

Density and atomic number measurements with spectral x-ray attenuation method B. J. Heismann, J. Leppert, and K. Stierstorfer

Citation: Journal of Applied Physics **94**, 2073 (2003); doi: 10.1063/1.1586963 View online: http://dx.doi.org/10.1063/1.1586963 View Table of Contents: http://scitation.aip.org/content/aip/journal/jap/94/3?ver=pdfcov Published by the AIP Publishing

[This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to] IP: 131.188.35.160 On: Fri. 29 Nov 2013 09:46:37

Density and atomic number measurements with spectral x-ray attenuation method

B. J. Heismann,^{a)} J. Leppert, and K. Stierstorfer Computed Tomography, Siemens Medical Solutions, Siemensstrasse 1, 91301 Forchheim, Germany

(Received 14 August 2002; accepted 7 May 2003)

X-ray attenuation measurements are widely used in medical and industrial applications. The usual results are one- to three-dimensional representations of the attenuation coefficient $\mu(\mathbf{r})$. In this paper, we present the ρZ projection algorithm for obtaining the density $\rho(\mathbf{r})$ and atomic number $Z(\mathbf{r})$ with an energy-resolving x-ray method. As input data the algorithm uses at least two measurements μ_1, μ_2, \ldots with different spectral weightings of the source spectrum S(E) and/or detector sensitivity D(E). Analytically, ρ is a function of $\mu_1 - c\mu_2$, c = const, and Z is a function of μ_1/μ_2 . The full numerical treatment yields $\rho(\mu_1, \mu_2)$ and $Z(\mu_1, \mu_2)$ with S(E) and D(E) as commutative parametric functions. We tested the method with dual-energy computed tomography measurements of an organic sample and a set of chemical solutions with predefined ρ and Z. The resulting images show ρ and Z as complementary information: The density ρ reflects the morphology of the objects, whereas the atomic number Z=number of electrons/atom describes the material distribution. For our experimental setup we obtain an absolute precision of 0.1 for Z and 20 mg/cm³ for ρ . The ρZ projection can potentially lead to these classes of quantitative information for various scientific, industrial, and medical applications. © 2003 American Institute of Physics. [DOI: 10.1063/1.1586963]

I. INTRODUCTION

X-ray imaging techniques range from linear scanning systems for, e.g., food or baggage inspection, to threedimensional (3D) computed tomography (CT) scanners used in medical health care. All these imaging systems basically measure the linear attenuation coefficient $\mu(\mathbf{r})$ of the scanned object. Mostly, a direct representation of a $\mu(\mathbf{r})$ image is used for inspection and diagnosis.

In our field of work of medical CT imaging, μ is commonly normalized to the attenuation of water by

$$C = 1000 \frac{\mu - \mu_{\text{water}}}{\mu_{\text{water}}}.$$
 (1)

Thus C(air) = -1000 HU and C(water) = 0 with HU = dimensionless Hounsfield units. Table I shows ranges of C for different components of the human body.

Medical CT diagnosis mostly relies on spatial contrast in the attenuation $C(\mathbf{r})$, i.e., on its *relative* local changes. The *absolute* C is used rarely. Calcium scoring of blood vessel plaques¹ and bone densiometry² are examples. The former incorporates a C thresholding for calculating the empirical Agatston score, whereas the latter uses calibrated tables transforming C into density values.

Alvarez and Macovski³ initially investigated the energy dependence of μ for CT: They showed that a separation into photoeffect absorption and Compton scattering contributions is feasible by spectral measurements. The so-called base material decomposition yields additional contrasts in two or

more virtual "pure" material images. Still, it provides only qualitative values.

In this paper we directly aim at the functional dependency of the attenuation process. For given spectral source S(E) and detector characteristics D(E) of the measurement, the mass density ρ and effective atomic number Z of the absorber completely determine the measured attenuation coefficient μ , i.e., $\mu = \mu(\rho, Z)$.

