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Summary. As statistical approaches play an important role in object recog-

nition, we present a novel approach which is based on object models con-

sisting of normal distributions for each training image. We show how to pa-

rameterize the mean vector and covariance matrix independently from the 

interpolation technique and formulating the classification and localization as 

a continuous optimization problem. This enables the computation of object 

poses which have been never seen during the training. For interpolation, we 

present four different techniques which are compared in an experiment with 

real images. The results show the benefit of our method both in classifica-

tion rate and pose estimation accuracy. 

1. Introduction 

Within the wide area of computer vision object 

recognition is still one of the main topics of 

current research. Approaches for object recog-

nition can mainly be divided into the two di-

rections of segmentation based and appearance 

based approaches. The segmentation based 

techniques have a long history in computer 

vision. They detect, for example, geometric 

features that can be used for object recognition 

[7] but suffer from the disadvantage that seg-

mentation errors may occur that disturb the 

recognition process. Additionally they have 

the general problem that significant informa-

tion may be lost. 

Appearance based approaches [1,2,8,9] 

avoid these disadvantages since they directly 

use the image data, e.g. pixel intensities, for 

the recognition process. There exist some well 

known approaches which uses multi-resolution 

wavelet features [10], Gaussian mixtures for 

classification [1], and the eigenspace approach 

[8], which was extended with a statistical com-

ponent in [2]. One primary disadvantage of 

most of those approaches is that only those 

poses of objects that have been seen during the 

training process are known.  

Our approach shows how one can effi-

ciently parameterize and interpolate normal 

distributions in a very general way. We will 

show how to retain the necessary properties of 

normal distributions, like the positive definite-

ness of the covariance matrix. We will also 

detail how one can integrate different interpo-

lation techniques (e.g. spline interpolation, ra-

dial basis functions and triangulation) into our 

approach. We will demonstrate how to use the 

presented method to extend an existing object 

recognition system to a continuous parameter 

space by means of the statistical eigenspace 

approach. The result will show that this exten-

sion will significantly improve the recognition 

and localization result.  

2. Continuous Statistical Eigenspace Ap-

proach

A widely used appearance based method for 

feature extraction is the eigenspace approach 

[8] which uses a linear system to compute a 

feature fc , where the vector f comprises 

the pixel intensities of an image and the matrix 

 contains the eigenvectors of the training 

images. During a training step, the features 
i
c

and the pose parameters i  of the i-th image 
i
f  of class  are collected. At runtime, the 

feature vector of the test image is computed 

and all Euclidian distances to the feature vec-
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tors of the training images are calculated. The 

result of classification and localization is the 

class and pose of the closest training image. 

The usage of the Euclidian distance of ei-

genspace features is not well suited for a 

measurement of similarity of object images, 

because the elements of c are not as same sig-

nificant. [2] shows how to improve the classi-

cal eigenspace approach by a statistical model. 

As the feature of an image with a small pertur-

bation (e.g. noise or translation) is close to the 

feature of the original image, it is presumed 

that the features of perturbed images are nor-

mal distributed. Instead of features i
c  a mean 

vector iµ  and a covariance matrix i  is es-

timated during the training for every training 

image. The result of classification and local-

ization is the class and pose of the training im-

age with the maximum likelihood of 
ip µc

i , . 

The disadvantage of the statistical eigen-

space approach is that only poses can be 

evaluated where training images exists, which 

leads to a systematical pose estimation error. 

We have shown in [5] that the elements of 

and  are similar for object images with simi-

lar pose and have parameterized the normal 

distribution dependent from class  an the con-

tinuous pose . Classification and localization 

can now be formulated as a continuous opti-

mization problem 

,,,cp,
,

µargmax . (1)

Obviously the parameterization of the 

mean vector can be done by interpolating its 

components independently using ,µ
T

,,µ,,µ 21 . In contrast, the ele-

ments of the covariance matrix cannot be in-

terpolated independently, because the positive 

definiteness may be lost. One possibility is to 

use the covariance matrix of the nearest train-

ing image. A more exact but also computa-

tional more expensive method is the usage of a 

Cholesky factorization, as every positive defi-

nite matrix can be factorized to T
LL . It is 

possible to compute a left triangle matrix L in 

an offline step. The components of matrix L

are interpolated independently by 

,L,L

,L

, ,,

,

2212

11 0

L

and the parameterized covariance matrix can 

be calculated using 
T

,,, LL .
(2)

The product of a matrix and its transponent is 

always positive definite. Algorithms for the 

Cholesky factorization and the proof of the 

properties are presented in [6].  

3. Interpolation Techniques 

In principal our method of parameterization is 

independent from the underlying interpolation 

technique; nevertheless we are presenting in 

this chapter methods of interpolation. We have 

implemented a linear interpolation and a Cat-

mull-Rom spline (CRS) interpolation, which 

assumes, that the pose parameters of the train-

ing images lie on a regular grid (for details 

consult [5]). As this property cannot always be 

assumed, we have investigated trilinear and 

radial basis function (RBF) interpolation for 

working with scattered data which are detailed 

in this chapter. 

Interpolation of scattered data is an inten-

sively researched field in the area of computer 

graphics. Most of those techniques require a 

two dimensional triangle net for the parame-

terization which means that for our purpose we 

are limited to a 2-D pose parameter space. It is 

important that the mesh generator does not 

create acute-angled triangles which would lead 

to bad interpolation results. Therefore we use a 

Delaunay refinement [11] to restructure an ar-

bitrary triangle net and improving the suitabil-

ity for interpolation. Two examples for trian-

gulations are given in Fig.1. 

