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Abstract
In this paper we propose an efficient method to utilize context
in the output densities of HMMs. State scores of a phone recog-
nizer are integrated into the HMMs of a word recognizer which
makes their output densities context-dependent. A significant
reduction of the word error rate has been achieved when the ap-
proach is evaluated on a set of spontaneous speech utterances.
As we can expect that context is more important for some phone
models than for others, we further extend the approach by state-
dependent weighting factors which are used to control the in-
fluence of the different information sources. A small additional
improvement has been achieved.

1. Introduction
A well-known weakness in HMMs is that the feature vectors are
dependent only on the states which generated them, not on the
neighboring feature vectors. Context is only represented by the
dynamic features, e.g. delta coefficients of the Mel-frequency
cepstral coefficients. However, most types of dynamic features
are only limited to a few subsequent feature vectors and do
not represent long-term variations. In [1] we have introduced
a method to incorporate context into HMMs by simply taking
into account a phone recognizer, which runs in parallel to the
word recognizer. The state scores of the phone recognizer are
computed with the beam search algorithm. They depend on all
feature vectors that have been observed so far; the fact thatthe
HMMs of the phone recognizer are based on the Markov as-
sumption is not relevant. This makes the state scores of the
phone recognizer a valuable additional information sourcefor
each state of the word recognizer.

We can assume that context is more useful for the recog-
nition of certain sounds than others. For instance, we expect
that the recognition of vowels like /E/ does not need much con-
text while for short sounds, e.g. plosives like /p/ context could
be very important (phone transcriptions in this paper are in
SAMPA, see http://www.phon.ucl.ac.uk/home/sampa.htm).It
has also been shown in the literature [2] that the importanceof
dynamic features for the recognition accuracy differs between
the phones. After a review of the mathematical formalism we
will extend the approach from [1] by state-dependent weighting
factors which are used to control the influence of the different
information sources. For each state of a phone model the influ-
ence of the context on the output density is determined individ-
ually.

The most successful ways to enhance the use of context in
HMMs that can be found in literature are based on improve-
ments of the extraction of temporal features [3], but this isbe-

yond the scope of this paper. A number of studies to overcome
the so-called conditional independence assumption of HMMs
based on an improvement of themodelare described in [4]. The
concept of segment models is also related to this topic, please
refer to [5] for an overview. Most of the approaches perform di-
rect modeling of segments of speech frames, others assume that
the output distribution of the HMM does not only depend on the
current state but also on one or several previous frames [4].A
major disadvantage of most of these methods is that the param-
eter space increases dramatically, even if only one neighboring
feature vector is considered.

The number of free parameters can be reduced by represent-
ing the context with a discrete random variable ([6], p. 409).
This is similar to the approach described in this paper, as the
context is also represented by a single discrete random variable.
However, the context is not limited to a few feature vectors and
the computation scheme for the output distribution has much
less free parameters. Another major advantage of the approach
introduced below is that the algorithms for training and decod-
ing are not changed, so there is no increase in the complexityof
the computation.

2. Mathematical Formalism
2.1. Output Density

In a standard (semi-)continuous HMM the density function
bi(xt) for the output of a feature vectorxt by the statei at
time t is computed by a sum over all codebook classesm ∈ M :

bi(xt) =
X
m

ci,m · p(xt|m, i) ≈
X
m

ci,m · p(xt|m) (1)

The probability for a certain codebook classm, given a statei
is represented byci,m. The second part in Eq. 1 corresponds
to the transition from continuous to semi-continuous HMMs.
A Gaussian pdfN (xt|µm,Σm) is typically used to represent
p(xt|m).

In the rest of this paper we will consider probability density
functions which make it possible to integrate a large context
x

t−1

1
into the HMM output density.xt−1

1
stands for the context

x1, .., xt−1 of feature vectors which have been observed so far.
If we try to integrate the contextxt−1

1
directly intobi this results

in a large amount of additional computational effort.
Therefore we introduce a new hidden random variablel,

which we call the class label. Each of the class labelsl ∈ L

may correspond to a phone symbol, for instance. From now on
each statei does not only choose between the codebook classes
m ∈ M , but at the same time also takes an independent deci-
sion for the class labell. The class labell itself is a discrete



feature vectors

codebook class

HMM states

class label

i

ml

xt

Figure 1: Output of the feature vectorxt by the HMM statei.
The arrows symbolize statistical dependencies between random
variables, not state transitions.

representation of the complete history of feature vectorsx
t−1

1
.