It is important to note that ρ and Z represent completely different properties: The density $\rho = dm/dV$ describes the mass distribution, i.e., the morphology of the absorber. The effective Z, however, reflects the average number of electrons per atom. This is a characteristic value for any kind of material, including compounds. For pure materials it exactly matches the atomic mass number, e.g., Z=6 for carbon. Summarizing, Z describes the *chemical* classification and ρ the *physical* morphology of the absorbing material.

The ρZ projection algorithm presented here extracts ρ and Z from spectral attenuation measurements with continuous x-ray sources. In the upcoming section we describe the analytical solution as well as the exact numerical treatment. The feasibility, properties, and precision of the algorithm are then examined using spectral CT data.

II. THEORY OF THE ρZ PROJECTION

X-ray attenuation for energies E < 511 keV is due to (a) photoeffect absorption, (b) Compton scattering, and (c) Rayleigh scattering. The total spectral attenuation coefficient $\kappa(E,\rho,Z)$ is given by

 $\kappa = \kappa_{\text{photo}} + \kappa_{\text{Compton}} + \kappa_{\text{Rayleigh}}$.

^{a)}Author to whom correspondence should be addressed; electronic mail: bjoern.heismann@siemens.com

TABLE I. Attenuation of body materials.

Organ or material	Relative attenuation C (HU)				
Bone, compact	250-≫1000				
Bone, spongeous	50-200				
Liver	50-70				
Blood	50-60				
Pancreas	30-50				
Kidney	20-40				
Water, ideal	0				
Fat	-60100				
Lung	-550 - 950				
Air, ideal	-1000				

For the following analytical approximation, κ_{Rayleigh} will be regarded as a small negligible contribution. The remaining κ_{photo} and κ_{Compton} are linear in the density ρ . Equation (2) factorizes into ρ and the mass attenuation coefficient (κ/ρ):

$$\kappa = \left(\frac{\kappa}{\rho}\right)\rho = \left(\frac{\kappa_{\text{photo}}}{\rho}\right)\rho + \left(\frac{\kappa_{\text{Compton}}}{\rho}\right)\rho.$$
(3)

The photoeffect attenuation $\kappa_{\text{photo}}/\rho$ depends on the atomic number Z of the absorber (=average number of electrons/ atom) and the energy E of the radiation. To work out the basic ideas, the approximation

$$\left(\frac{\kappa_{\rm photo}}{\rho}\right) = \alpha \frac{Z^k}{E^l} \tag{4}$$

with α = const is used here. Classically, k=3 and l=3; for numerical fits of experimental data k lies between 3 and 4, and l between 3 and 3.5 (see, e.g., Cho *et al.*⁴).

The Compton scattering attenuation $\kappa_{\text{Compton}}/\rho$ is in good approximation independent of *Z* and *E* for *E* <140 keV:

$$\left(\frac{\kappa_{\text{Compton}}}{\rho}\right) = \beta \approx 0.02 \text{ m}^2/\text{kg.}$$
 (5)

Substituting Eqs. (4) and (5) into Eq. (2) yields

$$\kappa(E,\rho,Z) = \alpha \rho \frac{Z^k}{E^l} + \beta \rho.$$
(6)

It is important to note that κ is a steady monotonic function of ρ and Z for nonzero E. The higher E, the more κ is ruled by Compton scattering, i.e., the density ρ of the absorber. At lower energies the photoeffect and thus the atomic number Z tends to dominate. For notational simplicity, the dependency of κ on ρ and Z will not be denoted explicitly in the following.

The energy dependence of Eq. (6) provides the principle of our ρZ projection. Consider measuring κ at two different energies E_1, E_2 , thought to be ideally monochromatic. From Eq. (6) one obtains

$$\begin{pmatrix} \kappa_1(E_1) \\ \kappa_2(E_2) \end{pmatrix} = \begin{pmatrix} \beta & \frac{\alpha}{E_1^l} \\ \beta & \frac{\alpha}{E_2^l} \end{pmatrix} \cdot \begin{pmatrix} \rho \\ \rho Z^k \end{pmatrix}.$$
(7)

Equation (7) can directly be inverted and solved for ρ and Z. This straightforward two-energy approach can be used for γ -source measurements (see, e.g., Rizescu *et al.*⁵).

