shows

nearly the same performance as the analytically calculated Dead-Beat controller.

1 Introduction

When dealing with industrial control, it is impossible, or at least time consuming, to get a
mathematical description of the plant. E.g. there is no possibility to describe a nonlinear
system by its transfer function. Thus the engineer has to rely on his experience. Another
problem is, that the plant might change. This might happen due to changing operating
points and environment. This led in the early 1950’s [1] to research in adaptive control.

Bayesian networks(BN) offer a lot of advantageous preconditions to contribute to this
interesting field. For example, they are able to deal with hidden variables or missing infor-
mation, which might lead to robust behavior when measurements fail. Hybrid Bayesian
networks offer the possibility to deal with discrete and continuous variables at the same
time. Also nonlinear processes can be modeled, as shown in [2].

As long as linear systems are concerned, the similarities between Kalman Filters and
Dynamic Bayesian networks (DBN) can be used to deduce the structure of the model
and for the incorporation of a-priori knowledge (see [3]). In principle both the state-space
description and difference equations can be used as model for the Bayesian controller.
Former experiments [3] has shown that the difference equation, used in this paper, leads
to more stable training results with less examples. In this paper a new controller type,
based on BNs, is evaluated using dynamic systems with different damping and order. The
results are compared with PID controllers, widely used in industry. Their settings are
figured out both empirically using the traditional method of Ziegler and Nichols [4, 5].
Additionally they are compared to Dead-Beat controller, where the controller’s transfer
function is calculated analytically using the plant’s transfer function. The results show,
that the Bayesian controller clearly outperforms the approach by Ziegler and Nichols and
shows comparable results as the Dead-Beat controller.

The article is structured as follows. In section “Dynamic systems and control theory”
the terminology of control theory is introduced together with different methods to figure
out the settings of PID controllers and the measures to evaluate their performance. Af-
terwards in section “Bayesian networks” the main ideas of BNs are discussed, including
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the structure of the Bayesian controller and the calculation of the manipulated variable
in section “Training and calculation of control signals”. The test systems and the exper-
iments are discussed in the section called “Experiments”. This article concludes with a
short summary and an outlook.

2 Dynamic systems and control theory

Control is a frequently occurring problem in industry with a tradition of more than 200
years (confer [6]). Examples are the control of pressure, temperature and revolution. In
this section a common description for linear dynamic systems is introduced. Afterwards
the frequently used PID controller is discussed together with the performance measure
used to compare the Bayesian controller with the PID and Dead-Beat controller.

2.1 Controlled systems

Linear dynamic systems can be described by its differential equation
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where u(t) denotes the input of the system, y(t) the output. Only systems with m <= n

are physical realizable. In most of the cases it is more common to use the Laplace-
transform

L{f(t)} = F (s) =
∫

∞

0

f(t) exp(−st)dt (2)

of a function, so that the convolution ∗ of two signals f1(t) and f2(t)

L{f1(t) ∗ f2(t)} = F1(s) · F2(s) (3)

is mapped to the multiplication of the two Laplace transformed F1(s) and F2(s). For
equation(1) this leads to
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and the transfer function
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which is the quotient of two polynomials for simple single input single output systems.

For digital control it is more common to work with discrete time signals. The derivation
of a signal f(t) can be approximated by

df(t)

dt
≈

f((k + 1)∆T ) − f(k∆T )

∆T
, (6)

where ∆T denotes the time difference between two time steps. Thus, the differential
equation is approximated by a difference equation

yt = −
n∑

i=1

aiyt−i +
n∑

i=0

biut−i . (7)



To distinguish discrete time from continuous time systems indices are used, e.g ut instead
of u(t). To avoid dealing with convolution the z-transformation

Z{f(k)} = F (z) =
∞∑

k=0

f(k)z−k (8)

is used for the description of time discrete systems. Similar to the Laplace transformation
this leads to a z-transformed transfer function

G(z) =
Y (z)

