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Abstract. Statistical approaches play an important role in computer vision, normal distribu-

tions especially are widely used. In this paper we present a new approach for a continuous

parametrization of normal distributions. Our method is based on arbitrary interpolation tech-

niques. This approach is used to improve the discrete statistical eigenspace approach for object

recognition. The continuous parametrization of normal distributions allows an estimation of ob-

ject poses where no training images were available. In an experiment with real objects we will

show that our continuous approach leads to better localization and classification results than the

discrete approach.

1 Introduction

Within the wide area of computer vision, object recognition is still one of the main topics of

current research. Approaches for object recognition can mainly be divided into two direc-

tions. Firstly segmentation based techniques which detects for example geometric features

can be used for object recognition [5]. But segmentation approaches suffer from the disad-

vantage that segmentation errors may occur which disturb the recognition process and from

the general problem that often significant information is lost.

The second direction is that of appearance based approaches [9, 2, 7, 3, 8]. They avoid

these disadvantages since they directly use the image data, e.g. pixel intensities, for the

recognition process. There exist some well known approaches which uses multi-resolution

wavelet features [9], Gaussian mixtures for classification [2] and the eigenspace approach

[7] which was extended with a statistical component in [3, 8]. One primary disadvantage

of most of those approaches is, that only those poses of objects that have been seen during

the training process are known. That means for the statistical eigenspace approach that only

poses can be computed which have been seen during the training.

Our approach shows how one can efficiently parametrise and interpolate normal distri-

butions in a very general way. We will show how to retain the necessary properties of normal

distributions, like the positive definiteness of the covariance matrix. Finally we will use this

mathematical method to extend the statistical eigenspace to allow an improved recognition

and continuous localization.

2 The Discrete Statistical Eigenspace Approach

The eigenspace approach based on [7] is an appearance-based method which uses a Karhunen-

Loeve Transformation [6] (also known as Principal Components Analysis) to obtain a linear

system to compute a feature by c = Φ(f − f̄). The vector f contains the intensities of the
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Fig. 1: The graph of an element of the mean vector (left) and of the covariance matrix (right).

The parameter φ1 describes the 1-D pose of an object which was placed on a turntable.

pixels of the object image. The matrix Φ contains NE eigenvectors (with the largest eigen-

values) of the covariance matrix of the training images. The average of all training images is

denoted as f̄ .

The feature ci
κ and pose parameter φi

κ of every training image f i
κ, where κ denotes the

object’s class and i is an index of the training image, are calculated during a training step.

For classification and localization [7] searches for the training image whose feature has the

smallest distance to the feature of the test image.

The classical eigenspace approach [7] has some disadvantages. On the one hand, the

distance in the eigenspace is not well suited for our purposes, because all elements of c have

the same influence on the distance, but only the first contain significant information. On

the other hand, this method is not robust to noise, reflection and highlights. A more robust

classification was presented in [9] where ci
κ is replaced by a normal distribution

p(c|Bi
κ) = N (c|µi

κ,Σ
i
κ) (1)

where Bi
κ (which is estimated during a training step) consists of a mean vector µi

κ and a

covariance matrix Σ
i
κ. Classification and localization is done by a maximum likelihood

estimation.

3 Parametrisation of Normal Distributions

The major disadvantage of the discrete statistical eigenspace approach is that only poses can

be estimated from where training images exists. This leads to a systematical localization

error. We propose a parametrization of the parameters of the normal distribution to obtain

continuous parameters for poses. Fig. 1 shows that the elements of the mean vector and

covariance matrix are similar for similar object images, what is a requirement for an interpo-

lation. So B can be parametrized by

B(κ, φ) = (µ(κ, φ) , Σ(κ, φ)) . (2)

Note that φ is a vector with continuous values. This allows a classification and localization

by solving the optimization problem

(κ∗, φ∗) = argmax
κ,

�
p (c|B(κ, φ)) = argmax

κ,
�

N (c|µ(κ, φ),Σ(κ, φ)) . (3)
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Fig. 2: Reduction of a 2-D (left) and 3-D (right) to an one-dimensional interpolation

The mean vector can be calculated by interpolating its components independently, using

an interpolation technique which is presented in the next section. The components of the

covariance matrix can not be interpolated independently, because the positive definiteness

may be lost. So two ways of parametrizations are suggested:

• Discrete interpolation: Use the covariance matrix of the corresponding training im-

age which pose φi
κ has the lowest distance. This approach is maintainable, because

the influence of the mean vector is more important.

