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Abstract

We focus on the reconstruction of binary functions from a small number of X-ray
projections. The linear–programming (LP) relaxation to this combinatorial opti-
mization problem due to Fishburn et al. is extended to objective functionals with
quadratic smoothness priors. We show that the regularized LP–relaxation provides
a good approximation and thus allows to bias the reconstruction towards solutions
with spatially coherent regions. These solutions can be computed with any interior–
point solver and a related rounding technique. Our approach provides an alternative
to computationally expensive MCMC–sampling (Markov Chain Monte Carlo) tech-
niques and other heuristic rounding schemes.
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1 Introduction

We study the reconstruction of binary functions from a limited number of
X-ray projections. The range of angles over which projection rays may vary is
limited to the interval [0, π/2]. Therefore the problem falls into the research
area of Discrete Tomography [1] which generally addresses the problem of re-
constructing functions from projection data under imaging conditions where
established approaches [2] are not applicable. It is well known that for more
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than two projection directions, the reconstruction problem of discrete tomog-
raphy is NP-hard [3]. Nevertheless, a range of potential applications motivate
to investigate polynomial–time algorithms which compute acceptable solutions
for related real–world problems.

An interesting LP–relaxation approach to the combinatorial reconstruction
problem of discrete tomography was presented in [4]. Assuming feasibility of
the original problem, solutions to the relaxed convex optimization problem
– which can be computed in polynomial time with interior–point methods
– provide useful information about invariant points, i.e. points contained in
any solution. A numerical comparison [5] of this approach with ART–like re-
construction [6] and greedy combinatorial optimization [7] yielded promising
results. Yet, depending on how severely the reconstruction problem is underde-
termined, further constraints and regularization are needed to obtain solutions
of higher quality.

A common approach to regularization is to impose priors on the space of solu-
tions. In the discrete case, this leads to a Markov Random Field (MRF) model
in terms of a Gibbs distribution by summing up clique potentials over local
pixel configurations [8,9]. In the context of discrete tomography, works follow-
ing this research direction include [10–12]. These approaches differ from each
other by the way a local minimum of the objective function is determined:
Computationally intensive MCMC–sampling schemes for computing expecta-
tions of the posterior distribution [10], filtered backprojection combined with
Bayesian restoration [11], or ICM–like local iterative updates in a hierarchical
framework [12].

Our approach aims at a direct generalization of the LP-relaxation developed
in [4] from binary linear objective functions to binary quadratic objective
functions which may include Gibbs potentials. To this end, we apply recent re-
sults on combinatorial approximation algorithms in the context of MRF–based
modeling and optimization [13]. Just as the approach [4], the resulting relaxed
optimization problem is convex and the global minimum can straightforwardly
be computed by using any interior–point solver. A related scheme for rounding
this solution to a binary reconstruction is presented. Thus our approach avoids
computationally expensive sampling methods as well as rounding techniques
[12,14] which are less understood from the algorithmic point of view (choice
of thresholds, convergence).

The paper is organized as follows. In Section 2, we formally state the recon-
struction and optimization problem, respectively, and discuss the assumptions
involved. The corresponding LP–relaxation is developed next in Section 3. Nu-
merical results are presented and discussed in Section 4. They show that the
extended LP–relaxation provides a good approximation and thus improves the
reconstruction of spatially coherent functions.
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2 Problem statement and Approach

Let f : Ω ⊂ R
2 → R, y 7→ f(y) be an unknown attenuation function. In

order to state the reconstruction problem with respect to f , we use a dis-
cretization model similar to the one in [6] (see Figure 1). The function f is
represented by its values xj ∈ {0, 1}, j = 1, 2, . . . , n, x := (x1, x2, . . . , xn)T ,
within square pixels. We define f(y) :=

∑n
j=1

xjΦj(y) = 〈x, Φ(y)〉, Φ(y) :=
(Φ1(y), Φ2(y), . . . , Φn(y))T , where Φj(y) is 1 if and only if y lies within the area
of the jth pixel and 0 elsewhere. A number of projection rays i = 1, 2, . . . ,m
intersect Ω, and the contribution Aij of each pixel j is assembled into a m×n
projection matrix A. The total attenuation along the ith ray is represented by
the ith component bi of a vector b.

Detectors

Sources

domain
Image

j’th pixel

i’th ray

A i j

Fig. 1. Discretized model for the discrete tomography reconstruction problem [6].

