Vision, Modeling, and Visualization 2004, Aka / |OS PreserlB, Amsterdam, pages 109-116

Extending Light Fieldsusing Object Tracking Techniques

Benjamin Deutsch, Ingo Scholz*, Christoph GraRi, Heinrich Niemann

Lehrstuhl fur Mustererkennung
Universitat Erlangen-Nurnberg
Martensstr. 3, 91058 Erlangen, Germany
Email: {deut sch, schol z, graessl , ni emann}@ nf or mati k. uni - erl angen. de

Abstract these parameters can be acquired by a mechanical
arm or gantry. A more flexible and inexpensive ap-
We present two new approaches to extending exproach is the use of a hand-held camera and the
isting light fields with additional image data. In recording of continuous image sequences [7]. The
this case a light field is initially constructed from an pose parameters are then estimated using structure-
image sequence taken by a hand-held camera, afidm-motion algorithms such as factorization meth-
pose parameters of this camera obtained througbds [15, 12] and non-linear optimization [6]. This
structure-from-motion approaches. To extend suclprocess was applied for all light field computations
a light field, point correspondences are necessamhroughout this contribution.
from one image in the original sequence to the new For this kind of camera parameter reconstruction
images to estimate their relative poses. The two inpoint feature correspondences between the images
troduced approaches assist in finding the originabf the sequences have to be calculated. However,
image closest to the new image, and provide initiamany commonly used feature tracking algorithms
motion estimates. A SIFT feature based method i§14, 18] assume that camera motion between two
used to determine the closest image and an imageonsecutive images is quite low and that the search
space motion homography. The second approackange can thus be restricted considerably. The draw-
uses images rendered from the light field to estiback of this assumption is that once the recording
mate the camera pose of the image to be added usf an image sequence has been completed it is dif-
ing adaptive random search or a particle filter. ficult to track features in any new images or im-
age sequences which were taken later from a dif-
ferent view point and thus calculate the correspond-
ing camera pose parameters. For the light field this

. . _ . d simi means that once it has been reconstructed from one
The light field was first introduced in [9] and simi- image sequence, it is difficult to extend it e.g. to

larly in [3] as a means to render arbitrary views Ofcover a broader viewing range or to improve its
a previously recorded real scene without reqUiri”%uality by adding more images

a geometric model of the scene. The various differ- Therefore, in order to allow this extension of a

ent approaches to _Iight field rendering nevertheles&ght field with new images it is necessary to at least
range from purely image-based [9] to those apply-

. t least local depth inf tion f hi tfind the most similar already known image to the
:rr]r?age [%asz] ocal depth information for €ach INput,q, one . Since the disparity between those two im-

ages may be too large for robust feature tracking, it
A light field requires, besides the input im- g y g 9

X , . _is desirable to additionally supply a good estimate
ages and the already mentioned depth |nformat|onfor the new feature positions.

knowledge about the pose parameters of the record-
ing camera for each image. In many application§N

1 Introduction

In this contribution we present two methods

hich are able to determine both the closest im-
*This work was partially funded by the German Researchage and a feature position estimate. Th_e first one

Foundation (DFG) under grant SFB 603/TP B2 and C2. Only theis based on local features, namely David Lowe’s

authors are responsible for the content. . SIFT features [10], which has been proven to be a
This work was partially funded by the European Commission

5th IST Programme - Project VAMPIRE. Only the authors are re-VETy eﬁ'?'e“t technique in a quantitative compari-
sponsible for the content. son of different local descriptors [11]. The most
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similar image is found by using a majority voting each image and an associated depth map. The pro-

technique, i. e. counting the number of best matcheedure is explained in the following, along with the

ing SIFT features. Once the most similar image isequirements for extending an existing light field.

found, the SIFT features are used to estimate the

2-D homography_ by a least squares approach fozl Camera Parameter Estimation

translating the pixels from the matched image to

the new image. Using this homography, the pointAs mentioned before, the basis of many structure-

tracker is able to continue tracking on the new im-from-motion algorithms is the availability of point

age. correspondences for the different input images. In
The second method uses the rendered imagesir case, these are computed using an extension of

from the light field constructed so far as feedbackhe Tomasi-Kanade algorithm [14] by ZinRBer et al.

