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Universität Erlangen–Nürnberg
Lehrstuhl für Mustererkennung (Informatik 5)

Martensstr. 3, 91058 Erlangen, Germany
stemmer@informatik.uni-erlangen.de

Abstract
Young speakers are not represented adequately in current
speech recognizers. In this paper we focus on the problem to
adapt the acoustic frontend of a speech recognizer which has
been trained on adults’ speech to achieve a better performance
on speech from children. We introduce and evaluate a method to
perform non-linear VTLN by an unconstrained data-driven op-
timization of the filterbank. A second approach normalizes the
speaking rate of the young speakers with the PSOLA algorithm.
Significant reductions in word error rate have been achieved.

1. Introduction
1.1. Motivation

Very young speakers are not represented adequately in current
speech recognizers. This is partly due to unbalanced amounts
of training data and partly caused by the acoustic features and
models. The large acoustic variability of children’s speech to-
gether with a change of the location and range of the optimal
parameter values need specialized feature extraction methods
and acoustic models.

The influence of the speaker’s age on the accuracy of a
speech recognizer has firstly been investigated by J. Wilpon
and C. Jacobsen in [1]. The error rate of a speech recognizer
which has been trained with data from speakers of all ages in-
creases significantly for speakers which are twelve years old or
younger. It is also shown that best performance can be achieved
when each age group is represented by an adequate amount of
data in the training set, however, the recognition is still worse
for elderly speakers and children. In [2] a detailed analysis of
the relation between the word error rate of a speech recognizer
and the age of young speakers shows that the recognition per-
formance for children’s speech is up to four times worse than
for adults and that adult levels are reached around thirteenor
fourteen years of age. As a main portion of children’s speech
is located in relatively high-frequency regions of the spectrum
it has been observed that recognition quality is degraded much
more than speech from adults by the effects of bandwidth re-
duction, e.g. for telephone speech [3].

1.2. Acoustic characteristics of children’s speech

S. Leeet al. analyze in [4] duration, pitch, formant frequencies
and the spectral envelope of children’s speech. It is found that
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durations of certain vowels are longer for young children than
for adults. The children have a higher variability of duration
between the vowels, which stabilizes around eleven. Up to age
twelve there is no difference in the development of a speaker’s
pitch between males and females. There is a continuous de-
crease in pitch between seven and twelve. Male speakers have
a steep pitch drop in puberty between twelve and 15. The sep-
aration between male and female formant frequencies begins
around ten and is finished around 15. There is a linear relation-
ship between the speaker’s age and the vowel-dependent for-
mant frequencies for male but not for female speakers. Similar
to the observations for the vowel durations, young childrendo
also have a higher spectral variation and formant variability than
adults. This may be due to the fact that children are less-skilled
in coarticulation [4].

1.3. Approach

In this paper we focus on the problem to adapt the acous-
tic frontend of a speech recognizer which has been trained on
adults’ speech to achieve a better performance when speech
from children has to be recognized. We will investigate if our
approach can also lead to improvements when we use children’s
speech to train the recognizer.

Two aspects of children’s speech are investigated: Firstly,
we normalize the spectral characteristics of children’s speech by
a generalization ofVocal-Tract Length Normalization (VTLN).
VTLN is a linear or bilinear scaling of the frequency axis [5,
6, 7]. Based on a non-linear extension of VTLN we try to find
out if an optimal filter bank for extraction of acoustic features
from children’s speech can be derived directly from the data
with as little constraints as possible. Secondly we evaluate if
the recognition rate can be improved by normalization of the
children’s speaking rate. For both approaches word error rates
on a corpus of read speech from children are given. Finally, we
discuss the results and give an outlook on our work in the near
future.