U(z)
=

b0 + b1z
−1 + · · ·+ bnz

−n

a0 + a1z−1 + · · ·anz−n
z−d , (9)

where the term z−d is responsible for the dead-time of the system. For systems without
dead-time d = 0. Also the z-transform maps the convolution of two signals to the mul-
tiplication of the two z-transformed signals in the z-plane. For the development of the
closed loop transfer function one should keep in mind that the digital controller gener-
ates only signals at special points in time. To ensure that this signal is kept constant
between two points in time a zero order lag element H0 is used. When looking for an
equivalent description H0G(z) of a continuous time system G(s) in discrete time space, a
series connection between a zero order lag element, the continuous system and a sampling
element is used. Also the time discrete equivalent of linear systems is a quotient of two
polynomials

H0G(z) =
B(z)

A(z)
z−d , (10)

denoted by B(z) and A(z), multiplied with z−d for systems with dead-time. The closed
loop transfer function Gw(z) of a dynamic system H0G(z) and a controller D(z) can now
be calculated by

Gw(z) =
D(z)H0G(z)

1 + D(z)H0G(z)
. (11)

This formula will later be solved for D(z), to calculate the controller when the plant’s
transfer function G(z) and the desired reference reaction Gw(z) are given.

2.2 PID Controller

The idea of a PID controller is to calculate the manipulated variable u(t) according to
the deviation e(t) = w(t) − q(t) of the reference input w(t) from the observed output
signal q(t). The input u(t) is composed of three parts, being proportional to the error
(P), to the integral (I) of the the error, and its derivation (D). The signal of an ideal PID
controller results to

u(t) = KCe(t) +
KC

TI

∫ t

0

e(τ)dτ + KCTD

de(t)

dt
, (12)

where KC denotes the feedback gain. TI and TD are the integral and the derivative time
respectively. The next two sections “Controller settings according to Ziegler and Nichols”
and “Dead-Beat Controller” deal with two different possibilities to figure out the settings
of a controller. The early approach of Ziegler and Nichols determines the parameters
empirically. The Dead-Beat controller is suitable for discrete control systems, but it is
supposed that the transfer function of the system is known.



Table 1: Settings of a PID controller according to Ziegler and Nichols
Type of controller Kc TI TD

P 0.5Kcrit

PI 0.45Kcrit 0.85Tcrit

PID 0.6Kcrit 0.5Tcrit 0.12Tcrit

2.2.1 Controller settings according to Ziegler and Nichols

There are several possibilities for determining the settings of a controller. Many industrial
processes show a transfer function with pure overdamped behavior, regularly described
by

G(s) =
KP

1 + Ts
exp(−Tds) (13)

as a PT1 plant with gain KP, time constant T , and dead time Td. The rule most frequently
used (cf. [6]) goes back to Ziegler and Nichols [4]. In one of his two proposed methods the
controller is firstly used as a pure proportional controller, whose gain is increased until the
control loop starts oscillating. The feedback gain Kcrit and the duration of one period are
measured. Afterwards the parameters are set according to table 1. The second controller
to be compared with the Bayesian controller is the Dead-Beat controller introduced in
the next section.

2.3 Dead-Beat Controller

The idea of a Dead-Beat controller is based on the considerations of Ragazzini [5]. Ragazz-
ini assumes, that the transfer function of the closed loop Gw(z) is equal to the desired
command response Fw(z). From equation (11) it follows that

Fw(z) = Gw(z) =
D(z)H0G(z)

1 + D(z)H0G(z)
, (14)

so that the controller D(z) results in

D(z) =
1

H0G(z)

Fw(z)

1 − Fw(z)
. (15)

For example, it is possible to assume as desired command response, that the output should
converge exponentially to the new desired value. In a Dead-Beat controller it is supposed,
that all poles of the transfer function are in the origin of the z plane, so that

Fw(z) = z−d k0z
q + k1z

q−1 + · · · + kq−1z + kq

zq
= z−d(k0 + k1z

−1 + · · · + kqz
−q) (16)

which leads to e(t) = 0 after a number of time steps. Selecting
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B(z)
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leads to a stable input signal [5]. The dead beat controller

D(z) =
A(z)

B(1) − z−dB(z)
(18)

can be calculated by the known nominator and denominator polynomial of the dynamic
system. It is guaranteed that after a step of the desired value, the new value is reached
in a finite number of time steps. In the following section the Dead-Beat controller and
the PID controller, whose settings are calculated according to Ziegler and Nichols, are
compared to the Bayesian controller for four different test systems. The test systems
have different dampings and orders, so that they show different step responses.