• Cholesky factorization: Every positive definite matrix Σ can be factorized by Σ =
LLT . The matrix L is a lower triangular matrix, which can be parametrized per com-

ponent. The covariance matrix can be calculated by

Σ(κ, φ) = L(κ, φ) (L(κ, φ))T
. (4)

The product of a matrix and its transponent is always positive definite. Algorithms for

calculating L and the proof of the properties are presented in [4].

4 Interpolation Techniques

In the last section, a method for parametrization that is independent from the interpolation

technique was presented. There exist many methods for interpolating data. We made many

experiments, even with scattered pose parameters of the training images, but for lack of

space, we restrict the methods to pose parameters which lies on a regular grid. We used two

1-D interpolation methods for interpolating the components of the mean vector and the left

triangle matrix and extend them to a n-D interpolation: Linear interpolation and Catmull-

Rom spline (CRS) [1] interpolation. The linear interpolation is very fast but not continuously

differentiable. The CRS interpolation is also fast because of its polynomial character and

continuously differentiable. A continuously differentiable interpolant is more realistic than

one which is not (cf. Fig. 1) In contrast to other interpolation techniques, one does not have

to solve a linear system, which makes CRS interpolation very flexible.

The 1-D interpolation can be easily enhanced to n dimensions by using a dimension-

descent technique as shown in Fig. 2. The left picture shows the dimension-descent for 2-D

pose parameters for the linear interpolation. The filled points are pose parameters of training

images and the point X should be interpolated. To do this by a linear 1-D interpolation,

point A has to be interpolated from E and F. Similar, point B can be interpolated from C
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Fig. 3: The DIROKOL image database [10]

and D. Now it is possible to interpolate the searched point X by using A and B. The right

picture of figure 2 shows the dimension-descent for 3-D pose parameters. Of course, the

dimension-descent can be adapted to 1-D CRS.

Note that any other interpolation technique can be used for our purpose and the two

examples are used to show how to use the presented method of parametrization of normal

distributions. Doubtless there exist other methods of interpolation which could bring better

classification rates.

5 Experiments and Results

We performed experiments on the DIROKOL image database [10] which consists of 13 real

objects (1860 training images and 1860 test images per object) with a resolution of 256 x 256

shown in Fig. 3. For the image acquisition a turntable and a robot arm were used, which

allows images to be taken from a hemisphere. Also the objects are illuminated at three

different lighting conditions. For training, 1860 images per object were taken whose corre-

sponding pose parameter which lies on a regular grid. We use a Linux PC with an Athlon XP

(1.68 GHz) processor and 1GB memory for the experiments. For the optimization problem

in equation (3), we applied an adaptive random search algorithm [11], followed by a simplex

step.

We compared classification by using Catmull-Rom splines with linear interpolation.

Additionally, we considered interpolating the covariance matrix discretely instead of using an

interpolation technique. For demonstration of the improvement of the continuous methods,

the discrete statistical eigenspace approach was also tested. The results are presented in

table 1 and show that a continuous model leads to better results than the discrete model.

The best classification rate and pose estimation can be achieved by the Catmull-Rom spline

interpolation of the mean vector and the covariance matrix. Using a linear interpolation for

the mean vector and a discrete interpolation for the covariance matrix shows also a very good

result, but takes only ∼10% of the computation time. The accuracy is given with the so called

percentile 95 values, which describe the maximal localization error if the classification is

correct and only the 95% best localizations are taken into account. Note that the classification

time is linearly dependent on the number of classes.

6 Conclusion and Outlook

We have presented an enhancement of the discrete statistical eigenspace approach to a con-

tinuous model. For parametrization of normal distributions, a Cholesky factorization was

used to ensure that the covariance matrix keeps the positive definiteness, independently from

the interpolation method. For interpolation, we used a linear interpolation and Catmull-Rom



Method Classification Pose estimation Classification

rate accuracy time

discrete statistical 97.6 % 1.162◦ < 0.01s
µ: linear, Σ: discrete 99.0% 0.188◦ 3.38s
µ: linear, Σ: linear 99.3% 0.178◦ 17.81s
µ: CRS, Σ: discrete 99.1% 0.183◦ 15.73s
µ: CRS, Σ: CRS 99.4% 0.149◦ 30.42s

Table 1: Classification rate, accuracy of pose estimation (percentile 95 values) of success-

fully classified images and optimization time per class using the DIROKOL image database.

splines. Experiments were done on real images to prove that the continuous model is bet-

ter than the discrete. It was shown that Catmull-Rom spline interpolation of all elements

of the parameters of the normal distributions provides the best classification rate and pose

estimation. Further work will focus on using other techniques of parametrization of nor-

mal distributions. In addition other interpolation techniques, especially for scattered pose

parameters of the training images, will be tested.
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