However, in x-ray measurements one rather works with a continuous tube spectrum S(E) and detector sensitivity D(E), 0 < D(E) < 1. By defining the effective attenuation coefficient μ as

$$\mu = \lim_{d \to 0} \left[-\frac{1}{d} \ln \left(\frac{I}{I_0} \right) \right]$$
$$= \lim_{d \to 0} \left[-\frac{1}{d} \ln \left(\frac{\int S(E)D(E)e^{-\kappa(E)d}dE}{\int S(E)D(E)dE} \right) \right], \tag{8}$$

we obtain

$$\mu = \int w(E)\kappa(E)dE \tag{9}$$

with the weighting function

$$w(E) = \frac{S(E)D(E)}{\int S(E)D(E)dE}.$$
(10)

For measured effective attenuation coefficients μ we deal with another level of approximation. We have $\int_L \mu(\vec{r}) d\vec{r} = \ln\{\int w(E) \exp[-\int_L \kappa(E,\vec{r}) dl] dE\}$ as the quantity measured by x-ray attenuation methods like CT, with the integrals $\int_L \cdots$ taken along paths *L* of the x rays. We again obtain Eq. (9) when approximating exp(...) for shorter paths i.e. small objects.

It is important to note that the effective μ depends on the system parameters S(E) and D(E). This explains the difficulty of using μ as an absolute quantitative value mentioned in the Introduction.

With Eq. (9) we obtain the set of integral equations

$$\begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix} = \rho \cdot \begin{pmatrix} \int w_1(E) \left(\frac{\kappa}{\rho}\right)(E,Z) dE \\ \int w_2(E) \left(\frac{\kappa}{\rho}\right)(E,Z) dE \end{pmatrix},$$
(11)

which has to be inverted for ρ and Z:

$$\begin{pmatrix} \mu_1(\rho, Z) \\ \mu_2(\rho, Z) \end{pmatrix} \rightarrow \begin{pmatrix} \rho(\mu_1, \mu_2) \\ Z(\mu_1, \mu_2) \end{pmatrix}.$$
 (12)

Equations (11) and (12) express the basic idea of the ρZ projection. From an experimental point of view, the two μ_1, μ_2 needed for Eq. (11) may originate from different setups: The x-ray tube spectrum S(E) and the detector sensitivity D(E) are commutative in Eq. (10). This means we can generate the spectral data by (a) *two* measurements with different x-ray source spectra $S_i(E)$; (b) *two* measurements with different detector sensitivities $D_i(E)$; or (c) *one* measurement with an energy-resolving detector, i.e., different spectral detector sensitivities $D_i(E)$ are realized at once.

Figure 1 shows the $S_i(E)$, D(E), and $w_i(E)$ of the experimental section as an example for case (a). Two different source spectra and one detector sensitivity yield two different $w_1(E), w_2(E)$.

[This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to] IP 131.188.35.160 On: Fri. 29 Nov 2013 09:46:37

FIG. 1. $S_1(E)$ and $S_2(E)$ (top), D(E) (center), and resulting $w_1(E)$ and $w_2(E)$ (bottom) used in the experimental section. The source spectra $S_{1,2}(E)$ are simulated curves for two tube voltages $U_1 = 80$ kV and $U_2 = 140$ kV (see the experimental section for the slightly different prefiltering). The detector efficiency D(E) has been calculated for the 1.4 mm GdOS scintillator used in the CT detector. The $w_i(E)$ result from Eq. (10).

In the following we provide an approximate analytical and a precise numerical solution to Eqs. (11) and (12) and also define effective ρ and Z values for compounds.

