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Abstract

Objectives: We investigate the feasibility of binary-valued 3D tomographic
reconstruction using only a small number of projections acquired over a lim-
ited range of angles.
Methods: Regularization of this strongly ill-posed problem is achieved by
(i) confining the reconstruction to binary vessel / non-vessel decisions, and
(ii) by minimizing a global functional involving a smoothness prior.
Results: Our approach successfully reconstructs volumetric vessel struc-
tures from 3 projections taken within ����� . The percentage of reconstructed
voxels differing from ground truth is below ��� .
Conclusion: We demonstrate that for particular applications – like Digital
Substraction Angiography – 3D reconstructions are possible where conven-
tional methods must fail, due to a severly limited imaging geometry. This
could play an important role for dose reduction and 3D reconstruction using
non-conventional technical setups.

MeSH–Keywords: X-Ray Tomography, Computer-Assisted Image Analysis, Im-
age Reconstruction, Computer-Generated 3D Imaging, Digital Subtraction An-
giography
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1 Introduction

1.1 Motivation

The process of reconstructing the 3D density distribution within the human body
from multiple X-ray projections is well understood [1]. Today, filtered back-
projection is the fundamental algorithm for Computerized Tomography. This al-
gorithm, however, has its limitations in that a large amount of input data is re-
quired for the reconstruction to become feasible. More specifically, a necessary
condition for its success is the rotation of the X-ray tube of at least 180 degrees
plus fan angle and the acquisition of a large number of projections [1].

There are prospective applications of 3D imaging where the technical setup
does not allow for 180 degree rotations and, therefore, filtered back-projection
cannot be applied. For instance, the reconstruction of the coronary vessels of the
moving heart using the Feldkamp algorithm requires much more data than can be
captured by C-arm systems during interventions. More generally, it is reasonable
to investigate situations where the dose rate to which patients are exposed can be
considerably reduced. Unfortunatly, violating the constraints for data acquisition
mentioned above renders 3D-reconstruction almost impossible [1].

A particular situation concerns Digital Subtraction Angiography (DSA) where
vessels are filled with a constrast agent and the background is almost homoge-
neous. As a consequence, we shift our focus from 3D-reconstruction of a con-
tinuous density functions to the 3D-reconstruction of a binary-valued functions
where each voxel indicates the presence or absence of a vessel. The natural ques-
tion then is whether the considerably reduced degrees of freedom of the function
to be reconstructed can compensate for the lack of input data when recording few
projection data only over a limited range of angles. The present paper addresses
this question.

1.2 Related Work

Our approach is based on recent research in the field of Discrete Tomography
[2] which, historically, originated from several branches of mathematics like, for
example, the combinatorial problem to determine binary matrices from its row and
column sums (see the survey [3]). Due to the fact that reconstructions are required
to be discrete-valued, the reconstruction task inevitably leads to combinatorial
optimization problems which, accordingly, require a quite different treatment than
conventional 3D tomography. Meanwhile, however, progress is not only driven by
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challenging theoretical problems [4, 5] but also by real-world applications where
discrete tomography might play an essential role (cf. [2, chapters 15–21]).

Despite the fact that 3D binary reconstructions from few projections may be
arbitrarily worse in theory [5], numerical experiments [6] based on determining
reconstructions being consistent with given projection data by linear program-
ming (LP) yielded encouraging results. Furthermore, various objective functions
were investigated in [7] in order to obtain “maximal” consistent reconstructions2,
among other things, and suboptimal solutions were computed within a greedy
framework. Our work supplements the LP approach for computing feasible re-
constructions suggested in [6] with a particular objective function proposed in [7]
and, additionally, includes a smoothness prior enforcing spatially homogeneous
reconstructions. The latter is a natural but non-trivial extension (in the present
context) and under the notion regularization well-known from many variational
approaches in image processing and computational vision (cf. , e.g., [9, 10]). In
connection with discrete-valued tomographic reconstruction, our LP-based regu-
larization approach is novel and further motivated from the viewpoint of combi-
natorial optimization by favourable approximation properties proved in [8].

Other related work in the field of Discrete Tomography include the MRF-
based approaches by [11, 12, 13] and the binary steering technique by [14] (see
also [2]). Both Matej et al. [11] and Chan et al. [12] use regularization priors
as well. On the other hand, stochastic sampling (Metropolis and Gibbs sam-
pling, respectively) is used in [11, 12] for the purpose of optimization which,
when properly applied, is notoriously slow, whereas a multiscale implementation
of a coordinate-wise sequential update technique (a special version of the ICM-
technique) is employed in [13]. In this connection, we focus on a LP framework
for which mathematically sound concepts of convex optimization are known [15]
providing the basis for future parallel implementations.