The integration ofl into the output density makesbi dependent
on the historyxt−1

1
. Unlike the approaches which have been

mentioned in the literature review, we do not entirely abandon
the conditional independence assumption of HMMs: the new
model still assumes thatxt is independent from the historyxt−1

1

whenl andm are known. The process of feature vector gener-
ation according to the new model is illustrated in Fig. 1. The
probability termbi(xt|x

t−1

1
) has to be expanded as follows:

bi(xt|x
t−1

1 ) =
X
l,m

p(xt|l, m, i) · P (l, m|i,xt−1

1 ) (2)

As x
t−1

1
is the same for all statesi at timet, there is no increase

in the computational complexity of the algorithms for training
and decoding.

2.2. Simplifying Assumptions

The representation ofbi(xt|x
t−1

1
) requires the estimation of too

many parameters if we do not make additional simplifications.
Firstly we can use the following approximation since the deci-
sions form and l are independent andm does not depend on
x

t−1

1
:

P (l, m|i, xt−1

1 ) = ci,m · P (l|i, xt−1

1 ) (3)

Secondly we can splitP (l|i,xt−1

1
) into two parts under the as-

sumption thati is independent fromxt−1

1
:

P (l|i, xt−1

1 ) ∝ P (l|i) · P (l|xt−1

1 ) (4)

P (l|i) is estimated during the Baum-Welch training, while the
computation ofP (l|xt−1

1
) is different for each type of class la-

bels that are employed. Finally, we can compute the output
density values of the models separately asm does not depend
on l:

p(xt|l, m, i) ∝ p(xt|m) · p(xt|l) (5)

To summarize,bi(xt|x
t−1

1
) is computed by

bi(xt|x
t−1

1 ) ≈

"X
m

ci,m · p(xt|m)

#wi

·

"X
l

P (l|i) · P (l|xt−1

1 ) · p(xt|l)

#
1−wi

(6)

The weighting factorwi is introduced to control the influence
of the different knowledge sources onbi(xt|x

t−1

1
). In [1] a

global weighting factorw for all states was employed. Here we
extend the approach by using state-dependent weighting factors
wi which are chosen for each HMM state individually. We will
optimize thewi on the development test set.

3. Weighting Factor Optimization
When all statesi share the same global weighting factorw the
optimization can be done by a simple grid search which evalu-
ates the error rate of the recognizer for several values ofw on
the development test set. For the state-dependent weighting fac-
torswi we use a similar optimization method as the one which
has been described in [2].

Thewi are optimized on a data set which is independent of
the training set of the recognizer. For each utterance a Viterbi
search is performed to determine the optimal state sequencefor
a given transcription. The optimization procedure tries toadapt
the weightswi in order to maximize the Viterbi score, i.e. the
weights should increase the output probabilitybi(xt|x

t−1

1
) for

all statesi which are in the optimal path. In contrast to [2] we
do not apply any methods to discriminate between HMM states,
i.e. the weightswj from statesj which are not in the forced
alignment path are not altered. Gradient ascent is applied to
maximize the output probabilitybi(xt|x

t−1

1
); the update rule

for the weightwi of statei is

ŵi = wi + ρ ·
d bi(xt|x

t−1

1
)

d wi

(7)

The second term stands for the derivative ofbi with respect to
wi which is weighted by the step sizeρ. As bi(xt|x

t−1

1
) is of

the form
bi(xt|x

t−1

1 ) = a
wi

1
· a1−wi

2
(8)

we can compute the derivative ofbi with respect towi from

d bi(xt|x
t−1

1
)

d wi

= (awi

1
· a1−wi

2
) · (log a1 − log a2) (9)

The first factor in this product is always≥ 0 therefore the
weight wi is increased fora1 > a2 and it is decreased for
a2 > a1. In [2] the derivative of the log-likelihood is used
which is log a1 − log a2. Both variants have always the same
sign of the gradient, so this should make no great differencein
practice.

As the data set which is used for the weighting factor opti-
mization is quite small the states of phone models which have
the same right biphone model get tied. For instance, the first
state of n/a:/x shares the weighting factor with the first state of
/a:/x.

