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Abstract. This paper presents an approach for applying a dual quatehaind—
eye calibration algorithm on an endoscopic surgery robmecl focus is on ro-
bustness, since the error of position and orientation datdged by the robot can
be large depending on the movement actually executed. Anatherent prob-
lem to all hand—eye calibration methods is that non—pdredkation axes must
be used; otherwise, the calibration will fail. Thus we prep@ method for in-
creasing the numerical stability by selecting an optimab$eelative movements
from the recorded sequence. Experimental evaluation stweverror in the es-
timated transformation when using well-suited and illteidata. Additionally,
we show how a RANSAC approach can be used for eliminating tteneous
robot data from the selected movements.

1 Introduction

In this paper we present an approach for the practical asfre¢erms of robustness
of hand-eye calibration using an endoscopic surgery résptecially, we address two
problems: how to choose the data that is used in the calioratgorithm such that the
numerical stability increases, and how to use a RANSAC agpgréor outlier detection
and removal.

A common drawback of all hand—eye calibration algorithmkicl is inherent to
the problem itself, is that at least two motions are necgsshere the rotations have
non—parallel rotation axes. Consequently, numericalilgtaban be increased by se-
lecting the data accordingly. Additionally, outlier detiea and removal is essential,
since the position and orientation data provided by the trabm is unreliable when
substantial changes in the direction of movement are egdci?t RANSAC approach
[6] is used for this purpose.

The application area is the reconstruction of high—quatigdical light fields [12].
The hand-eye transformation has to be estimated every timea the camera head is
mounted anew on the endoscope optics, which is done befoheoparation because it
has to be sterilized. Therefore, an algorithm that workematically and stably without
human interaction is desirable.

A vast amount of literature is available on the topic of hasge-calibration. The
classical way is to solve for rotation first, and then for glation [9,11]. In [7] an
algorithm is proposed that solves for both simultaneousigginonlinear optimization,
while Daniilidis [3, 4] is the first who presented a linear @lighm for simultaneous
computation of the hand—eye parameters. This was the masomenvhy we chose this
algorithm as a basis for our work.

* This work was partially funded by the Deutsche Forschungsjeschaft (DFG) under grant
SFB 603/TP B6. Only the authors are responsible for the conte



Fig. 1. Left: experimental setup. (1) AESOP 3000, (2) “patient),¢@mera head and endoscope,
(4) light source, (5) computer, (6) video—endoscopic sygtriginal image), (7) second monitor
(computer image/light field). Right: original image as sbgrthe camera.

The paper is organized as follows: Sect. 2 describes the AEBIDO0 robot system
as well as the method formerly used for estimating the unkneand—eye transforma-
tion between robot plug and camera. In Sect. 3 we give a ghtooduction to hand—eye
calibration methods, with special focus on the dual quaderapproach proposed by
Daniilidis. How to make the hand—eye calibration robustuggtofor practical purposes
is described in Sect. 4. Experimental results are given @. Se

2 The Robot System

We use theComputer Motion INcAESOP 3000 (cf. Fig. 1, left, no. (1)) endoscopic
surgery robot. Images are grabbed directly from the engoscamera. The robot arm
has seven degrees of freedom (one translational and stiortd§, which are provided
by the robot before and after each image is taken; the dataeimaged for further
processing. The complete experimental setup is shown in1F{geft). A calibration
pattern is used to estimate the intrinsic camera param@i@fsRadial and tangential
lens—distortion coefficients are computed in order to undishe (highly distorted) en-
doscopic images. Given these seven values, the positioorgmtation (pose) of the
endoscope plug can be computed from the known kinematits)ditthe pose of the
tip of the endoscope.

Up to now, the unknown transformation from plug to camera esisnated as fol-
lows: The distance from plug to endoscope—lens was meabyrkednd, while the ori-
entation of the optics with respect to the plug was calcdl@tetwo steps. Since the
camera head is not fixed at the endoscope optics but is moantsd before each op-
eration, the rotation between head and optics had to be dmahptihis was done by
detecting a notch at the optics border (cf. Fig. 1, right)udlly a 30 optics is used,
i.e. the angle had to be taken into account when computind@iriaktransformation.
Then the relative movement between two images using a aétibrpattern was com-
puted and the plug—angle was optimized such that the relatiovement calculated
by the kinematics equaled the real one. This method has soaaddcks: First of all,
measuring by hand is arduous and inaccurate. Also, noteletilen requires using addi-
tional low-level image processing methods instead of da¢ady available and is only
possible if an optics is used that actually has a notch, wisictot the case for all en-
doscope optics. These drawbacks are eliminated by usinguatrband—eye calibration
method as described in the following sections.