The imaging process illustrated in Figure 1 thus results in the linear system
of equations

Ax = b . (1)

We note that in order to study separately the extension to quadratic objective
functionals and corresponding LP-relaxations, we deliberately disregard in this
paper any “noise” of the imaging process by assuming xj ∈ {0, 1},∀j, e.g. ideal
projection rays, point sources and detectors.

Fishburn, Schwander, Shepp and Vanderbei [4] proposed the LP–relaxation:

(FSSV ) min
x∈Rn

0>x , Ax = b , 0 ≤ xj ≤ 1 , ∀j
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in order to reconstruct x by computing a feasible solution to (FSSV ).

As an alternative, the Best Inner Fit criterion for the reconstruction of x
from the projection equations (1) was suggested in [7]. Relaxing the integer
constraints xj ∈ {0, 1},∀j, this leads to the LP–relaxation:

(BIF ) max
x∈Rn

e>x , Ax ≤ b , 0 ≤ xj ≤ 1 , ∀j

where e> = (1, 1, . . . , 1).

Fig. 2. Original ellipses image (64 × 64).

Fig. 3. (FSSV ) (left) and (BIF ) (right) reconstruction from three projections
(0, 45, and 90 degree) of ellipses image (figure 2).

Figure 3 illustrates the reconstruction results based on the criteria (FSSV )
and (BIF ). For both reconstructions three projections were taken from 0, 45,
and 90 degree. (FSSV ) yields a solution that fulfills the projection constraints
but the reconstructed ellipses are not as coherent anymore as the ones we see
in the original image (figure 2). From this point of view (BIF ) achieves a much
better result but nevertheless the reconstructed ellipses are blurred. It is not
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even possible to determine the number of objects contained in the original
image.

3 Quadratic Smoothness Functional and LP–Relaxation

The reconstructions shown in the previous section for both the (FSSV ) and
(BIF ) criterion motivates to consider contextual constraints in order to favor
solutions which are spatially more coherent.

A natural way to derive corresponding terms to be added to the the objec-
tive functionals (FSSV ) and (BIF ) is to consider proper discretizations of
smoothness functionals.

‖L(f)‖2

L2
, (2)

where the operator L measures the spatial variation of the attenuation function
x. The simplest example for a suitable L is

L(f) = ∇f = (
∂

∂ y1

f,
∂

∂ y2

f)> (3)

Other possible choices include, for instance, the use of a matrix W depending
on the spatial variable y,

L(f) = W (y) · ∇f , (4)

which leads to a linear anisotropic diffusion process, or the Laplacian

L(f) = ∆f , (5)

which results in the biharmonic operator in the corresponding Euler equation.

In this paper, we confine ourselves to the simplest choice (3) which, by dis-
cretizing (2), leads to the well–known 5–point stencil for the Laplacian. At the
functional level (2), this simply corresponds to summing up the differences at
adjacent pixel positions, in our case the 4-neighborhood of a pixel:

∑

〈j,k〉

(xj − xk)
2 , (6)

where only horizontal and vertical (not diagonal) positions are considered as
nearest neighbors.

In order to derive a suitable LP–relaxation based on [13], we replace the
squared terms in (6) by their absolute values,

∑

〈j,k〉

|xj − xk| ,
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which in view of the original integer constraint xj ∈ {0, 1} is a reasonable
approximation, and propose to supplement the objective function (FSSV ) as
follows:

(FSSV 2) min
x∈Rn

0>x +
α

2

∑

〈j,k〉

|xj − xk| , Ax = b

Concerning the objective function (BIF ) we proceed analogously. In addition,
we replace the vector e in the linear term by a weight vector c indicating the
“importance” of each value xj with respect to the given data b:

cj :=
∏

i

bi

|Ω ∩ ray(i)|
,

where i runs through all projection rays to which xj possibly contributes (i.e.,
Aij 6= 0). This gives:

(BIF2) min
x∈Rn

−c>x +
α

2

∑

〈j,k〉

|xj − xk| , Ax ≤ b

Following the general approach described in [13], we introduce a vector z
with auxiliary variables z> = (. . . , z〈j,k〉, . . . ), and propose the following LP-
relaxations corresponding to (FSSV2):

(LP1) min
x,z

0>x +
α

2

∑

〈j,k〉

z〈j,k〉

Ax = b

z〈j,k〉 ≥ xj − xk

z〈j,k〉 ≥ xk − xj

0 ≤ xj ≤ 1 , ∀j

and (BIF2):