for a parameter search. The camera parameters (p[d-8]. Since these tracking algorithms perform well

sition and orientation) are optimized such that theon continuous image sequences but poorly in case

image rendered from them is most similar to theof high image disparity, they form the main problem

new image to be inserted. We use two optimizafor extending a light field with new images as it will

tion methods: adaptive random search [16], a robudte explained in Sect. 2.2.

global optimizer, and a particle filter [8] based ap- The camera parameter estimation is done in two

proach. These methods can perform a global searchteps. In the first, the computation is done for

or can use the image determined by the SIFT feaenly a sub-sequencg, of all imagesf,, i.e.s =

ture method above as a starting point. The resulting., . . ., 4,. A factorization method [15] is atlle to

camera parameters are then used as a starting postimate the relative camera pose paramelys

for inserting new images into the light field. . for a set of images from point features which are
The remainder of this contribution is structuredvisible in all images. For each featuge ; in image

as follows. Section 2 gives a short introduction tof , a corresponding 3-D poilﬁj is returned as well.

the methods used for camera motion estimation anth our case the method by Poelman and Kanade [12]

thus light field reconstruction in general. The re-is used which assumes a paraperspective projection

quirements for extending the light field with new model.

images are described as well. The image match- For a Euclidean reconstruction the projection of

ing algorithm and homography computation usinga 3-D point into an imagg¢, is given by

SIFT features is discussed in Sect. 3, and Sect. 4

concentrates on the probabilistic camera pose esti- ~ 4;; = Pip; = Ki(R{ | — R{t:)p; (1)

mation with particle filters. An experimental evalu- ) o

ation of the algorithms follows in Sect. 5, the article Where K contains the intrinsic parameters  for

is concluded by a summary and an outlook to futuré@merd, focal length, pixel size ratio and center of
work. projection, andR,; andt; the pose parameters [4].

Since the factorization does not yieid;, the intrin-

sic parameters are set to standard values which are
2 Light Field Reconstruction only close to reality and equal for all camera posi-

tions. The estimateP, = KS(IA%Z| — ﬁffs) and
Alight field in its basic form constitutes a collection 3 - from the factorization are now refined by mini-
of light rays emitted from the scene surface. Eachn]izing the back-projection error
input image contributes a set of light rays to this
co!lection, and a new image is ren_dered by interpo- o = Z(qs’j . 135@_)2 @)
lating between the closest known light rays for each -
pixel. In actual implementations [13, 2] this inter- !
polation is often done on triangle patches instead ofor each imagef , by optimizing in turn the camera
individual pixels. pose parameters and the 3-D points. This method of

In order to reconstruct a light field from an image computing a Euclidean reconstruction by non-linear

sequence it is thus necessary to compute the origioptimization using the Levenberg-Marquardt algo-
and direction of the light rays represented by theithm was similarly proposed by Hartley [4]. In our
pixels in each image. This is done by estimatingcase the reconstruction will be slightly skewed per-
the pose and projection properties of the camera faspectively due to the inaccurake ;.
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estimating the camera parameters of the new image.

This information of the most similar image will
be supplied by the methods described in the fol-
lowing two sections. However they also supply ad-
ditional information which is helpful for tracking
as well as calibration. The SIFT feature matching
yields a 2-D homography which describes the trans-
formation from the closest to the new image. Adap-
tive random search and particle filter of Sect. 4 re-
turn a camera pose estimation which can be used to
project known 3-D points into the new image and
thus yield an estimate for feature tracking.

Figure 1: Camera pose and 3-D point reconstruction

of the santasequence witl207 images. Cameras 3 M atching with SIFT Features

are depicted as pyramids with their bases facing in

viewing direction. Determining the most similar image to a new one
will be done in the following by a full compari-
son with all known images already in the light field.