3 Hand-Eye Calibration
3.1 Overview

Given rigid displacements between the movements of a rabogad the movements
of a camera mounted on that arm, the unknown rigid transfiom&etween arm and
camera has to be computed, which is the same for all arm/@amevement pairs.
This is known as hand—eye calibration. These circumstaareeshown in the following
commutative diagram; robot arm poses are denoted pgamera poses b§' at two
time stepg andk. The unknown hand—eye transformation is denotediy andtye.
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The hand—eye parametdRse andtye can be recovered from the following equa-
tion induced by the commutativity of diagram (1):
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which can be decomposed into two separate equations:

Ry R = Rei Rue 3
(I3 — Rcix)tve = tcir — Ruetaik 4)

These are the well-known hand—eye equations, which werptibdished in [9, 11].
Numerous solutions for solving (3) and (4) have been prapasey., [9, 11,7, 3]. The
classical way is to first solve (3) faRyg, and then (4) fortye. In [7] an algorithm
is proposed that solves fd®ye andtye simultaneously using nonlinear optimization,
while Daniilidis [3, 4] is the first who presented a linear @lighm for simultaneous
computation of the hand—eye parameters. Besides the wetided theory and good
performance, this was the main reason why we chose the datdmpion algorithm for
our application. Additionally, using this algorithm it i®gsible to show how numerical
stability of hand—eye calibration in general is increasgdélecting optimal relative
movement pairs as described in Sect. 4.1. Therefore, wenaill give a summary of
the dual quaternion algorithm.

3.2 Dual Quaternions: A Unified Representation of Rotation ad Translation

Quaternions Quaternions are a commonly used representation for rattio 3—-D,
hence we will not go into much detail here; for details seg, g5, 8].

A quaternionh is defined ash = w + zi + yj + zk with w, x, y, z € IR, wherew is
the real part and, y, z are the imaginary parts. For the imaginary units, the follhawv
equation holds:% = j> = k* = ijk = —1. Often a quaternion is written as a 4-D
vectorh = (w,x,y, z) or h = (w,v), wherev is a3—vector containing the imaginary
parts. Just as the multiplication of two unit complex nunstifines a rotation in 2-D,
a multiplication of two unit quaternions yields a rotation3-D. Letp be a 3—D point



to be rotateda a rotation axis witHa| = 1, andd the angle of rotation around this axis.
Define the following two quaternions:

h<cosg,sin§~a>, p =(0,p) . (5)

Then _
Pt = hp'h | (6)

wherep),, is the rotated point ant is the conjugate oh.

Dual Quaternions As quaternions are a representation for 3—D rotations, qlueter-
nions treat rotationandtranslations in a unified way.

Dual NumbersDual numbers were proposed by Clifford in thé™@entury [2]. They
are defined by = a + b, wheres? = 0. When using vectors faf andb instead of
real numbers, the result is a dual vector.

Dual QuaternionsA dual quaterniorh is defined as a quaternion, where the real and
imaginary parts are dual numbers instead of real ones, avadqotly as a dual vector
where the dual and the non—dual part are quaternforsh -+ =h’. Just as unit quater-
nions represent rotations, unit dual quaternions contaation and translation [3]. In
the dual quaternion representationf®fandt, the non—dual pa is defined as in (5),
and the dual part as

T 1
h’:(—tTasing,§(tx(sing-a)—i—cosg-t)) ) (7

Using the dual quaternion representation, the hand—eiatbn formulas (3) and (4)
and can be written in a concise way, very similar to (6):

hc = iLiL7 9 (8)
Wherefzr encodes the movement of the robot arm éjgcllhe movement of the camera.

3.3 Algorithm

This section gives an overview over a linear algorithm fondieeye calibration using
dual quaternions presented by Daniilidis in [3, 4]. Staytirom (8) he derives a linear
system of equations which has to be solved{@ndh’:

A(Z,)O . ©)

Since each movement p&far, ﬁc) results in 6 equations, far motionsA is a6n x 8
matrix having rani6.

Note that at least two motions of the robot arm/canveith different rotation axes
are necessary for reconstructing the rigid hand—eye wamsition. This is a general
result [1,11], i. e. it is not specific to the dual quaternitgoaithm.