We also stress that discrete tomography should not be confused with other
reconstruction approaches like tomosynthesis, for instance. In tomosynthesis [16],
single slices can be reconstructed from a single, limited angle movement of the
X-ray source, where patient and digital detector are kept stationary. By adding
and shifting the acquired images it is possible to bring a certain slice of the 3D
structure in focus. The anatomy below and above the current slice is blurred and,
therefore, a complete 3D volume cannot be reconstructed using this method.

2See section 2.2.1 for a precise definition.
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1.3 Objectives

The objective of this paper is a feasibility study of 3D tomographic reconstruc-
tion using a small number of projections acquired over a limited range of angles.
To this end, we combine a suitable objective function with a regularizing term
within a LP approach. The study is mainly performed by comparing numerous
reconstructions obtained by systematically varying the image acquisition condi-
tions with ground-thruth. Ground-truth is defined to be the full 3D-reconstruction
of real vessel structures obtained by common techniques and many projections
over a wide range of angles.

We stress that our approach is applicable only in situations where the assump-
tion of binary-valued volumes is justified. The corresponding application we have
in view is 3D reconstruction from DSA projections. While the range of applica-
tions of our approach is clearly limited, the prospect of both exposing patients to
lower dose rates, and obtaining 3D-information under conditions where conven-
tional methods fail, motivates and justifies our work.

2 Methods

In this section, we describe the mathematical and computational methods under-
lying our approach. Subsection 2.1 concerns pre-processing: DSA data acqui-
sition, discrete representation used for volumetric structures, and determination
of locations which, based on given projection data, do surely not belong to any
volumetric data to be reconstructed in the subsequent reconstruction step.

The reconstruction of volumetric structures amounts to solve a large-scale LP
whose specific form depends on the projection data, the objective function for re-
construction, a regularization term and the relaxation of the combinatorial integer
constraint. These points are described in subsection 2.2.

2.1 Preprocessing

2.1.1 DSA - Digital Subtraction Angiography

DSA is a common technique in medical diagnostics. Two images of a vascular
system are taken from each direction, one with contrast agent and another one
without. Afterwards, both images are subtracted from each other for each image
pair so that only the distribution of the contrast agent remains. The logarithm of
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each image intensity is taken before subtracting due to the exponential absorption
function. Figure 1 illustrates this process.

� �

Figure 1: Process of DSA imaging. In principle, two images of a vascular system
are taken with (left) and without (center) contrast agent, respectively. This is
illustrated here by means of a phantom (made of knead) scanned with a C-arm
tomograph (in

� � -steps over a range of
����� � ). Subtraction of both images leads

to an image (right) that contains only information about the distribution of the
contrast agent.

2.1.2 Discretization

Consider a function �	��

�����
� � , defined by ���� ������� , and a linear ray� ������ � ��� �! #"%$ parametrized by �'& � ,  )(*$+& � � . In the continuous space
the projection value , measured along this ray is given by equation (1).-. ��� �/ 0"1$ �32 � �4, (1)

Splitting up the integral for each pixel (voxel) traversed by the ray yields a
discretization of equation (1). This is shown in Figure (2) for the 2-dimensional
case where some ray (indicated by an arrow) hits the pixels assigned to the vari-
ables 576 ( 5!8 ( 5:9 ( 5:; ( 57< . For all these pixels 5:= , dots depict entry and leaving point
of the ray, and >?= denotes the length of the corresponding intersection. In the
3-dimensional case one has to compute the entry and leaving points for “boxes”
representing voxels instead of “squares” representing pixels.

Each pixel variable takes ranges over two values only: 5@= & � � ( � ( . Its values
depend on whether a pixel contributes to the measured projection , or not. The
integral value, that is the contribution of the A -th pixel to the projection value , ,
accordingly is >?=B5!= . For pixels 5!= not hit by the ray, we set >C=D� �

. Defining
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Figure 2: Illustration of the discretization of the projection (line integral) along a
ray (indicated by the arrow) for a ����� image. Dots indicate the intersection of
the ray with image pixels 5:= . The lengths of these intersections are assigned to
corresponding variables >C= . Pixel variables may only take two values 57= & � � ( � (
depending on whether a pixel conributes to the measured projection value , or
not. Accordingly, the equation � = >?= 5!= � , represents all possible pixel values
consistent with the observed value , . The procedure for 3D projections is exactly
the same with “squares” 57= (pixels) replaced by “boxes” 57= (voxels).