(LP2) min
x,z

−c>x +
α

2

∑

〈j,k〉

z〈j,k〉

Ax ≤ b

z〈j,k〉 ≥ xj − xk

z〈j,k〉 ≥ xk − xj

0 ≤ xj ≤ 1 , ∀j

4 Experimental Evaluation

For our evaluation two different images were used which can be seen in figure
4). The first image (64×64) shows three ellipses of different size and orientation
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Original Original

Fig. 4. Original images used for evaluation purposes. On the left side the ellipses
image (64 × 64) and on the right side a larger evaluation image (128 × 128).

while the second one (128 × 128) contains a box, a circle, and a donut. For
each evaluation we used three projections from 0, 45, and 90 degree according
to the discretization scheme illustrated in figure 1. The parameter α was set
to 1.0 throughout all experiments due to empirical reasons.

FSSV2 FSSV2

Fig. 5. The left greyvalue image gives the fractional solution output by the LP Solver
while the right image shows the binary solution obtained by thresholding (0.5).

Solving the problem with either the (BIF ), (FSSV ), (BIF2), or (FSSV 2)
method yields a fractional solution in the interval [0, 1]. In order to obtain
a binary solution we applied a threshold at 0.5 to the fractional solution.
Kleinberg and Tardos [13] give a randomized rounding technique in order to
get binary values for their uniform labeling problem. In our case, however, this
method did not achieve better results than a simple threshold. According to
the histograms shown in the figures 7, 11, and 12 this is because most of the
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xj are already either 0, 1, or close to one of them.
In Section 2 we have already seen the result of (FSSV ) and (BIF ) applied to
the ellipses image (figure 3). Compare this to the ellipses reconstructed with
(FSSV 2) (figure 5), all objects are coherent and their shape is closer to the
original.

BIF2 BIF2

Fig. 6. The left image gives the fractional solution and the right image the binary
solution (threshold 0.5).
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Fig. 7. Histograms of the fractional solutions obtained from the ellipses.

Figure 6 shows the result of the (BIF2) reconstruction. All three objects are
clearly separated and even smoother than (FSSV 2) (figure 5).

Figure 8 presents the results achieved by (FSSV ) and (BIF ) for the second,
slightly more complicated test image. Again we can observe that (FSSV )
gives an impression of the shape of the original objects but tends to scatter
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the pixels in the image domain. The result of (BIF ) is coherent again but the
shape of the objects is blurred.

FSSV BIF

Fig. 8. Reconstruction of the second evaluation image. In case of (FSSV ) and (BIF )
we show only the reconstructed binary images and not the fractional solutions be-
cause of their similarity.

FSSV2 FSSV2

Fig. 9. Reconstruction of the second evaluation image. Left side fractional solution
and right side binary solution (threshold 0.5).

The reconstruction of the second image produced by (FSSV 2) is given in
figure 9. All objects can clearly be distinguished and the shape is again very
close to the original one. Compared to (BIF2) (see figure 10), we can see that
both methods accomplished good results. Some object edges are smoother
with (FSSV 2), others are better with (BIF2).

For evaluation purposes we used the barrier optimizer that comes with the
CPLEX Solver Version 7.5 (http://www.ilog.com). The computing time for
the (FSSV ) or (BIF ) reconstruction of the ellipses image was less than a
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BIF2 BIF2

Fig. 10. Reconstruction of the second evaluation image. Left side fractional solution
and right side binary solution (threshold 0.5).
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Fig. 11. Histograms of the second evaluation image.

second. The extended versions (FSSV 2) and (BIF2) took about 15 seconds
for the ellipses and up to 50 seconds for the larger test image on a 1.2 GHz
AMD Athlon.

5 Conclusion and Further Work

In this paper we have shown that in case of coherent objects the (FSSV )
and the (BIF ) methods can be further improved by introducing additional
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Fig. 12. Histograms of the second evaluation image.

constraints taking the local context into account. This is of particular inter-
est when there are only a limited number of projections available for the re-
construction process. Comparing (BIF ) to (FSSV ) we observed that (BIF )
achieved always a more coherent solution for the problem, whereas the solution
of (FSSV ) gives a better impression of the original shape. We considered only
a 4-neighborhood for each pixel, other constellations might be applicable as
well. Further we are already working on an adaption to the three dimensional
case in which we are particularly interested in due to our medical application
background.
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