For the second processing step this method of es=or the matching of images, we propose to use lo-

timating camera parameters by non-linear optimizaga)| features, namely the SIFT features introduced

tion was extended in [6] to cover the rest of the im-py [10], which have been shown to be very efficient

age sequence, too. For each remaining imfige in a quantitative comparison [11].

r=1,...,ia — 1,4 + 1,... N the estimates in

equation 2 are initialized with the closest known

projection matrixIADTil and the 3-D points visible

inimagef,. New 3-D points are added by triangu- The SIFT feature points are detected by applying
lation as soon as they are visible in enough knowr scale selection mechanism based on differences
images. The result of the reconstruction of$a@ta o Gaussian smoothed images. The scale-space is
sequence introduced in Sect. 5 is shown in Fig. 1. pyiit by convolving with a Gauss filter and down-

In addition to the now known camera parameterssampling after each octave, so that a pyramid-like
alight field requires some depth knowledge for eaclyjata structure is obtained. The difference of the
image, especially for sparse input data in case of gauss filtered images is computed by the difference
hand-held camera. A simple and fast way to comof neighboring scales. After that, feature points are
pute these depth maps is to use the depth values gktected by searching for maxima with respect to
the reconstructed 3-D points and interpolate the rege eight bordering pixels. In a second step, all the
maining pixels as a distance weighted sum of thyoints which represent a maximum in scale-space

3.1 Acquisition of SIFT Features

three closest known 3-D points. are selected, by comparing the closest pixel at the
next higher and next lower scale. In a third step,
2.2 Extending the Light Field pixels which lie on edges are also ruled out, because

such points are poorly determined.

Extending an existing light field with the above In the next step, a significant SIFT feature vec-
method, i.e. adding new images or whole seior c is calculated for every SIFT feature point.
guences, poses one major difficulty: where to starTherefore, the orientation of a region of size 16x16
feature tracking. It is difficult to assure, and shallaround the SIFT feature point has to be adjusted to
not be required, that the new image is similar toachieve invariance from rotation. In the scaled im-
the last in the original image sequence. Howeverage, the magnitude and orientation is calculated as
we will assume that the new image is taken within,presented in [10] and used to create an orientation
or close to, the convex hull of the camera positionshistogram. 36 bins were used for this and each pixel
of the original sequence. Therefore, the task is tas weighted by its magnitude and by a Gaussian ker-
find the closest known image so that feature tracknel. The region which is used for calculating vector
ing may generate enough point correspondences faris rotated to the maximum of the orientation his-
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togram. The SIFT feature vector itself is formed by
using the orientation histograms. Therefore, the ori-
ented region is divided into 4x4 subregions, and for
every subregion an orientation histogram consisting
of eight bins is calculated. Thus the feature vector
has 128 elements altogether. For further details we
refer to [10].

3.2 ImageMatching

In our work, we want to estimate which of the im-
ages of the first sequence is most similar to the first
image f (test image) of the second sequence. For
our purpose, a technique based on majority voting,
which is described below, is well suited.

Imagef, Imagef

Figure 2: lllustration of the translation of the

~ For every imagef;,i = 1,2,...,N in the tracked feature points (marked as circles) using the
first sequence, a set of SIFT featur€s, =  nhomography matridd
{ct,c?,...,¢c} is calculated. The valudy; de-

pends on the number of SIFT features which were
detected by the SIFT feature point detector in imag@nly a small movement. To deal with these geomet-

f,. Similarly, we compute” = {¢',¢?,...,¢e" ric transformations of the pixels of, to f, we use
for the test imagef. For counting the votes we use the SIFT features to estimate a homography [5] to
an accumulator retrieve a close position of the tracked feature points

B inimagef as an initial guess. For this purpose, we
N . calculate a set of the coordinates of thg; best
an = Z 6(n — argmin min d(ci,€")) (3) matching SIFT features in imagg, and f
k=1 v
M = {(mlvwll)v (va 3’5/2), ceey (mNB ) m?\fB)}

where/ is the Kronecker delta function,, is the
accumulator entry for imag¢,, andd(-,-) is the Wwherex = (z,y, 1)T. We assume that the transfor-
Euclidian distance of two SIFT features. The indexmation ofz; to z; is a perspective transformation
b of the best matching image can be retrieved from
the accumulator by M3z = HM, ®)

where matrixH € IR®**3 is a homography matrix

b = argmax a,. 4) and

n

Thus f, is the image with the most matching SIFT M, = (z1,22,...,ZNp)
features with the SIFT features ¢t M, = (z),z5,...,2,).

