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ABSTRACT

For most speech recognition systems dynamic features are
the only way to incorporate temporal context into the out-
put distributions of the HMMs. In this paper we propose an
efficient method to utilize a large context in the recognition
process. State scores of a phone recognizer which runs in
parallel to the word recognizer are computed. Integrating
these scores in the HMMs of the word recognizer makes
their output densities context-dependent. The approach is
evaluated on a set of spontaneous utterances which have
been recorded with our spoken dialogue system. A signifi-
cant reduction of the word error rate has been achieved.

1. INTRODUCTION

It is a common method in pattern recognition to improve the
performance of a classifier by the incorporation of (more)
context. A well-known weakness in HMMs is that the fea-
ture vectors are dependent only on the states which gener-
ated them, not on the neighboring feature vectors. Context
is only represented by the dynamic features, e.g. delta co-
efficients of the Mel-frequency cepstral coefficients. How-
ever, most types of dynamic features are only limited to a
few subsequent feature vectors and do not represent long-
term variations. The main objective of the paper is to intro-
duce a new way to utilize context in the output distribution
of HMMs.

In the following we will describe how context can be
incorporated into HMMs by simply taking into account a
phone recognizer, which runs in parallel to the word recog-
nizer. The state scores of the phone recognizer are com-
puted with the beam search algorithm. They depend on
all feature vectors that have been observed so far; the fact
that the HMMs of the phone recognizer are based on the
Markov assumption is not relevant. This makes the state
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scores of the phone recognizer a valuable additional infor-
mation source for each state of the word recognizer. The
state scores do not replace the Gaussian densities, but are
used as an additional information source to increase the dis-
crimination ability between sub-phonetic speech events.

The most successful ways to enhance the use of context
in HMMs that can be found in literature are based on im-
provements of the extraction of temporal features [1], but
this is beyond the scope of this paper. A number of stud-
ies to overcome the so-called conditional independence as-
sumption of HMMs based on an improvement of themodel
are described in [2]. The concept of segment models is also
related to this topic, please refer to [3] for an overview. Most
of the approaches perform direct modeling of segments of
speech frames, others assume that the output distribution of
the HMM does not only depend on the current state but also
on one or several previous frames [2]. A major disadvan-
tage of most of these methods is that the parameter space
increases dramatically, even if only one neighboring feature
vector is considered.

The number of free parameters can be reduced by rep-
resenting the context with a discrete random variable ([4],
p. 409). This is similar to the approach described in this pa-
per, as the context is also represented by a single discrete
random variable. However, the context is not limited to
a few feature vectors and the computation scheme for the
output distribution has much less free parameters. Another
major advantage of the approach introduced below is that
the algorithms for training and decoding are not changed,
so there is no increase in the complexity of the computa-
tion.

2. MATHEMATICAL FORMALISM

2.1. Output Density

In a standard (semi-)continuous HMM the density func-
tion bi(xt) for the output of a feature vectorxt by the
statei at time t is computed by a sum over all codebook
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Fig. 1. Output of the feature vectorxt by the HMM statei.
The arrows symbolize statistical dependencies between ran-
dom variables, not state transitions.

classesm ∈ M :

bi(xt) =
∑

m

ci,m · p(xt|m, i) ≈
∑

m

ci,m · p(xt|m) (1)

The probability for a certain codebook classm, given a state
i is represented byci,m. The second part in Eq. 1 corre-
sponds to the transition from continuous to semi-continuous
HMMs. A Gaussian pdfN (xt|µm,Σm) is typically used to
representp(xt|m).

In the rest of this paper we will consider different types
of probability density functions which make it possible to
integrate a large contextxt−1

1 into the HMM output density.
x

t−1

1 stands for the contextx1, ..,xt−1 of feature vectors
which have been observed so far. If we try to integrate the
contextxt−1

1 directly into bi this results in a large amount
of additional computational effort.

Therefore we introduce a new hidden random variablel,
which we call the class label. Each of the class labelsl ∈ L

may correspond to a phone symbol, for instance. From now
on each statei does not only choose between the codebook
classesm ∈ M , but at the same time also takes an inde-
pendent decision for the class labell. The class labell it-
self is a discrete representation of the complete history of
feature vectorsxt−1

1
. The integration ofl into the output

density makesbi dependent on the historyxt−1

1 . Unlike
the approaches which have been mentioned in the literature
review, we do not entirely abandon the conditional indepen-
dence assumption of HMMs: the new model still assumes
thatxt is independent from the historyxt−1

1 whenl andm

are known. The process of feature vector generation accord-
ing to the new model is illustrated in Fig. 1. The probability
termbi(xt|x

t−1

1
) has to be expanded as follows:

bi(xt|x
t−1

1 ) =
∑

l,m

p(xt|l, m, i) · P (l, m|i,xt−1

1 ) (2)

As x
t−1

1 is the same for all statesi at time t, there is no
increase in the computational complexity of the algorithms
for training and decoding.
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Fig. 2. A phone recognizer as an information source for the
word recognizer.