1.4. Related work

Several approaches to improve the acoustic frontend for theau-
tomatic recognition of children’s speech can be found in the
literature; most of them are based on some kind of VTLN.
A. Potamianos and R. Rose show in [8] a strong relationship
between the optimal warping factor and the age of the speaker.
VTLN provides relative reductions in word error rate of up to
60% when a speech recognizer which has been trained on male
adult speakers is tested on children’s speech [8]. D. Burnett and
M. Fanty report similar experiments in [9], however the fre-
quency axis is not scaled butshifted. Experiments by Potami-



anoset al. on phoneme-dependent warping factors in [2] in-
dicate that the phoneme-independent factor is a valid approx-
imation as the influence of the age on the parameter is simi-
lar between all phonemes. Additional improvements could be
gained by extending VTLN by using two warping factors in-
stead of only one [2]. An interesting alternative has been de-
veloped by J. Gustafson and K. Sjölander [10]: A voice trans-
formation method is applied directly to the speech signal inor-
der to compress the spectrum and to change the speaker’s pitch.
The compression is equivalent to the scaling of the frequency
axis during feature computation but can be integrated into any
speech processing system even if the speech recognizer itself
cannot be accessed for technical reasons.

2. Non-linear VTLN
VTLN is based on the assumption that a significant part of the
inter-speaker variation in the features can be eliminated by a
speaker-dependent linear scaling of the frequency axis. Itmay
not be optimal to constrain the scaling to be linear. As most
applications need a very rapid adaption to the current speaker
it would be too costly in terms of computational effort and
adaption data to perform an extensive search for the optimal
non-linear frequency scaling. In this paper, however, the fre-
quency scaling is determined at once for a whole speaker group
as we are more interested in the acoustic differences between
the voices of children and adults than in the individual differ-
ences between speakers. This means that the frequency scaling
can be computed offline and does not need to be performed in
real time. In the following we introduce a data-driven algorithm
to determine an arbitrary non-linear scaling of the frequency
axis, which we want to callnon-linear VTLN. The scaling of
the frequency axis is performed by optimizing the Mel-curve
which determines the filterbank for the computation of the Mel-
frequency cepstral coefficients (MFCC).

For this purpose we have to define a suitable parameterized
representation of the Mel-curve. The Mel-curve is given by

mel(f) = 1125 · ln(1 +
f

700
) (1)

In order to adjust the curve to the properties of the data we deter-
minen sampling points(fi, p(fi)) which are uniformly spaced
in the Mel-scale:

fi = mel
−1((i − 1) ·

fmax

n − 1
), i ∈ 1, . . . , n (2)

fmax depends on the sampling frequency and is in our case
8000 Hz. The initialization of the sampling points is given by
the Mel-curve itself:

p(fi) = mel(fi), i ∈ 1, . . . , n (3)

The optimized curveopt(f) is a cubic spline curve which in-
terpolates the sampling points(fi, p(fi)). The optimization al-
gorithm iteratively changes the valuesp(fi) in order to meet
an optimization criterion. We decided to employ the simplex
algorithm [11] which does not need the computation of a gra-
dient. The optimization criterion of the simplex algorithmis
to maximize the recognition rate of a Gaussian classifier for
sub-phonetic labels. Preliminary experiments had shown a good
correlation between the recognition rate of the classifier and the
word error rate of a speech recognizer which has been trained
on the same data.

The following paragraph summarizes the algorithm for the
data-driven optimization of the Mel-curve:

1. initializefi andp(fi) according to Eq. 2 and Eq. 3

2. iteratively adjustp(fi) using the simplex algorithm and
the following optimization criterion:

(a) compute interpolating cubic spline curveopt(f)
for points(fi, p(fi))

(b) determine filterbank according toopt(f)

(c) extract acoustic features using the new filterbank

(d) train Gaussian classifier for sub-phonetic labels

(e) evaluate Gaussian classifier, get recognition rate

(f) pass recognition rate to simplex algorithm

3. return the optimalopt(f)

Note that the use of an interpolating spline function in con-
trast to directly optimizing the filter bank parameters has the
advantage that the numbern of parameters which have to be
optimized can be chosen independently from the number of the
filters which are used in the feature extraction. A major disad-
vantage of the proposed algorithm is the computational effort:
Each iteration of the simplex algorithm evaluates the optimiza-
tion criterion several times. For our data set this resultedin 3-4
hours of computation time on a Pentium 4 computer until the
local optimum was reached.

3. Normalization of the speaking rate
As the duration of certain vowels in children’s speech is longer
than for adults, we considered a normalization of the speaking
rate. Our approach is motivated by the work from J. Gustafson
and K. Sjölander [10] who applied thePitch-Synchronous Over-
lap and Add (PSOLA)algorithm to normalize the pitch of chil-
dren’s speech. The PSOLA algorithm is widely used in speech
synthesis for the manipulation of pitch and duration of a speech
signal. Preliminary experiments had shown that in our case ma-
nipulation of the pitch did not yield additional improvements.
Note that in [10] effects of pitch manipulation and spectral
compression are not evaluated separately. We apply the im-
plementation of PSOLA which is part of the PRAAT software
(http://www.praat.org) to change the duration of the children’s
utterances while keeping the original pitch.