� � � � >�� (	�
�
� ( > � ��� and � � � ��5
� (
�	�
� ( 5 � ��� , we can set up an equation for the
projection ray, �� =���� >�=B5!= � � � � � , ( (2)

which describes all possible pixel configurations consistent with the observed pro-
jection , .

So far, equation (2) represents a discretization for a single projection ray only.
In order to obtain a complete description of the reconstruction problem, one has to
consider many projection rays from several projection directions. The correspond-
ing measurements are collected into the vector � � � � ,�� (
�
�	� ( ,��+� � . Analogous
to (2), we obtain equations > �� 5�� , � (�� � � (	�
�
� (�� for each projection ray � .
Assembling > � = , ��� A ��� ,

��� � � � , into a matrix � leads to the following
representation of the image measurements:

� � � � (3)

As detailed above, vector , contains all observed projection measurements, and
matrix ! encodes the known geometry of the projections. The reconstruction
problem is to recover the unknown values � from equation (3).
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2.1.3 Removing Unambiguous Variables

As Figure (2) suggests, the value , � �
is measured for many projections ray

which do not hit any absorbing volumetric structure. As a consequence, all vari-
ables 5!= hit by any of these rays can be removed from the linear system (3) before
the reconstruction process starts.

Especially for vascular systems, the reduction of unknowns obtained in this
way is significant since the vessels (non-zero voxels) cover only a small fraction
of the entire volume.

2.2 Regularization and Binary Reconstruction

This section describes our approach to 3D reconstruction in terms of the unknown
variables � to be recovered from the linear system (3). We discuss the objec-
tive function for optimization as well as the relaxation of the integer constraint5!= & � � ( � ( first (subsection 2.2.1), followed by extensions in order to include
regularizing terms (subsection 2.2.2).

2.2.1 Objective Function and Problem Relaxation

It is known that the computational effort to compute a binary solution � to the
system (3) grows exponentially with the number of unknowns if more than two
projection directions are considered [5]. Therefore, the integer constraint � &
� � ( � ( � is relaxed to the convex constraints set

� � ����� & � ��� ��� 5!= � � ( A�� � (
�
�
� ( ��� (4)

and the linear system (3) is supplemented by an objective function to form a LP
for 3D reconstruction.

In the literature on discrete tomography, two LP approaches are known. The
first one (5), suggested by Fishburn, Schwander, Shepp, and Vanderbei [6], op-
timizes the dummy functional ”zero” subject to the linear projection constraints
(3). Thus, any interior point method for solving large scale LPs can be used for
computing some feasible point (FP) satisfying the projection constraints.���
	D� �
���������� � � ( subject to � � � � (5)

The second approach (6), suggested by Gritzmann, de Vries, and Wiegelmann
[7], replaces the dummy functional in (5) by the term

� � � ( � � � � � ( � (
�
�
� ( � � � (
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which measures the size of the reconstructed volume in terms of voxels A with 5 = ��
. Furthermore, the linear projection equations are changed to linear inequalities

which copes better with slight inconsistencies of (3) due to measurement errors
and discretization effects (i.e., (3) may not hold exactly for binary vectors � ). In
summary, the “best inner fit” criterion (BIF) (6) aims at computing a maximal
volume among all solutions not violating the projection constraints.

Note that problem (6) was optimized in [7] over the difficult constraint set� � ( � ( � by local optimization within a greedy framework. In contrast, we again
relax this problem by optimizing over the larger set

�
defined in (4) so as to make

global optimization (by LP) feasible which takes all constraints simultaneously
into account. Furthermore, this provides a basis for regularization (see next sec-
tion). ����� � � ������ � � � � � ( subject to � � � � (6)

2.2.2 Regularization

Both approaches (5) and (6) do not exploit spatial coherency which is not plau-
sible in connection with the reconstruction of volumetric structures. As a result,
spatially incoherent and thus less plausible solutions may be favored by the opti-
mization process.

A common remedy is to include smoothness priors into the optimization cri-
terion. However, since we deal with integer solutions, this further complicates
the combinatorial optimization problem. Furthermore, smoothness priors lead to
quadratic functionals which cannot be incorporated by LP relaxations.

Inspired by recent progress on general metric labeling problems [8], we in-
troduce auxiliary variables to represent the absolute deviation of adjacent entities,
as an approximation of standard quadratic priors. Consequently, spatial smooth-
ness can be measured by a linear combination of auxiliary variables, leading to an
extended LP approach.