A. Approximate analytical ρZ projection

Substituting Eq. (6) into Eq. (11) yields

$$\begin{pmatrix} \boldsymbol{\mu}_1 \\ \boldsymbol{\mu}_2 \end{pmatrix} = \begin{pmatrix} \boldsymbol{\beta} & \boldsymbol{g}_1 \\ \boldsymbol{\beta} & \boldsymbol{g}_2 \end{pmatrix} \cdot \begin{pmatrix} \boldsymbol{\rho} \\ \boldsymbol{\rho} \boldsymbol{Z}^k \end{pmatrix}$$

FIG. 2. Contour plots of the analytic ρZ projection. (a) shows Z= const and (b) shows ρ = const as a function of μ_1, μ_2 according to Eqs. (16) and (17) with $g_1 = \alpha \times 10^{-5}$ and $g_2 = 0.4\alpha \times 10^{-5}$. $\mu_1 > \mu_2$ follows from $g_1 > g_2$ [see Eq. (13)]. The g_i are calculated from Eq. (14) with the $w_i(E)$ taken from the experimental section (Fig. 1).

with

$$g_i = \alpha \int \frac{w_i(E)}{E^l} dE.$$
(14)

Equation (13) is inverted to

$$\binom{\rho}{\rho Z^k} = \frac{1}{\beta(g_2 - g_1)} \binom{g_2 - g_1}{-\beta} \binom{\mu_1}{\mu_2}.$$
 (15)

This yields

$$\rho = \frac{1}{\beta} \frac{g_2 \mu_1 - g_1 \mu_2}{g_2 - g_1} \tag{16}$$

and

$$Z = \left(\beta \frac{\mu_2 - \mu_1}{g_2 \mu_1 - g_1 \mu_2}\right)^{1/k} = \left(\beta \frac{1 - \mu_1 / \mu_2}{g_2 \mu_1 / \mu_2 - g_1}\right)^{1/k}.$$
 (17)

 ρ is a weighted difference of μ_1, μ_2 whereas Z is a nonlinear function of the ratio μ_1/μ_2 . Figures 2(a) and 2(b)

[This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to] IP: 131.188.35.160 On: Fri. 29 Nov 2013 09:46:37

(13)

FIG. 3. Plots of the numerical results of the ρZ projection. (a) shows F(Z) of Eq. (18) and (b) displays $\rho(C_{80 \text{ kV}}, C_{140 \text{ kV}})$ of Eq. (20). We have used the $w_i(E)$ of Fig. 1 and the water normalization of Eq. (1).

show contour plots of Eqs. (16) and (17) with k=3. The Z = const and ρ = const lines reflect the difference in the functional dependencies.

B. Numerical ρZ projection

The analytical results of the ρZ projection in Eqs. (16) and (17) are limited by the precision of the approximation (6). In order to obtain exact results, we use numerical tables for the spectral mass attenuation coefficients $(\kappa/\rho)(E,Z)$ (see, e.g., Perkins *et al.*⁶ and Cullen *et al.*⁷). Then Eq. (11) yields the atomic number Z as

$$\frac{\mu_1}{\mu_2} = \frac{f_1(Z)}{f_2(Z)} = F(Z) \Longrightarrow Z = F^{-1} \left(\frac{\mu_1}{\mu_2}\right)$$
(18)

with

$$f_i(Z) = \int w_i(E) \left(\frac{\kappa}{\rho}\right) (E, Z) dE$$
(19)

and the density

ſ

$$p = \frac{\mu_1}{f_1(Z)} = \frac{\mu_1}{f_1[F^{-1}(\mu_1/\mu_2)]}.$$

Equations (18)–(20) represent the numerical ρZ projection. For Z in Eq. (18), Fig. 3(a) shows F(Z) for integer Z = 1,2,...,30 with the $w_i(E)$ of Fig. 1. Since F(Z) is a monotonically rising function of Z for this interval, we can calculate the inverse function $Z = F^{-1}(\mu_1/\mu_2)$ by numerical interpolation. As in the analytical approximation (17), this numerical definition of a fractional Z is a one-dimensional function of the measured attenuation ratio μ_1/μ_2 .