. . As Ngp > 3, we use a least square estima-
3.3 Homography Estimation tion, namely the pseudo-inverse [17], to solve this
pverdetermined linear equation system of Equ. (5).

tracker of [14] to solve the correspondence problem. 10 estimate the positions of the tracked feature
Those tracking feature points differ from the SIFTPOINtS inf, we useH to map the 2-D positions of
feature points as their matching can be done in reaf"€ tracked feature points froify, to f as illustrated
time [18] and scale space stability is not needed” F19- 2.

But if one would try to match the tracking feature

points of f, with the corresponding feature points 4 Rendering feedback

of f using the feature point tracker directly, a great

number of tracking feature points could be lost inSo far, the camera parameter estimation has only
case of large rotation, scale change or translationsed the original camera images, which the light
of the image, since a feature point tracker assumefield is based upon, for image matching. One of the

For the 3-D reconstruction, we use the feature poin
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purposes of light fields, however, is to render photoPF algorithm uses a probabilistic framework.

realisticimages of the acquired scene from arbitrary The rated hypothesis set represents the probabil-

view points. ity density function (pdf) of the camera position,
For any camera parametersthe light field can p(v:|f), given the target image. Such rated hy-

be used to generate the imafjg corresponding to Potheses are also callgdrticles With Bayes’ for-

those parametersy contains the extrinsic camera mula, we get

parameters, i.e. position and orientation of a cam- ~ 1

era. We can use this generated image to search for p(ve|f) = =p(flve)p(ve) (6)

the camera parametets of the new imagef by ¢

searching for the such thatf , is closesto f. We  with ¢ a normalizing constant. Thus, we seek infor-

call this approach aendering feedbaclapproach, mation about the camera parametergorrespond-

since we use images from the light field itself foring to the new imagef. As with the ARS, the ini-

the purpose of extending it. tial a priori densityp(vo ), represented by, can be
Using a distance metric to compare images, thaniformly distributed over the search space or clus-

parameter search becomes a global minimizatiotered around an initial estimats.

problem. For this work, we used a sum-of-squared- The a priori densityp(v:) is derived from the

differences (SSD) distance metric. SSD is very efprevious a posteriori densipy(v: 1| f) through

ficient and can be used with multi-channel (color)

images. SSD's main drawback is its lighting de- ,(y,) = /p(vt|vt71)p(vt71|j_”) dvi_1 . (7)

pendence, however to extend a light field the new

images must necessarily be recorded with the samg . .| narticle filter usage, this models the noisy

lighting conditions. state transition over time. Since the state is not ex-

Several optimization algorithms can be appliedyecteq to change, this is merely a diffusing process,
to this problem. We have adopted two (related),q with the ARS.

approaches: one using adaptive_ random search The Jikelihood p(F|v:) is derived from the im-
(ARS) [16], and one using a particle filter (PF), 5ge comparison by constructing a Gibbs distribu-
specifically the Condensation algorithm [8]. tion [1]:

Both approaches maintain a current 3ét of
camera parametérypotheses; ;,i = 1,..., |V, p(Flve) = 1 exp (—AE(Flvr)) 8)
wheret is an iteration index anV;| the fixed size z
of the set. Each hypothesis,; also has a scalarrat- yith » a normalizing constant. For each hypothe-
ing v,;, derived from the image comparison. Thegjs y, ; the rating isvi; = p(f|ves). The term
initial set V, can _be derived from the camera Pa-F(f|v:) is an error energy, comparing the target
rameters of the first sequence for a global searcrpmage with the image corresponding to the hypoth-
or clustered around an initial estimate. Both ap-egjsqy,. The better the hypothesis image matches
proaches iterate over this set several times to fingyg target, the lower the energy should be. Our
tune it, by generating new hypotheses.1,; and  jmage comparison metric, the SSD over the image
ratingsv¢.1,; from the current ones. The methods space, has such a property, and is used unchanged
differ in how the new hypothesis set is generated. o, E(f|v:). However, this may result in very sim-

For the ARS, the rating is unchanged from theilar energies for all compared images, which erodes
SSD distance measur®.1 is generated fronV;  the particle filter's effectiveness. Multiplying the
by discarding the worse rated half of all ;, and re-  SSD by a scalar valud > 1 requires a hypothe-
placing them with diffused copies of the better ratedsis to be much closer for a good rating.
half. The diffusion is an additive Gaussian noise, Using this likelihood definition as a hypothesis
the standard deviation of which is derived from therating, the PF solves the combination of equations
spread of the original camera parameters. This stafig) through (8) using Monte Carlo integration. A
dard deviation is reduced on each iteration to denew setV,,, is derived fromV; by sampling from
crease the search area. the latter, using the ratings as a sampling probabil-