Let �	� � � 
�� denote the sum over all adjacent pixel pairs (4-neighborhood) and
voxel pairs (4-neighborhood), respectively. Then (6) is extended to the regularized
best inner fit (R-BIF) approach:

��
������ �D� �
�������� � � � � "��� � � � � 
�� � 5 � � 5 
 � ( � � � � (7)
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2.2.3 Implementation Details

In order to arrive at a LP in standard form, we introduce additional slack variables� � � 
 for each pair of adjacent pixels/voxels
� ��(���� . Let the vector � collect all vari-

ables
� � � � 
 ( . Then the vector of unknowns � in (7) is supplemented by � , and the

linear constraints in both approaches are supplemented by two linear inequalities
for each variable � � � 
 : � 5 � � 5 
 � � � � � 
 � � (

� � 5 � � 5 
 � � � � � 
 � �
By virtue of these additional constraints, we can replace each term � 5 � � 5 
 � in (7)
by � � � 
 .
2.2.4 Postprocessing

The LP step results in a solution vector � & � with each component 5@= &�� � ( �
	 .
In order to obtain a binary solution we simply used a threshold � :

� 5!= 	
� � � � �
if 5!= � ��
otherwise

(8)

3 Evaluation

The first data set consists of real projection data which were taken with a C-arm
system from a phantom made of knead (Figure 1). The volume resolution is� ��� � � ��� � � ��� voxel, and

��� ��� � ��� ��� pixel for the projection images. The
corresponding

� � � 6 � � ; unknowns were typically reduced to about
� � 6 �
�
� ��� 6

variables by the procedure described in Section 2.1.3.
This was our first experiment using three-dimensional data. No 3D ground

truth was available. The positive results described in Section 4.1 encouraged us to
set up an 3D ground-truth experiment.

In order to precisely evaluate the capability for 3D-reconstruction based on a
small number of projections taken over a limited range of projection angles, we
reconstructed a real vascular volumetric structure which was scanned with a C-
arm system using a conventional method (filtered backprojection). This structure
is shown in Figure 3, left, and was considered as 3D ground-truth.

The volume resolution is
�����
�
�����
�
��� �

voxel, and
� � � � � � � pixel for each

projection. The diameters of the vessel structures range from
� � � �	�
� � � � voxel
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(see Fig. 3). The structure shown in Fig. 3 consists of 24466 voxels, whereas the
number of unknowns after preprocessing (section 2.1.3) was about 3 times this
number.

Figure 3: Left: A real 3D vessel structure reconstructed by conventional tomog-
raphy. This data set was taken as ground truth for various reconstructions, each
computed from three projection directions only within the limited range of � � � .
Right: Close-ups of the structure. The diameters at the locations marked with
crosses are 8.5 voxel (bottom) and 2.5 voxel (top), respectively.

Figure 4 shows the imaging geometry used for the evaluation. In case of the
knead phantom we used 5 projections over a range of � � � . The reconstruction
results were judged by visual inspection. This experiment confirmed that our
regularized LP approach (R-BIF) significantly improved 3D-reconstruction.

Concerning the vascular structure shown in Figure 3, we constructed projec-
tion data as follows (see Fig. 4). Over a range of � � � , only three projections only
were computed. In this way, we produced 19 different data sets by varying the
offset from

� � to
����� � in

� � � -steps. For each of these 3-projection data sets a
separate 3D-reconstruction was computed and compared with the true data set.

We used a threshold � � � � � for all experiments concerning the vessel struc-
ture. For the knead phantom, a value of � � � � ��� gave visually slightly more
pleasant results. In our future work, we will adopt probabilistic methods to deter-
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mine this value automatically.
Parameter � � ��� �

( � ���
number of neighbors) was chosen for all experi-

ments.

Offset (dashed line)

1. Projection

2. Projection

4. Projection
3. Projection5. Projection

Figure 4: Illustration of the imaging geometry with a small number of projec-
tions – five projections for the knead phantom, and three projections for the vessel
structure – and a range of projection directions limited to � � � . Different data sets
were produced by varying the offset from

� � �
�
� ����� � . While varying the offset,
the spacing of directions was kept constant.

4 Numerical Results

4.1 3D Knead Phantom

Figure 5 shows the 3D-reconstructions of the knead phantom computed with the
approaches (6) and (7), respectively. The lower panel illustrates the favourable
effect of the regularization employed in (7): in contrast to the result computed
with the approach (6), isolated and noisy voxel configurations are avoided during
the reconstruction based on (7), which results in spatially homogeneous volume
structures.