The density ρ in Eq. (20) is still a two-dimensional function of μ_1 and μ_2 . Figure 3(b) depicts a contour plot of $\rho(\mu_1,\mu_2)$ with the $w_i(E)$ of Fig. 1. μ_1 and μ_2 have been normalized to CT values $C_{80 \text{ kV}}$ and $C_{140 \text{ kV}}$ according to Eq. (1); see also the next section.

The numerical results for ρ in Fig. 3(b) are in good agreement with the analytic results of Fig. 2(b). Major differences occur for larger ρ . This mainly demonstrates the limits of the analytic approximation of energy-independent Compton scattering.

C. Definition of ρ and Z for heterogeneous materials

For a mixture of chemical elements with densities ρ_i , the overall effective ρ_{eff} is defined by

$$\rho_{\rm eff} = \sum_{i} \rho_i, \qquad (21)$$

where ρ_i is just the partial chemical density created by the atoms of element *i* alone. This relies on the fact that for *x* rays in the medical diagnostic energy range E < 140 keV, adding photon cross sections of individual elements approximates the interaction between photons and composite matter very well.⁸

The definition of an effective Z follows from this. With the analytical approximation of the attenuation coefficient (6) one obtains

$$\kappa(E, \rho_{\rm eff}, Z_{\rm eff}) = \alpha \rho_{\rm eff} \frac{Z_{\rm eff}^k}{E^l} + \beta \rho_{\rm eff}$$
(22)

with

$$Z_{\text{eff}}^{k} = \frac{\sum_{i} Z_{i}^{k} \rho_{i}}{\sum_{i} \rho_{i}}.$$
(23)

For water, $Z_{\rm H}=1$, $Z_{\rm O}=8$, $\rho_{\rm O}=8\rho_{\rm H}$, and Eq. (23) yields $Z_{\rm eff,H_2O}\approx7.45$ for k=3. In the upcoming sections we will use Z in the sense of an effective Z definition.

A sum rule for the spectra is obtained by inserting Eq. (21) into

$$\mu(\rho_{\rm eff}, Z_{\rm eff}) = \int w(E)\rho_{\rm eff} \left(\frac{\kappa(E)}{\rho}\right)_{\rm eff} dE.$$
(24)

This yields

$$\left(\frac{\kappa(E)}{\rho}\right)_{\rm eff} = \frac{\sum_i \rho_i [\kappa(E)/\rho]_i}{\rho_{\rm eff}}.$$
(25)

The hydrogen and oxygen spectra have been summed accordingly to calculate the water normalization (1) in Fig. 3.

[This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to] IP

(20)

FIG. 4. Original 80 kV, 140 kV, and ρZ -projected CT images of an onion. A glass cylinder with water has been added for calibration. The 80 kV and 140 kV images use a gray-scale window from black to white of [-200 HU,200 HU]. Lower values are clipped as black, higher values are clipped as white. The ρ image uses [0.75 g/cm⁻³, 1.25 g/cm⁻³] and the Z image [4,11]. Note the "soft" character of the ρ image compared to the Z image. This is due to partial volume material that images smoothly in the ρ image (see also Fig. 5) whereas it produces sharp material/air borders in the Z image. The thinner representation of the glass housing in the ρ image is based on this: the outer partial volume pixels are shown as black in this gray-scale window.

III. EXPERIMENT

We obtained spectral data with two measurements using different source spectra $S_i(E)$ on a commercial multislice CT scanner (Siemens Sensation 4 CT, Siemens Forchheim, Germany). The tube voltages and prefiltering of the x-ray spectrum were (1) $U_1 = 80$ kV tube voltage with 0.6 mm titanium prefiltering and (2) $U_2 = 140$ kV with 1.2 mm Ti pre-filtering. The different Ti filter settings further shift the 140 kV spectrum to higher energies compared to the 80 kV spectrum. See Fig. 1 for a plot of the resulting $S_i(E)$.

In the following we present the results of two measurements. Both were performed in static slice mode of the CT and transformed into ρ and Z images with the numerical ρZ projection algorithm.