2.4 Performance measures

To compare the performance of the Bayesian controller with the PID and the Dead-Beat
controller a measure is needed. A metric frequently used in control theory is the integral
of the squared error. For discrete time systems this is replaced by the squared error sum

Qd =
tconv∑
t=0

∆T (et − e
∞

)2 (19)

where et denotes the difference between the observed output and the desired value w.
Summation is done until convergence took place, i.e. et = e

∞
. A second performance

criterion is the steady state error e
∞

. Additionally the overshoot, the difference between
the maximal output and the desired value w, is measured for all controllers.

To get an impression how fast the effect of a disturbance is eliminated also the time
ts(z, p%) until the error is smaller than p% of the desired value is measured. The parameter
z indicates whether the measurements are done for the reference (z = 0) or the disturbance
reaction (z = 1) of the closed loop.

3 Bayesian networks

In the last section the mathematical description of dynamic systems, for example by dif-
ference equation, is explained. This section will expound, how this description is mapped
to a DBN and used as a controller in the end. Before the structure of such a network is
deduced some basics about BNs are discussed.

A Bayesian network represents the distribution

p(X1, X2, · · · , Xl) = p(X1)
l∏

i=2

p(Xi|X1, · · · , Xi−1) (20)

of l random variables Xi, where Xi might represent the input Ut of a dynamic process.
Usually not all random variables in {X1, · · · , Xi−1} have an influence of Xi, thus (20) is
rewritten to

p(X1, X2, · · · , Xl) = p(X1) ·
l∏

i=2

p(Xi|Pa(Xi)) , (21)



where the random vector Pa(Xi) contains the parents of Xi, usually the nodes with an
influence on Xi. For reasons of clarity the relationship between random variables and their
parents is displayed in a directed acyclic graph with the random variables as nodes and
directed edges from the parents Pa(Xi) to the node Xi. For example, in figure 1 Yt+1 has
the parents Yt, Yt−1, Ut and Ut−1. In principle there is no restriction for the distribution p,
but to guarantee an easy evaluation of the BN, all continuous nodes in a BN are normally
distributed

p(x|pa(x)) = N (µX + wXpa(X)T, σ) (22)

with a mean µX + wXpa(x)T and a deviation σ. The transpose of a vector is denoted
by T, i.e. the weight is multiplied with the transposed instantiations of the parent nodes
pa(x)T. The parameters x and pa(x) are the instantiations of X and Pa(X) respectively.
The weight vector w characterizes the influence of the parents Pa(X) on X. When a
node has no parents or all of them are instantiated to zero the mean is equal to µX . During
the evaluation there are several tasks to be executed. The main tasks are recalculation
of the distribution when new observations are made or the calculation of the marginal
distribution of a set of nodes X. Given a full distribution p(X) with X = {X1, · · · , Xl}
an arbitrary distribution p(X\C) with C ⊂ X can be calculated by integration over all
variables in C:

p(X\C) =
∫C p(X)dC. (23)

A more detailed description of the algorithms used for BNs are given in [7, 8] or [9].

3.1 Dynamic Bayesian networks

In the BNs discussed so far there is a single node for each random variable. Thus it is
not possible to represent the temporal course of a random variable. The mathematical
description of a dynamic system, e.g. equation (7), shows that the value of a variable has
to be represented at different time steps. For such cases DBNs are developed which are
able to monitor a set of variables at arbitrary points in time.