2.2. Simplifying Assumptions

The representation ofbi(xt|x
t−1

1 ) requires the estimation of
too many parameters if we do not make additional simpli-
fications. Firstly we can use the following approximation
since the decisions form andl are independent andm does
not depend onxt−1

1
:

P (l, m|i,xt−1

1 ) = ci,m · P (l|i,xt−1

1 ) (3)

Secondly we can splitP (l|i,xt−1

1 ) into two parts under the
assumption thati is independent fromxt−1

1
:

P (l|i,xt−1

1 ) ∝ P (l|i) · P (l|xt−1

1 ) (4)

P (l|i) is estimated during the Baum-Welch training, while
the computation ofP (l|xt−1

1 ) is different for each type of
class labels that are employed. Finally, we can compute the
output density values of the models separately asm does
not depend onl:

p(xt|l, m, i) ∝ p(xt|m) · p(xt|l) (5)

To summarize,bi(xt|x
t−1

1 ) is computed by

bi(xt|x
t−1

1 ) ≈

[

∑

l

P (l|i) · P (l|xt−1

1 ) · p(xt|l)

]w

·

·

[

∑

m

ci,m · p(xt|m)

]1−w

(6)

The weighting factorw is introduced to control the influ-
ence of the different knowledge sources onbi(xt|x

t−1

1 ). We
will optimize w on the development test set.

3. INTEGRATION OF THE PHONE RECOGNIZER

3.1. Combination of Information Sources

The improvements which may be achieved with our ap-
proach depend to a large part on the specific choice of
the class labelsl and the corresponding density functions
p(xt|l) · P (l|xt−1

1 ). As we decided to use a phone recog-
nizer as information source, the labelsl represent states of



phone models. The density value can be computed from
the probability that the current statest of a phone HMM is
equal tol:

p(xt|l) · P (l|xt−1

1 ) := p(xt|l) · P (st = l|xt−1

1 ) (7)

whereP (st = l|xt−1

1 ) is calculated from the forward score:

P (st = l|xt−1

1 ) =
P (st = l,xt−1

1 )
∑

j P (st−1 = j,xt−1

1 )
(8)

The latter is approximated by the Viterbi score of the state
which is computed during beam search decoding in the
phone recognizer.p(xt|l) is the output density value of
statel and is modeled as a mixture of Gaussian pdfs. The
system architecture is illustrated in Fig. 2.

3.2. State Clustering

As the phone recognizer has about 300 different states (in-
cluding the models for pauses, filled pauses and nonverbal
sounds), we reduce the number of parameters by clustering
similar states into groups. The use of state clusters for the
class labels in contrast to individual states also increases ro-
bustness w.r.t. phone recognition errors.

A symmetric distanceD′(i, j) between two statesi, j
for semi-continuous HMMs can be computed from the
Kullback-Leibler distanceD(i|j) of their output densities:

D(i|j) =
∑

m

ci,m · ln
ci,m

cj,m

(9)

D′(i, j) =
1

2
D(i|j) +

1

2
D(j|i) (10)

We apply the clustering algorithm from [5], p. 143: The size
of a clusterC is defined as the maximum distance between
any two states inC:

size(C) = max
i,j∈C

D′(i, j) (11)

Initially each cluster contains exactly one state. The pair
of clusters which when combined would form the smallest
resultant cluster are merged. We repeat this step until the
desired total number of clusters is reached.

In all experiments which are described below, the class
label l stands not for a single HMM state but for a state
clusterCl. The probability of a specific labell is computed
by averaging the scores of all statesst which are in the same
clusterCl.

3.3. Reversed Phone Recognizer

We extend the context of the output densitybi(xt|x
t−1

1 )
to bi(xt|x

t−1

1 ,xT
t+1) with an additional discrete ran-

dom variabler which takes the ‘future’ feature vectors

x
T
t+1 = xt+1,xt+2, ..,xT into account. r is equivalent to

l, but corresponds to the state clusters of a phone recognizer
which runs from right to left on the time axis:

p(xt|r) · P (r|xT
t+1) := p(xt|r) · P (st = r|xT

t+1) (12)

A second weighting factorv is introduced in order to
integrate r into the computation of the output density
bi(xt|x

t−1

1 ,xT
t+1), which is also optimized on the develop-

ment test set. The weights sum up to 1.