4. Data
The children’s speech corpus consists of 3.5 h read speech data
of 62 children (29 male and 33 female) at the age of 10 to 12
years. The pupils read four different German texts:Nordwind
und Sonne (The North Wind and the Sun)and three texts of the
reading testZürcher Lesetest[12]. Each text is about 90 words
long. In order to judge the reading capabilities of each child
we asked two master-level students of psychology to rate each
pupil’s reading for each of the threeZürcher Lesetesttexts. Both
a fluency rating and a rating of the reading expression are on a
scale from 1 (best) to 5 (worst). No pupil got the rating 5 for
any of the texts. The ratings were averaged over all three texts
which gives a rating between 1-4 for each child in the categories
fluency and reading expression.

Tab. 1 shows how the data has been partitioned for the
speech recognition experiments. As we wanted speakers and
read texts to be disjunct between training and evaluation set,
theNordwind und Sonnereadings of the training speakers and
theZürcher Lesetestreadings of the evaluation speakers are not
used for any of the experiments.



task sentences speakers read text
training 920 40 Zürcher Lesetest
validation 46 2 Zürcher Lesetest
evaluation 120 20 Nordwind und Sonne

Table 1: Partitioning of the children’s speech corpus for the
training and evaluation of the speech recognizer.

For the training of the adults’ speech recognizer a subset
of the speech database from the VERBMOBIL project [13] was
used. It consists of 28 hours of spontaneous dialogues between
adult speakers in German (11762 turns of 610 dialogues).

5. Baseline systems
Two different baseline systems are available: An adults’ speech
recognizer and a recognizer for children’s speech. The acous-
tic models of the adults’ speech recognizer have been trained
on the data from the VERBMOBIL project while the acoustic
models of the children’s speech recognizer have been estimated
on the training set of the children’s speech corpus as shown in
Tab. 1. Both recognizers have the same recognition vocabu-
lary of 71 words which are the words from theNordwind und
Sonnetext. The children sometimes gave comments to the text
or made reading errors so 2.1% of the spoken words are not con-
tained in the vocabulary. As our main interest is to measure the
performance of the acoustic frontend both recognizers use only
an unigram language model which is estimated on the written
Nordwind und Sonnetext (not on the spoken word sequence).
The adults’ speech recognizer has a word error rate (WER) of
32.5% on the evaluation set. The children’s speech recognizer
achieves a WER of 18.5% on the same data.

6. Experiments and results
6.1. Non-linear VTLN

The goal of the feature normalization experiments is to find
a feature representation which gives the best recognition per-
formance of the adults’ speech recognizer on children’s speech
data. The recognizer itself is not altered. In order to represent
this setting in the optimization criterion, the Gaussian classi-
fier is trained only once on the VERBMOBIL dataset with the
unmodified MFCC features. For the computation of the opti-
mization criterion the recognition rate of the Gaussian classi-
fier is evaluated on the training and the validation subsets of
the children’s speech corpus based on features which have been
extracted with the optimized Mel-curve. We setn = 12; the
first and the last sampling point(f1, p(f1)) and(fn, p(fn)) are
fixed which gives 10 free parameters for the simplex optimiza-
tion. The simplex algorithm needs 494 evaluations of the opti-
mization criterion. The optimized Mel-curve is shown in Fig. 1.
The adults’ speech recognizer achieves a WER of 25.5% on the
evaluation set with the improved feature extraction. This cor-
responds to a relative reduction of more than 20%. When only
the two speakers from the validation set are used together with 8
free parameters for the non-linear VTLN optimization the cor-
responding WER is already 25.9%. It can be seen clearly in
Fig. 1 that the optimized Mel-curve is the result of a non-linear
transformation of the frequency scale. However, this is nota
proof that the optimal VTLN is non-linear as the curve in Fig.1
represents just a local optimum and there may be linear scalings
which perform better. We therefore optimized the linear VTLN
on theevaluation setby varying the warping factor between 0.8
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Figure 1: Standard Mel-curve and improved Mel-curve. The
new Mel-curve has been optimized with non-linear VTLN using
the adults’ speech recognizer.
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Figure 2: Standard Mel-curve and improved Mel-curve. The
new Mel-curve has been optimized with non-linear VTLN using
the children’s speech recognizer.