The main idea of DBNs is to model each point in time by a static Bayesian network and
to add temporal links from one time-slice to the next. Examples for such temporal links
are found in figure 1, e.g. the edges from Yt−1 to Yt and Yt+1. Usually all the time-slices
have identical parameter settings, but this is not a necessary precondition. Also the nodes
in a DBN are normally distributed. A comparison between difference equation (7) and
the definition of the normal distribution (22), used for each node, shows that it is possible
to calculate the parameters of a node Yt

p(yt|yt−1, · · · , yt−n, ut−1, · · · , ut−n) = N ([a1 · · ·an b1 · · · bn][yt−1 · · · yt−n ut−1 · · ·ut−n]T, σ) ,

(24)
so that it predicts the next output of the dynamic system. Equation (24) presupposes a
system with no dead time. The weight vector contains the coefficients of the difference
equations being multiplied with the transpose of the in- and output signals. The evalua-
tion of a DBN can be done in the same way as a static BN with equal parameters for all
time slices respectively between the time slices.

As equation (24) shows, the distribution of node Yt does not only depend on the time-
slices for t and t − 1, but also on former time slices. Such a model does not meet the
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Figure 1: Principle structure of a BN used for control purposes

Markov assumption, that the future is independent of the past given the present. For this
reason it is not possible to use standard toolboxes. For our experiments the BN-toolbox
was expanded to model also Markov models of higher order. Of course a lot of details has
to be omitted in this section. The reader is referred to [10] for a deeper introduction to
DBNs.

3.2 Structure of the Bayesian Network

In the last section BNs and DBNs are introduced. This section will deepen this discussion
and identify the structure of a Bayesian controller. The main part of such a controller can
be inferred from equation (24). As yt depends on yt−1, · · · , yt−n and ut−1, · · · , ut−n links
are necessary from Yt−i to Yt (1 ≤ i ≤ n) and from Ut−i to Yt. The mean of the nodes Yt

is fixed to zero. Experience shows, that a low deviation is helpful for control purposes.
This reflects the assumption that a proper model is learnt. The input nodes Ut have no
parents, thus their only parameters are mean and deviation. The deviation is set to a
maximum, so that there is no restriction for the instantiation of Ut. Thus the mean of Ut

has only a negligible influence on ut. It is set to zero.

A controller has to react also on the disturbance value z, so that the observed output q

is not always equal to the modeled output y. For linear systems it is possible to suppose,
that the disturbing value is added to the modeled output yt, so that

qt = yt + zt . (25)

This leads to the two additional nodes Qt and Zt for each slice. Both Yt and Zt are
connected with weight one to Qt. Both nodes get a zero mean. Additionally it is assumed,
that the statistical behavior of Zt changes only slightly in time, thus a link Zt−1 → Zt with
weight one is added. As an occurring error should result in changing ut, the deviation of
Zt is selected smaller than the deviation of Ut. The deviation of Qt is set to a minimal



values, because an occurring deviation between yt and qt should be explained by changing
the estimation of zt.

The assumption, that there is no error during training, enables us to set zt = 0 and
qt = yt. Thus there are no hidden nodes left, which guarantees a stable training result.

4 Training and calculation of control signals

In the last section the structure of the DBN together with the mean of the nodes was
concluded from the analytical description of dynamic systems. The used deviations of the
nodes are selected, so that the BN is able to act as controller. The remaining parameters,
i.e. the weights to Yt are trained by the EM algorithm with 40 examples using the step,
impulse, and sinus response of the system.

For the generation of the input signal a DBN with fixed length as depicted in figure 1
is used. The nodes ut0 · · ·ut and qt0 · · · qt at the left hand side are used to enter formerly
observed in- and output signals as evidence. For our experiments 10 nodes are used
for the representation of the past. This part is also used to estimate the disturbing
value as the difference between the modeled output yt and the observed output qt. To
tell the system the desired value, wt is entered also as evidence for the observed output
qt+2 · · · qtmax