4. DATA

Acoustic models are trained on a part of the EVAR data set.
It consists of 7438 utterances, which have been recorded by
phone with our conversational train timetable information
system. A detailed description of this system can be found
in [6]. Nearly all utterances are in German language. The
total amount of data is≈ 8 hours. 4999 utterances have
randomly been selected for training, the development test
set contains 441 utterances. The rest of 1998 utterances is
available for testing. The speakers of the training and the
test sets are disjunct.

5. BASELINE SYSTEM

The system which has been used for the experiments is a
speaker independent continuous speech recognizer. It is
based on semi-continuous HMMs, the output densities of
the HMMs are full-covariance Gaussians. Please refer to
[7] for a detailed description of the speech recognizer. If
the baseline system is only trained on the training data set
described in the next section and no other data is used for
training or initialization of the acoustic models, it achieves
a word error rate of 26.0% on the test data.

6. EXPERIMENTAL RESULTS

6.1. Training and Weighting Factor Optimization

The training of the whole system is done in two steps:
Firstly the phone recognizers which generate the class la-
belsl, r are trained. As we do not have a phone-level anno-
tation of the training data, we simply replace each word in
the transcription by its canonic phone representation. The
phone recognizer achieves a phone error rate of 43.9% on
the test data. The reversed phone recognizer has a phone
error rate of 44.5%.

Secondly we run the phone recognizer on the training
data in order to compute the labels and the corresponding
density values which are then used for the training of the
word recognizer with the Baum-Welch algorithm.

The weighting factorw is set to0.5 for the Baum-Welch
training of the word recognizer. The optimal choice for the



clusters 5 10 15 20 25 30
WER[%] 25.3 25.0 24.7 24.6 24.7 25.1

Table 1. Comparison of the error rates when the total num-
ber of clusters is varied. Only the forward phone recognizer
is used.w is set to0.5 during training; for decodingw has
been optimized on the development test set.

relativephone recognizer WER [%]
improvement [%]

none (baseline) 26.0 -
forward 24.4 6.2
reversed 25.6 1.5

both 24.0 7.7

Table 2. Comparison of the different information sources
and relative improvements over the baseline. The number of
clusters is set to 20, all recognizers are trained with weights
which have been optimized on the development test set.

value of the weighting factorw during decoding is deter-
mined on the development test set;w is varied in the range
of 0.05–0.45 in steps of0.05. We got slight improvements,
when we additionally used the optimized weighting factor
to re-train the word recognizer from scratch.

6.2. Results and Discussion

In a first experiment the total number of clusters is varied.
Two separate clusters are manually assigned to all states
of HMMs for pauses and nonverbal sounds, the rest of the
states is clustered with the algorithm described above. As
shown in Tab. 1, the system performance is significantly
better than the baseline for 15-25 state clusters. The op-
timal weight factorsw are in the range between0.1 and
0.2. We use 20 clusters (plus two for the pauses and non-
verbal sounds) for all following experiments. We compare
the word error rates (WER) for the forward and the reversed
phone recognizer to the baseline in Tab. 2. The WER for the
forward phone recognizer is slightly better than in Tab. 1,
because we used the optimized weight (w = 0.2) for the
training of the word recognizer. The reversed phone recog-
nizer alone does only yield to a very small decrease in WER.
However, we were pleased to find that the relative improve-
ments gained by forward and the reversed phone recognizer
sum up when both information sources are combined. The
best result corresponds to an improvement of 7.7% relative
(2 percent points) over the baseline.

The fact that the accuracy of a phone recognizer is typi-
cally quite low does not seem to hurt too much. It is possible
that we have prevented this by using scores for state clus-
ters and not the final output of the phone recognizer. The
scores contain an interpolated representation of all possible

hypotheses and not only the single best phone sequence.

7. CONCLUSION AND OUTLOOK

For most speech recognition systems, the only way to in-
corporate temporal context in the output distributions of the
HMMs is to use dynamic features. We have introduced a
new method to integrate context into the recognition pro-
cess of a word recognizer: we simply use the state scores of
a phone recognizer which runs in parallel to the word rec-
ognizer. Our experiments show that the proposed approach
reduces the word error rate significantly.

Future work includes further investigations into the ap-
plication of different types of sub-word units for the acous-
tic preprocessor. However, our approach is not limited
to the use of states or state clusters for the class labels.
Therefore we plan to evaluate if the performance of the
word recognizer can be improved by using (context depen-
dent) classifiers for other types of labels, e.g. for noisy or
voiced/unvoiced speech.
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