(a) An organic sample (onion) demonstrates the basic feasibility and properties of the method (Figs. 4 and 5).

(b) A set of water solutions of chemicals with known densities and compositions yields data on the absolute precision (Table II, Figs. 6 and 7).

IV. RESULTS

We start with the images in Fig. 4 of an onion. The two original CT pictures (top) and the transformed $\rho(\mathbf{r})$ and $Z(\mathbf{r})$ (bottom) are shown. $\rho(\mathbf{r})$ looks similar to the original HU picture. But instead of relative and qualitative HU values and

FIG. 5. Radial density distribution of the onion of Fig. 4, taken at a horizontal line through its center. The periodic shell structure is readily observed.

gradients, one obtains quantitative values for ρ . As an example, the radial density of the onion is shown in Fig. 5. The periodic structure of the onion shells is measured with absolute density values.

Interestingly, the shells are not represented in the $Z(\mathbf{r})$ image. Only the hole corresponding to the small air cavity at the center of the onion can be found. In order to understand this, consider a volume of a homogeneous solid material like, e.g., carbon. When the number of atoms/volume decreases due to adding pores or changing atomic structure, $\rho = dm/dV$ decreases too. But Z=number of electrons/atom of the solid stays constant. Air filling the pores under atmospheric conditions has no significant impact on the overall effective Z since the difference between molecules per volume of a gas and a solid is around ~10⁵.

If no solid is present, Z cannot be calculated from tiny gas attenuations (see the convergence of the Z= const lines for small attenuations in Fig. 3). The Z=0 hole at the center of the onion represents a nonavailable number.

So it is important to note that one measures the Z of the solid. For the onion, this yields a homogeneous value Z(onion)=7.20 for the onion cell material. This is ~0.25 below the level of Z(water)=7.45.

A gradient in Z can also be observed. The head holder of the CT system is represented as the curved line below the onion. It has a Z of 7.1 on the surface rising to 8.1 in the center. This reflects its glass-fiber material composition. An organic matrix is filled with an increasing density of glassfiber bundles toward the center. The effective Z changes accordingly.

To investigate the absolute precision of the ρ and Z values, we measured samples with known ρ and Z. Water solutions of various chemicals were used. Table II lists the chemicals and their mass ratios to water. It includes the ρ taken from the chemical preparation and the Z_{eff} calculated according to the approximate formula (23) with k=3 (classical approximation).

We used cross-sectional CT images of glass cylinders filled with the solutions to calculate the ρZ -projected images in Fig. 6. ρ and Z were averaged over 150 central pixels of the cross-sectional circle surface. The results are listed in Table II for comparison with the chemical preparation values. The deviations $\Delta \rho$ and ΔZ between CT measurements and chemical data are plotted in Fig. 7.

TABLE II. Density and effective Z of various chemicals dissolved in water as measured and calculated from chemical preparation and ρZ measurement. Deviations are shown graphically in Fig. 6.

#	Chemical dissolved in water	Chemical concentration (wt %)	Chemical density (g cm ⁻³)	CT measured density (g cm ⁻³)	$\frac{ \Delta\rho }{(g \text{ cm}^{-3})}$	Approx. chemical $Z_{\rm eff}$	$\begin{array}{c} \text{CT} \\ \text{measured} \\ Z_{\text{eff}} \end{array}$	$ \Delta Z_{\rm eff} $
1	NH ₃	5	0.978	0.980	0.002	7.37	7.46	0.09
2		10	0.958	0.960	0.002	7.32	7.42	0.10
3		25	0.910	0.916	0.006	7.21	7.23	0.02
4	HNO ₃	16	1.092	1.078	0.014	7.47	7.51	0.04
5		31	1.187	1.156	0.031	7.49	7.53	0.04
6	NaOH	10	1.111	1.093	0.018	7.68	7.72	0.04
7		20	1.219	1.189	0.030	7.89	7.94	0.05
8	KOH	15.7	1.145	1.132	0.013	9.84	9.41	0.43
9	LiOH	6.7	1.062	1.061	0.001	7.41	7.46	0.05
10	H_2O_2	30	1.10	1.090	0.010	7.49	7.58	0.09
11	FeSO ₄ ·7H ₂ O	5.6	1.031	1.050	0.019	8.39	8.47	0.08
12	H_2SO_4	29	1.209	1.240	0.031	8.74	8.95	0.21

For ρ , the statistical deviations are in the range of $\sigma_{\rho} = 20 \text{ mg/cm}^3$. The finer structures in Fig. 5 thus represent actual sample properties and are not attributed to noise.