. For the experiments 15 nodes are used for the representation of the future.
Now marginalization, as defined by equation (23), for the input nodes ut+1 · · ·utmax

can be
used to figure out input signals which leads to the desired output. When only one signal
ut+1 is used this results in very high, sometimes even oscillating, manipulated variables
(compare the results for BN1 in section “Experiments”). To damp down the input signal
a weighted sum of ut+1 · · ·ut+h is used. The controller resulting from h = 4 is denoted as
BN4. The response of the dynamic system to the input signal is measured (the dynamic
system is simulated by Simulink) and entered together with the input signal as new
evidence. As a DBN with fixed length is used all evidences are shifted to the left at the
end of each cycle, the oldest values for the in- and output are removed. The results of our
experiments, discussed in the section “Experiments” shows that the Bayesian controller
described here shows comparable results to the analytically inferred Dead-Beat controller,
defined in section “Dead-Beat Controller”.

5 Experiments

The experiments are based on simulations of the dynamical systems, using Matlab. The
usage of Matlab has different advantages, first it allows using the BN-toolbox [11], which
is available free of charge. Second Simulink can be used for the simulation of the dynamic
systems. As both toolboxes are based on Matlab, there is no problem with the integration.

As test systems three different systems of second order and one of third order, shortly
introduced in table 5, are used. For all four systems the same scenario was applied. In
the first phase the desired value w(t) was set to zero. After convergence of the output
the desired value was increased to 10. The overshoot, the squared error sum, the steady
state error e

∞
, and the time ts until the new desired value is reached within an accuracy



Table 2: Description of test systems

No. Transfer function G(s) Description

1 2

0.01s2+s+1
Damped system with gain two which has no tendency
to overshoot

2 2

0.01s2+0.1s+1
System with D < 1 which means that there is a tendency
to overshoot

3 10

0.01s2+0.05s+1
System with high gain and a large tendency to overshoot

4 0.4s+2

0.01s3+0.5s2+0.2s+1
System of third order, step response shows overshoot.

Table 3: Test results for system number 1 and 2

Test System 1 ∆T = 0.05sec. Test System 2 ∆T = 0.05sec.
ZN DB BN1 BN4 ZN DB BN1 BN4

Qd(z = 0) 12.43 5.2 4.98 8.09 15.39 6.04 5.02 9.66
e
∞

(z = 0) 0 0.01 0.03 0.06 0 0 0.01 0.02
Overshoot 8.82 0.01 0.06 0.06 4.03 0 0.36 0.54
Qd(z = 1) 0.12 0.05 0.09 0.11 0.15 0.06 0.11 0.16
e
∞

(z = 1) 0 0.01 0.02 0.03 0 0 0.03 0.04
ts(z = 0, 1%) 1.1 0.1 0.10 0.50 3.35 0.1 0.35 0.45
ts(z = 0, 3%) 0.85 0.1 0.10 0.35 2.5 0.1 0.20 0.40
ts(z = 1, 1%) 0.55 0.1 0.15 0.55 1.5 0.1 0.15 0.30
ts(z = 1, 3%) 0.3 0.05 0.15 0.20 0.5 0.1 0.15 0.25

of 1% or 3% is measured. The results are given in tables 3 and 4.

The squared error sum Qd(z = 1), the steady state error e
∞

(z = 0), the overshoot
and the settling time in tables 3 and 4 gives an impression about the reference reaction.
As the squared error sum includes a term for the steady state error it characterizes the
oscillation until convergence is reached. Only together with the steady state error this
term should be regarded as error measure.

Additionally to the reference reaction, the disturbance reaction is measured and char-
acterized by the steady state error e