4. Integration of the Phone Recognizer
4.1. Combination of Information Sources

The improvements which may be achieved with our approach
depend to a large part on the specific choice of the class labels
l and the corresponding density functionsp(xt|l) · P (l|xt−1

1
).

As we decided to use a phone recognizer as information source,
the labelsl represent states of phone models. The density value
can be computed from the probability that the current statest

of a phone HMM is equal tol:

p(xt|l) · P (l|xt−1

1 ) := p(xt|l) · P (st = l|xt−1

1 ) (10)

whereP (st = l|xt−1

1
) is calculated from the forward score:

P (st = l|xt−1

1 ) =
P (st = l, xt−1

1
)P

j
P (st−1 = j, xt−1

1
)

(11)
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Figure 2:A phone recognizer as an information source for the
word recognizer.

The latter is approximated by the Viterbi score of the state
which is computed during beam search decoding in the phone
recognizer.p(xt|l) is the output density value of statel and is
modeled as a mixture of Gaussian pdfs. The system architecture
is illustrated in Fig. 2.

4.2. State Clustering

As the phone recognizer has about 300 different states (includ-
ing the models for pauses, filled pauses and nonverbal sounds),
we reduce the number of parameters by clustering similar states
into groups. The use of state clusters for the class labels incon-
trast to individual states also increases robustness w.r.t. phone
recognition errors.

A symmetric distanceD′(i, j) between two statesi, j for
semi-continuous HMMs can be computed from the Kullback-
Leibler distanceD(i|j) of their output densities:

D(i|j) =
X
m

ci,m · ln
ci,m

cj,m

(12)

D
′(i, j) =

1

2
D(i|j) +

1

2
D(j|i) (13)

We apply the clustering algorithm from [7], p. 143: The size
of a clusterC is defined as the maximum distance between any
two states inC:

size(C) = max
i,j∈C

D
′(i, j) (14)

Initially each cluster contains exactly one state. The pairof
clusters which when combined would form the smallest resul-
tant cluster are merged. We repeat this step until the desired
total number of clusters is reached.

In all experiments which are described below, the class la-
bel l stands not for a single HMM state but for a state clusterCl.
The probability of a specific labell is computed by averaging
the scores of all statesst which are in the same clusterCl.

5. Data
Acoustic models are trained on a part of the EVAR data set. It
consists of 7438 utterances, which have been recorded by phone
with our conversational train timetable information system. A
detailed description of this system can be found in [8]. Nearly
all utterances are in German language. The total amount of data
is ≈ 8 hours. 4999 utterances have randomly been selected for
training, the development test set contains 441 utterances. The
rest of 1998 utterances is available for testing. The speakers of
the training and the test sets are disjunct.

clusters 5 10 15 20 25 30

WER[%] 25.3 25.0 24.7 24.6 24.7 25.1

Table 1:Comparison of the error rates when the total number of
clusters is varied.w is set to0.5 during training; for decoding
w has been optimized on the development test set.

6. Baseline System
The system which has been used for the experiments is a
speaker independent continuous speech recognizer. It is based
on semi-continuous HMMs, the output densities of the HMMs
are full-covariance Gaussians. Please refer to [8] for a detailed
description of the speech recognizer. If the baseline system is
only trained on the training data set described in the next sec-
tion and no other data is used for training or initializationof the
acoustic models, it achieves a word error rate of 26.0% on the
test data.

7. Experimental Results
7.1. Training

The training of the whole system is done in three steps: Firstly
the phone recognizer which generates the class labelsl is
trained. As we do not have a phone-level annotation of the train-
ing data, we simply replace each word in the transcription byits
canonic phone representation. The phone recognizer achieves a
phone error rate of 43.9% on the test data. Secondly we run the
phone recognizer on the training data in order to compute thela-
bels and the corresponding density values which are then used
for the training of the word recognizer with the Baum-Welch
algorithm. The weighting factorw is set to0.5 for all states
during the Baum-Welch training of the word recognizer. In the
following, we will call the global weighting factor which isthe
same for all statesw, while wi stands for the state-dependent
weighting factors. The optimal choice for the value of the global
weighting factorw during decoding is determined on the devel-
opment test set;w is varied in the range of0.55–0.95 in steps of
0.05. We got slight improvements, when we additionally used
the optimized weighting factor to re-train the word recognizer
from scratch. Finally we estimate the state-dependent weighting
factorswi using the optimization procedure described in Sec. 3
on the development test set. During this phase no other param-
eters of the recognition system are changed. The step sizeρ is
set to0.1 and similar to [2] only two iterations of the gradient
ascent are performed.