Z shows a major deviation for the KOH measurement. This could be due to (a) the limited precision of the k=3 value in Eq. (23) for higher Z or (b) CO₂ absorption in the KOH used for preparation, which could lower the solution's chemical Z toward the CT-measured value. Statistically, the chemical Z values are reproduced with a precision in the range of $\sigma_Z = 0.1$.

V. SUMMARY

We developed the ρZ projection as an x-ray method for measuring the density ρ and the atomic number Z of a scanned object. Its main feature is to express both ρ and Z as a direct function of at least two attenuation values μ_1, μ_2 with different spectral weighting. The weighting differences

FIG. 6. Chemical sample measurement used for estimating the precision of ρZ -transformed CT data. Quantitative values extracted from these images are listed in Table II.

FIG. 7. Deviations of density and atomic number values between CT measurement and chemical preparation values.

[This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to] IP: 131 188 35 160 On: Fri. 29 Nov 2013 09:46:37 can be realized by the x-ray source as well as by detector sensitivity modifications. The latter also covers energyresolving detectors.

We obtained quantitative and absolute values in comparison to the relative use of attenuation measurements. The experimental CT data for an organic sample, for example, quantifies the density variations in an onion shell structure and the effective Z transition in a glass-fiber sample holder.

Furthermore, the images illustrate the complementary meaning of ρ and Z. The ρ image has a smooth character, reflecting the continuous density variations in the cell structures, whereas Z shows sharp material transitions. This stresses that the density ρ is given *per volume* and Z is given *per atom or molecule*. We achieve a fundamental separation into Z as a chemical and ρ as a morphological quantity.

The precision of the method for CT has been evaluated with water solutions of several chemical substances with effective Z between 7.2 and 9.8 and ρ between 0.91 and 1.24 g/cm³. For this range we found absolute precisions of $\Delta \rho = 20 \text{ mg/cm}^3$ and $\Delta Z = 0.1$. We estimate that it can be further increased by improved spectral measurement techniques.

Considering these results, we conclude that the ρZ projection provides a further class of precise information for quantitative x-ray applications.

- ¹A. S. Agatston, W. R. Janowitz, F. J. Hildner, N. R. Zusmer, M. Viamonte, and R. Detrano, J. Am. Coll. Cardiol. 15, 827 (1990).
- ²H. K. Genant and D. Boyd, Invest. Radiol. **12**, 545 (1977).
- ³R. E. Alvarez and A. Macovski, Phys. Med. Biol. **21**, 733 (1976).
- ⁴Z. H. Cho, Z. M. Tsai, and G. Wilson, Phys. Med. Biol. **11**, 225 (1975).
- ⁵C. Rizescu, C. Besliu, and A. Jipa, Nucl. Instrum. Methods Phys. Res. A **465**, 584 (2001).
- ⁶S. T. Perkins, D. E. Cullen, M. H. Chen, J. H. Hubbell, J. A. Rathkopf, and J. H. Scofield, Report No. UCRL-50400, Vol. 30, 1991.
- ⁷D. E. Cullen, M. H. Chen, J. H. Hubbell, S. T. Perkins, E. F. Plechaty, J. A. Rathkopf, and J. H. Scofield, Report No. UCRL-50400, Vol. 6, Rev. 4, 1989.
- ⁸H. H. Barrett and W. Swindell, *Radiological Imaging*, Vol. 1 (Academic, New York, 1981).