∞
(z = 1), the squared error sum Qd(z = 1) and the

settling time ts(z = 1, p%) in presence of a disturbing value z = 1. For system 1, the
settings of a PI controller, adjusted according to Ziegler and Nichols (ZN), shows worse
performance both for the reference and the disturbance reaction of the control loop as
the Dead-Beat (DB) and the Bayesian controller. For the Bayesian controller two dif-
ferent versions were tested. In the first one, in the column denoted with BN1, only one
future signal ut+1 is used for the calculation of the new input signal. This leads to good
results for the squared error sum, but to a great and oscillating manipulated variable. In
the Bayesian controller BN4 the input signal is damped by calculating the used input as
weighted sum of 4 input signals ut+1 to ut+4. The signals obtained for these two controllers
are displayed in figure 2 and 3. The comparison shows, that BN1 generates a larger input
signal than BN4. This leads to a smaller squared error sum, as the error is reduced much
faster in the beginning of the test. But in reality there are two disadvantages. First
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the input signals of BN1 shows the tendency to oscillate, particularly for systems with
dampings D < 1. The next question is whether the actuator is able to follow the sudden
changes of the input signal. Also the Dead-Beat controller generates extremely large input
signals. But as a consequence of the design the input signal is guaranteed to be stable
after a finite number of time steps. But also for the Dead-Beat controller usually a larger
sampling time would be selected, to come to smaller values for the manipulated variable.

When the disturbance reaction of the closed loop is regarded, the Dead-Beat controller
is better than the Bayesian controller. But one should keep in mind that the Bayesian con-
troller is calculated based on training signals, the Dead-Beat controller uses the knowledge
of the dynamic system to calculate an optimal response.

The behavior of the four controllers is similar when the second test system is regarded.
For the Ziegler-Nichols controller one should keep in mind, that systems 2-4 can not be
described as a PT1 element, due to the observed overshoot. They are too complex for
this approach. Additionally the sampling time should be much smaller than the cycle
duration, which is not met for systems 2 and 3. But measurements done with sampling
time ∆T = 0.02sec., to meet this requirement, does not lead to better results in these
cases. The squared error sum of the Bayesian controller BN1 is slightly better than for
the Dead-Beat controller. A closer look at the signals (not displayed in this paper) of
the Bayesian controller BN1 shows, that this is due to large values of the manipulated
variable at the beginning, so that the error is diminished quickly. On the other side this
results in a small overshoot. As a second consequence this leads to oscillations, before the
output converges to the new desired value. The results for test system 3, depicted in table
4 agrees with the results obtained for the first two systems. For system four the sampling
rate for the Dead-Beat controller and the Bayesian network is set to ∆T = 0.4sec, the
PI controller of Ziegler and Nichols does not work with this sampling rate, thus ∆T

was decreased to 0.05 seconds. So the result for Qd can not be compared in this case.
Additionally the performance of the Bayesian controller decreases. An explanation might
be the smaller proportion between the number of training examples and parameters.



Table 4: Test results for system number 3 and 4

Test System 3 ∆T = 0.05sec. Test System 4
ZN DB BN1 BN4 ZN DB BN1 BN4

Qd(z = 0) 21.51 6.15 4.97 9.8914 13.87 40.20 49.88 66.45
e
∞

(z = 0) 0.01 0 0.00 0.0025 0.00 0 0.05 0.05
Overshoot 1.67 0 0.00 1.1457 6.34 0.22 0.47 1.80
Qd(z = 1) 0.22 0.06 0.12 0.1874 0.31 0.40 1.02 1.44
e
∞

(z = 1) 0 0 0.03 0.0424 0 0 0.00 0.09
ts(z = 0, 1%) 6.05 0.1 0.05 0.6500 2.65 1.2 6.00 7.12
ts(z = 0, 3%) 4.4 0.1 0.05 0.4500 2.0 0.8 2.56 4.40
ts(z = 1, 1%) 2.5 0.1 0.55 0.6000 1.5 0.4 4.40 10.92
ts(z = 1, 3%) 1.05 0.1 0.15 0.2500 0.85 0.4 3.20 3.68

6 Conclusion

Bayesian networks show nearly the same performance as an analytically designed Dead-
Beat controller. Despite promising results there is a lot of work to be done before Bayesian
controller can be used in practice. In the future we will test our approach by controlling
the forces of a hydroforming press. This step adds problems of real time performance
and of controlling multiple input multiple output systems. A second branch of our re-
search will concentrate on modeling non-linear systems with hybrid Bayesian networks.
Later approaches for approximated evaluation of DBNs can be added to meet real time
conditions also for more complex systems.
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