Solving (9) using Singular Value Decomposition (SVD) with= U XV T results
in two zero singular values, or nearly zero singular valndbé case of noisy data. The
two—dimensional solution space is spanned by the columtorse, andvg of V' that



correspond to the zero singular values, (Jeh’)T = A\ w7+ Aawg. The two remaining

unknowns\; and\; can be computed by using the additional constrainthHata unit
dual quaternion. The recovery of the actual hand—eye wamsition, i. e Ry andiyg,
from h is easy: The rotation matrix can be computed directly froenrtbn—dual park
of h (cf. e.g., [8]). The translation vector is given bye = 2h'h (cf. [3]).

4 Hand-Eye Calibration of an Endoscopic Surgery Robot

In this section we are going to describe how the numericailgiaof hand—eye cali-
bration can be increased by selecting robot/camera movgraés in an optimal way.
Additionally, elimination of outliers using a RANSAC appath is presented.

4.1 Selection of Movement Pairs for Increased Numerical Stality

For reconstructing the rigid transformation from robot gowamera using hand—-eye
calibration, at least two motions withfferentrotation axes are necessary (cf. Sect. 3.3).

As probably in most applications, in endoscopic surgefypt@rm movements are
usually continuous, which means that translation and iostaif neighboring frames
are similar and the rotation axes are not very different.dédhis usually suboptimal
to process the arm/camera positions in their temporal otdisrmuch better to select
the data such that relative movements are used for cabiprgtiat actually fulfill the
requirement above. As an optimality criterion we proposeige the scalar product
between the rotation axes of two camera movementszL&inday; be the normalized
rotation axes of two relative movements from fraite j and fromk to [, respectively.
Then

sijh = |aj;an (10)

gives a value of one for parallel rotation axes and zero ftiragonal axes, where the
latter are the ones that are suited best for hand—eye dadibr&lote that camera and not
robot arm data should be used at this point, since the canesaalibrated accurately
using a calibration pattern, while the data provided by ttmt is still corrupted by out-
liers and hence unreliable. Also, it is important for preatipurposes, that the rotation
axes of relative movements are well-defined. For smallimtat the axis changes its
direction considerably, and two axes may be almost orthalgeven if the movement
pair is ill-suited for hand—eye calibration. Therefore, eommend a pre—selection
of those relative movements, where the rotation matrixedsffrom identity. In our im-
plementation, we use the rotation angléor pre—selection (cf. Sect. 5). An additional
benefit of this step is that the amount of data for the foll@ypairwise rating decreases
and thus computation time as well.

Selection of the best pairs increases the numerical gtabflthe hand—eye calibra-
tion, which can be easily seen if we examine at the conditiomler of matrixA in
(9). This matrix is of rank six if non—parallel axes are usaat] of rank five if parallel
axes are used. Now consider the ratio of the largest singudare of A and the sixth
singular—value: The system is ill-conditioned in the cdgeanallel axes (the condition
number becomes infinite in the worst case), and the condigts better (i. . the sixth
singular value is much greater than zero) if the axes arepavaliel.



If the goal is an optimal data set consistingmefmovement pairs, the problem can
be formulated as follows: Let denote the set of all movement pairs possible; find a
subsetM of C such that the following criterion is minimized:

SM= > Sk (11)

(¢g,kl)eM

wheres ,, denotes the rating 0f1. Better pairs in the sense of low absolute ratings
lead to lower condition numbers and thus higher numericdility. In general, this
means that;; 1; has to be computed for all possible movement pairs (but ofseowot
necessarily be stored) in order to get the optimal supgeOur experiments showed
that this is actually possible if the number of frames is mat high; e.g., even for
100 frames and a pre—selection as described above, computthe optimal subset
takes only a few seconds on a state—of-the art PCnHoames, the algorithm is of
complexity O(n*): The total number of all relative movementsrién + 1)/2; if m
movements are left after pre—selection, the total numbeaos ism(m + 1)/2. For
the worst case, i.en = n(n +1)/2, this results inn(m + 1) /2 = (n* +2n3 + 3n% +
2n)/8 = O(n*).

4.2 Eliminating Outliers

The AESOP 3000 robot provides pose information, which isallg@accurate (cf. Fig.
2). Nevertheless, experiments showed that in some cagesially when the direction
of movement changes substantially, pose information ig uareliable (note the peaks
in Fig. 2). This is only a local problem, since the experinsesiso showed that the
pose—error does not sum up during the movement of the arns iTlsinecessary to
detect the positions where those changes occur, so that#melge removed from the
data used for hand—eye calibration. Possible methods fbeoelimination are:

— Remove the positions where the changes in direction oflatios of the robot arm
are very high.

— Follow an iterative approach and use all data in the firsafien; for the second
iteration remove those positions that have very high enwdren comparing the
hand-eye transformed robot poses with the data from thierasgid endoscope.