One interpolation technique which uses 

triangle nets is the trilinear interpolation. The 

interpolant is defined as 
l

n,l

k

n,k

j

n,jn uuu, , (3)

where lkj u,u,u are the barycentric coordinates 

of , which is in the center of the triangle with 

corner j , k  and l . The elements of the ma-

trix L in (2) can be treated the same way as the 

components of the mean vector.  

Another interpolation technique for scat-

tered data which is applicable in parameter 



spaces of arbitrary size is the interpolation 

with radial basis functions [3], which have 

been intensively researched in the numerical 

mathematic. The interpolation rule is  

,i, i

n,

i

n  , (4)

where n denotes the component of the mean 

vector. The interpolant is defined as 
i

i

i

n,n ,dhw,  , (5)

where IRIR:h  is the so called radial ba-

sis function, ,d  is a distance measurement 

(we use the Euclidian distance), and i

n,w is a 

weighting coefficient. For details of the com-

putation of i

n,w  consult [3]. There exists doz-

ens of different radial basis functions, for our 

purpose we use
2

exp
x

)x(h , (6)

because it depends on only one adjustment pa-

rameter. If the value of  is large, the elements 

of the normal distributions which have a large 

distance to  have a higher influence in com-

parison with a small .

5. Experiments and Results 

For proving the benefit of our work, we per-

formed experiments on the DIROKOL image 

database [10] which consists of 13 real objects 

(office and health care domain) which are pre-

sented in Fig.2. The image database consists of 

1860 training images and 1860 test images per 

object with a resolution of 256x256. The pose 

parameters of the training acquisition a turnta-

ble and a robot arm were used, which allows 

images to be taken from a hemisphere. As 

three different illumination conditions have 

been used, we limited to one third of the image 

set (all with the same illumination condition). 

Experiments with the full set have already 

been presented in [5]. We used an eight di-

mensional eigenspace for the PCA and for the 

optimization problem in (1), an adaptive ran-

dom search algorithm, followed by a simplex 

step, has been applied. The computation took 

place on a Linux PC with a Pentium 4 proces-

sor (2.4 GHz) and 1GB memory.  

We compared classification rate and pose 

estimation accuracy of the linear, CRS, trilin-

ear and RBF interpolation. Thereby a Chole-

sky factorization has not performed in all 

cases; those results will be shown in the full 

paper. Experiments for using the discrete sta-

tistical eigenspace approach have also been 

done to show the improvement of the continu-

ous model. The results, which are presented in 

the table, show, except for the trilinear interpo-

lation, that the continuous approach both in 

classification rate and pose estimation accu-

racy leads to better results than the discrete 

approach. The accuracy is given in the so 

called percentile 80 values which describe the 

maximal localization error if the classification 

is correct and only the 80% best localizations 

are taken into account. Disadvantageous is the 

high computational cost of the continuous 

method, because a lot of mean vectors and co-

variance matrices have to be interpolated for 

optimization of (1). Further, the results show 

that the trilinear interpolation is not well suited 

for interpolation of normal distributions. 

Due to lack of space, we cannot present 

experiments on scattered pose parameter of the 

Fig.1: Top: Triangle net using a awkward triangula-

tion algorithm. Bottom: Triangle net with delaunay 

refinement which is better suitable for interpolation. 

Dots marks pose parameters of training images. 
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Fig.2: The DIROKOL image database [10]



training images. Those results will be shown in 

the final paper. 

6. Conclusion and Outlook 

In this paper, we presented a novel approach 

for parameterization of normal distributions 

which is applicable for object recognition al-

gorithms based on statistical normal distrib-

uted object models. As the parameterization of 

the covariance matrix is dangerous, because 

the positive definiteness may be lost, we pro-

posed the usage of a Cholesky factorization. 

For interpolation we used Catmull-Rom 

splines, linear interpolation, radial basis func-

tions and trilinear interpolation. The last two 

techniques are also applicable on object mod-

els where the pose parameters of the training 

images are scattered. Experiments which have 

been performed on an image database with 

real images show, that the continuous model is 

superior to the discrete model. The two best 

classification and pose estimation rates has 

been reached with the Catmull-Rom spline in-

terpolation and linear interpolation of all ele-

ments of the normal distribution.  

Further research should concentrate on 

other methods for parameterization of normal 

distributions. Also interpolation techniques 

based on Beziér patches like the Clough-

Tocher interpolation [4] should be evaluated. 

The usage of other radial basis functions like 

the inverse multiquadratic functions may be 

beneficial. 
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 Method Classification 

rate 

Pose estimation 

accuracy 

Classification 

time

 Discrete statistical 86.1% 9.61° < 0.1sec  

: linear, : discrete 90.0% 6.79° 1.6s  

: linear, : linear 92.6% 6.18° 3.7s  

: CRS, : discrete 91.1% 6.59° 3.4s  

: CRS, : CRS 92.5% 6.00° 6.5s  

: triliniar, : discrete 75.1% 45.28° 4.5s  

: RBF, : discrete, =100 90.5% 6.06° 9.7s  

    

Table: Classification rate, pose estimation accuracy (percentile 80 values) in degree, and classifi-

cation time using the DIROKOL image database. 