4.2 3D Blood Vessel Structure

Figure 6 shows the original 3D data set (top, left), the undetermined variables
after the preprocessing phase described in section 2.1.3 (top, right), and in the
lower panel the results computed by (6) and (7), respectively.
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Figure 5: Left column: 3D reconstruction of the phantom using the approach����� � � , (6). Right column: 3D reconstruction of the phantom using the approach��
 � ��� �D� , (7).

Note that during preprocessing phase a large number of variables (attached to
each voxel) were removed, due to the volumetric sparseness of vessel structures.
Relative to that, however, a considerable amount of ambiguous variables remains
(Fig. 6, top right). The result shown in Fig. 6, bottom left, illustrates that the com-
putation for solving (6) reconstructs the desired vessel structure immersed into a
set of isolated voxels which do not belong to the vessel structure. Additionally
invoking spatial regularization by virtue of (7) almost completely suppresses this
set during the reconstruction (Fig. 6, bottom right). Figure 7 depicts close-ups of
the three data sets for better visual inspection.

We confirmed and evaluated this result quantitatively by systematically repeat-
ing the reconstruction while varying the offset of the projection range (see Fig. 4,
and the corresponding caption). Figure 8 shows the errors of the 3D reconstruc-
tions for all 19 data sets constructed in this way, in terms of the percentage of
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voxels differing from ground truth. The evaluation revealed errors of
���

� ��� �
for reconstructions based on (6), and errors below

� �
for reconstructions based

on (7).

5 Discussion

The results depicted in Figs. 5, 6, and 6 show

1. that regularization significantly improves 3D reconstructions in terms of
spatial coherency of volumetric structures, and

2. that our approximation (7) of a standard smoothness prior as part of a LP
approach to discrete tomography works (see also section 2.2.3).

The 3D reconstruction errors obtained during our evaluation (Fig. 8, lower
panel) strongly suggest that a real volumetric vessel structure can be reconstructed
from few projections over a limited range of angles only, despite the severe ill-
posedness from the mathematical point of view. This ill-posedness is clearly
visible in terms of the variation of the reconstruction error as a function of the
absolute orientation of the angular projection range (Fig. 8, upper panel). The
more volumetric structures occlude each other, the larger the reconstruction error
is. While this dependency is visible in the lower panel of Fig. 8 as well, the error
has been reduced by a factor of about 10, thus yielding reconstructions close to
ground truth (absolute error � � � ) uniformly for all experiments.

Let us add two further comments in order to put this positive empirical results
into perspective:

� At present, we have only a computational approach and empirical results,
but no proof specifying conditions under which such accurate reconstruc-
tions are possible. Our results merely show that there exist practically rel-
evant situations where ill-posedness due to constrained imaging conditions
can be compensated by restricting the degree of freedoms of the functions to
be reconstructed (in our case: binary valued functions). On the other hand,
we are not aware of any other work showing similar empirical results.

� We deliberately excluded all sources of errors due to imaging, preprocess-
ing, discretization etc., by computing (not measuring!) the projections of
the vessel structure from 3D ground truth. This allowed us to focus directly
on the reconstruction problem and to draw the conclusions stated under the
previous item.
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6 Conclusions and Further Work

We empirically explored the 3D tomographic reconstruction problem under imag-
ing conditions where standard methods must fail. Our work paves the way for
exploring such situations under clinical conditions in the near future.

In this context, we will focus next on Digital Substraction Angiography and
noise effects due to imaging (e.g., calibration), preprocessing, and discretization.
Furthermore, we will enhance our smoothness prior by learning relevant structures
from large samples of reconstructed structures. Last but not least, we will focus
on the open theoretical issues from the viewpoint of regularization of ill-posed
problems.
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Figure 6: Top, left: Ground truth. Top right: Locations corresponding to the un-
known variables after the preprocessing phase decribed in section 2.1.3. Bottom,
left: 3D-reconstruction using ����� � � , (6). Bottom, right: 3D-reconstruction us-
ing � 
 � � � � � , (7).
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Figure 7: Top: Close-ups of the results shown in Figure 6. From left to right:
Ground truth, 3D-reconstruction using ����� � � , (6), 3D-reconstruction using � 
 �
��� �D� , (7). Bottom: The same for another volume section.
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Figure 8: Reconstruction errors in terms of the precentage of voxels differing from
ground truth for the vessel structure. Each bar indicates the error for the experi-
ment with the corresponding offset in degrees (cf. Figure 4). Top: Errors for the
3D-reconstruction using ��� � � � , (6). Bottom: Errors for the 3D-reconstruction
using ��
������ �D� , (7).
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