— Apply a RANSAC [6] approach; use the same error measure &®iitedm above.

Since the most promising approach is the last one, we arg goithescribe now how to
apply RANSAC for outlier removal:

1. Choosen random samples from the movement pairs selected as debariBect.
4.1, where each sample consistseof 2 movements, the minimum number re
quired for hand—eye calibration.

2. For each sample ComputeRyg;, tug;-

3. Apply the hand—eye transformation to the robot arm posescampute the er-
ror between the transformed arm poses and the calibratedragmoses for each
relative movement. Determine the number of consistenspair

4. Keep the largest set of consistent pairs.

5. After all samples are evaluated: Re—compRjg:; andtyg; usingall consistent
pairs of the largest set.



Table 1.Mean error per frame for old method and hand—eye calibradioce with best movement
pairs, once for pairs in temporal order. For the Euler angleserror is given in degrees, for the
rotation in norm of the difference quaternion, and for tlamslation in mm.

Method/Sequence Eulerz Eulery Eulerz Quaternion Translation
ALF1, old method 0.289 0.279 0.246 0.00477 0.675
ALF1, hand-eye, best 0.219 0.386 0.245 0.00495 0.897
ALF1, hand—eye, temporal order 0.941 0.729 0.675 0.0135 10.7
ALF2, old method 0.259 0.264 0.352 0.00495 0.910
ALF2, hand-eye, best 0.218 0.272 0.288 0.00433 1.15
ALF2, hand—eye, temporal ordef 0.502 0.834 1.50 0.0161 10.85

Rotation error, Quaternion difference Translation error
0.014 3.5
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Fig. 2. SequenceALF2. Left: Error in rotation measured in norm of the differenaeatgrnion.
Right: Error in translation measured in norm of the differewector.

The probability P that in at least one samphl ¢ elements are inliers is given by
P=1-(1-(1-¢€)*)™, wheree is the estimated outlier-rate. If this equation is solved
for m we get the minimum number of samples that should be chosen?Fe 0.99,

e = 2, and an estimated outlier—rate of= 20% we getm =~ 4.51, i.e. at least
samples should be used.

5 Experiments

For evaluation of accuracy and robustness of the dual quiatehand—eye calibration
algorithm with the extensions for movement pair selectind autlier elimination, we
present here the results on endoscopic image sequencediffgtent movement paths.
Instead of a real patient, a box with a hole for the endosclogkis inlaid with news-
paper and printed OP—images of the abdomen was used. An Exangge (without
calibration pattern) is shown in Fig. 1 (right).

Table 1 shows the errors for the two sequentkB1 (55 frames) and\LF2 (100
frames) for the former method used, for the best movemens paing the hand—eye
method, and for the hand—eye algorithm where the relativeements were used in
temporal order. The error per frame was computed betweesctal endoscope poses
(from the calibration pattern) and the poses computed biyaqgpthe hand-eye trans-
formation to the robot arm data. Comparison of the errordhefltest pairs and pairs
in temporal order shows impressively the influence of pdect®n: When using the
temporal order, the hand—eye algorithm fails; when usirghtést pairs, the error is
comparable to the former method described in Sect. 2, binowitits drawbacks, in
particular completely automatically. Before the selattid pairs rated using (10), we
pre—selected those relative movements, where the rotatigted was betweern0°



and170° for sequenc@LF1, and between5° and165° for ALF2. For ALF1we used
30% (absolute: 36531) of all possible pairs left after pedeation, forALF2 10% (ab-
solute: 1720). Figure 2 depicts plots of the relative emdrame—to—frame movement
for the ALF2 sequence in rotation (measured in norm of the differenceeguian) and
translation for the former non—automatic method describ&ect. 2 and for the robust
hand—eye calibration method. Noticeable are the distinakp: These are exactly the
frames where the robot position data is very erroneous,wikithe case if the move-
ment direction changes considerably. Remember also, thadmnlinear refinement was
used yet, which would result in even better performance.

6 Conclusion

We presented an approach for selecting the relative radoo#ca movements such that
hand—eye calibration can be performed in a numericallylstafy. Outlier removal
is very important in our application as well, which is the a$@n endoscopic surgery
robot, since the robot position data is unreliable when m@mts such as substantial di-
rection changes are executed. We showed how to use RANSAZ ooglish this goal.
Although we applied a dual quaternion hand—eye calibratigarithm, these problems
are not specific to it, but inherent to the hand—eye calibngtroblem itself. We showed
experimentally the benefit of movement pair selection caexgb#o the straightforward
approach of using relative movements in temporal order.
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