7.2. Results and Discussion

In a first experiment the total number of clusters is varied. Two
separate clusters are manually assigned to all states of HMMs
for pauses and nonverbal sounds, the rest of the states is clus-
tered with the algorithm described above. As shown in Tab. 1,
the system performance is significantly better than the baseline
for 15-25 state clusters. The optimal global weight factorw is
for all numbers of clusters in the range between0.8 and0.9. We
use 20 clusters (plus two for the pauses and nonverbal sounds)
for all following experiments. We compare the word error rates
(WER) for the experiments with context-dependent output den-
sities to the baseline in Tab. 2. The WER for the phone rec-
ognizer with the global weighting factorw is slightly better
than in Tab. 1, because we used the optimized global weight
(w = 0.8 for all statesi) for the training of the word recog-



relativeexperiment WER [%]
improvement [%]

baseline 26.0 -
globalw 24.4 6.2

state-dependentwi 24.1 7.3

Table 2:Comparison of the experiments with global and state-
dependent weighting factors for the context-dependent output
densities and relative improvements over the baseline. The
number of clusters is set to 20, all recognizers are trained with
global weightsw which have been optimized on the develop-
ment test set.
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Figure 3:Phone error rates of the phone recognizer and weight-
ing factorswi for the most frequent phones in our dataset. For
a better visualization, the scaling of the vertical axis is different
for the phone error rates and the weighting factors. The phones
are sorted with respect to their weighting factor, i.e. models
of phones on the left make more use of the context information
than the models of the phones which are more on the right.

nizer. The optimal global weight on the development test set
is thenw = 0.85. The state-dependent weighting factors give
a small improvement over the global weighting factor. As the
state-dependent optimized weighting factors are in a rangebe-
tween0.77 and 0.90 the changes are probably just too small
to have significant influence on the recognition rate. The best
result corresponds to an improvement of 7% relative (1.9 per-
cent points) over the baseline. The fact that the accuracy ofa
phone recognizer is typically quite low does not seem to hurt
too much. It is possible that we have prevented this by using
scores for state clusters and not the final output of the phone
recognizer. The scores contain an interpolated representation
of all possible hypotheses and not only the single best phone
sequence.

The resulting state-dependent weighting factors could help
us to get more insight into how the states of the word recog-
nizer actually utilize the context information. Fig. 3 shows
the weighting factorswi for the most frequent phones in our
dataset, averaged over all contexts and HMM states. For each
phone also the corresponding phone error rate of the phone rec-
ognizer is given. As can be seen easily, the correlation between
phone error rate and weighting factor is quite low. For each in-
dividual phone the optimal weighting factor seems to be a result
of a combination of the phone error rate and the phone’s prop-
erties. For instance, the plosives /t/, /k/, /b/, /p/ have all lower
weighting factors than the average, i.e. models of plosivesseem
to make use of the context. However, the plosives /d/ and /g/
have larger weights as their corresponding phone error rateis
very high. Outliers in Fig. 3 may be due to limitations of the
task where some phones occur only in very few different con-

texts, the general tendency however makes sense. If the models
for nonverbal sounds (i.e. background noise, clicks and others)
would be inserted into Fig. 3 they would be placed between /j/
and /b/. Obviously context provides useful information to dis-
tinguish between verbal and nonverbal sounds.

8. Conclusion and Future Work
For most speech recognition systems, the only way to incorpo-
rate temporal context in the output distributions of the HMMs
is to use dynamic features. We have introduced a new method
to integrate context into the recognition process of a word rec-
ognizer: we simply use the state scores of a phone recognizer
which runs in parallel to the word recognizer. Our experiments
show that the proposed approach reduces the word error rate
significantly.

Future work includes further investigations into the appli-
cation of different types of sub-word units for the acousticpre-
processor. However, our approach is not limited to the use of
states or state clusters for the class labels. Therefore we plan to
evaluate if the performance of the word recognizer can be im-
proved by using (context dependent) classifiers for other types
of labels, e.g. for noisy or voiced/unvoiced speech.
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