and 1.48 in steps of 0.02. The best WER that can be achieved
by the linear VTLN on the test set is 25.6%. This is still slightly
worse than the non-linear VTLN, i.e. no linear frequency scal-
ing can do better than the non-linear VTLN on the evaluation
set. As the difference is not significant we cannot claim that
this is a proof that the non-linear VTLN is better than its linear
counterpart, however we believe that it is a strong indication of
this statement.

We also evaluated if the non-linear VTLN can be used to
find a better Mel-curve for the children’s speech recognizer. The
Gaussian classifier is estimated on the training set of the chil-
dren’s speech corpus and evaluated on the two speakers of the
validation set. Both for the training and the evaluation thefea-
ture extraction is based on the modified Mel-curve. The number
of sampling points is set to 10 which makes 8 free parameters
in the simplex optimization. The resulting optimized Mel-curve
after 93 evaluations of the optimization criterion is shownin
Fig. 2. It can be seen easily that the differences to the standard
Mel-curve are only very small. This is no surprise as the Gaus-
sian classifier has been evaluated on the data of only two speak-
ers. The corresponding WER on the evaluation set is 17.3%, i.e.
as one may expect from Fig. 2 there is no significant improve-
ment over the baseline.
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Figure 3:Relationship between the scaling of the speaking rate
and the WER of the adults’ speech recognizer on the evaluation
data.

6.2. Normalization of the speaking rate

In the following we measure the maximum possible WER re-
duction that can be achieved by normalization of the speaking
rate. As we currently have no criterion to determine the optimal
scaling factor for a speaker all experiments are performed on
the evaluation set only. In a first experiment the same scaling
factor is applied to all speakers. Fig. 3 shows the WER on the
evaluation set when the scaling factor is varied in the rangebe-
tween 0.7 and 1.18 in steps of 0.02. Small factors acceleratethe
speaking rate in the transformed speech signal; large factors de-
crease the speaking rate. The minimum of the curve is clearly
below 1.0, i.e. acceleration of the children’s speaking rate re-
duces the WER. The best achievable WER in this case is 30.9%
(for scaling factors 0.84 and 0.88). We noticed a very large
speaker dependency of the optimal scaling factor. When the
optimal scaling factor is chosen individually for each speaker
a WER of 28.6% can be reached. One piece of information
that could be used to determine the optimal scaling factor for
a speaker in advance is his or her reading capability. It can be
expected that bad readers speak more slowly than good read-
ers. The correlation between optimal scaling factor of a speaker
and the corresponding expert fluency rating (1=best – 5=worst)
which has been estimated on the training set is -0.40, i.e. speak-
ers who get good ratings have scaling factors closer to 1.0. The
same holds for the correlation between optimal scaling factor
of a speaker and the rating of the reading expression (1=best–
5=worst) which is -0.41.

7. Conclusion and future work
We introduced and evaluated two new ways to increase speech
recognition performance for children: Non-linear VTLN and
normalization of the speaking rate with the PSOLA algorithm.
Both methods provide reductions in word error rate for a speech
recognizer which has been trained on adults’ speech. However,
we were not able to find a better “Mel-scale for children” which
does also improve performance when the recognizer is already
trained on speech from children. One reason for this is surely a
lack of data.

In the near future we plan to repeat the experiments on a
larger database. For this purpose we have recorded read speech
from about 50 German pupils in the age between 10-12, each
of them reading 15 min German and 5 min English texts. Ad-
ditional recordings of spontaneous and emotional speech have

been made in Wizard-of-Oz experiments: children talked to
Sony’s entertainment robot AIBO and instructed it to fulfillse-
lected tasks.

In further experiments we will look for a suitable criterion
which can be used to determine the optimal scaling factor for
the speaking rate of a speaker. Additional improvements canbe
expected when non-linear VTLN is combined with the speaking
rate normalization. We also think about applying the algorithm
which we developed for the non-linear VTLN to optimize the
log-scale in the MFCC computation.
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