The PF has been used in conjunction with lightity, and then re-ratind; 1. This new set represents
fields for a model-based object tracking implemen+the pdf whose main mode is the hypothesigith
tation [19]. Unlike the adaptive random search, thethe lowest image discrepancy frofn
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office santa candy images was removed from the sequence and then

feat. dist (noH) 57.8 52.0 121.0 given to the search algorithm to perform a search for
feat. dist ) 5.85 25.7 6.27 the nearest image. This was done for 10 images for
% tracked (naH) 38.7% 64.4% 35.3% each of the three scenes. The SIFT feature method

% tracked H) 67.2% 70.1% 68.6% found an image neighboring the missing image in

the sequence in 100% of the experiments.

Table 1: Tracking accuracy of SIFT features in pix-  The second set of experiments dealt with attach-
els and percentage of features tracked without (nmg a second sequence to the original sequence.
H) and with () using homography matrix for pre- Again, 10 images were used, this time the first 10

diction from the second sequence. The SIFT feature neigh-
office santa candy bor (f]letectt;}onf_thfn calculated the |tntdetxhoft the |tm-
ARSTola  0.800°  10.391° 1.035° age from the first sequence nearest to the target im-
o o o age. The homographif was then determined as
ARSrot.3  0.634 4.854 0.556 in Sect. 3.3. The reconstruction of th mer.
ARS Oty 0.595° 9.991° 0.699° ect. 3.3. The reconstruction of the camera poses

of the first sequence was then extended by the target
PFroto as LTI Do 70, the nearest o mage s used o
PFrot.3  1.600° 7.626°  6.281° g poin g _

PF rot.y 0.986°  10.082° 5.984° The extension was evaluated by measuring the
PF trans. 299.2%  712.4%  1287.7% average feature distance from the expected posi-
tion, and the fraction of successfully matched track-

Table 2: Correctness of estimation of closest imagéd features with and without the homography. Ta-

for adaptive random search and particle filter ble 1 shows the results. It is obvious that using the
homography matrix improves the number of fea-

tures tracked and the feature distance, in some cases

~ There are two caveats with this method. Ifthe op-gramatically. The homography allows the feature
timization starts from a single initial state estimate,gearch to start much closer to the actual location.

the standard deviation of the particle diffusion must For thesantascene. on a Pentium IV 2.4 GHz
be chosen large enough so that the particles sear rFocessor a typical néighbor detection tobk about
beyond any local minima. Secondly, the results ma ! .

by biased due to the rendering of light field images%{L20 seconds. Calculating the homogragiytook

Due to the renderin . %n additional 4 seconds.
g methods, an image rendere A
from a light field will usually display moderate to | To test the renc_ierlng feedback,_ tV_VO sets of exper-
strong local distortion. This naturally causes theMeNts were again performed, similar to the SIFT
minimum to diverge slightly from the true Camerafeature tests. The flr_st §et again deals_ with finding
parameters of . the parameters of missing images, using the same
setup as above for a global search. The result of the
search, i. e. the proposed camera parameters of the
5 Experiments removed image, were then compared to the original,
ground-truth camera parameters from the image se-
The methods introduced before were tested on threguence including the missing image, calibrated as
different image sequences from a hand-held camin Sect. 2.1. This was done for 10 images for each
era, office (109 images),santa (207 images) and scene for both optimization methods. Both methods
candy (113 images). For each of these scenes, aised the same number of particles and iterations.
second sequence was recorded starting at an arbi- Taple 2 shows the average rotational and trans-
trary camera position within, or close to, the conveXational error. The rotational error is given as car-
hull of the camera positions of the first sequence. dan angles in absolute degrees. Since the light
Two sets of experiments were performed to testields use arbitrary coordinate units, the transla-
the SIFT feature image matchihgror the first set, tional error for removed imagg¢, is calculated as
only the first image sequence was used. One of th|s§ —t;]/|tir1 — ti|, wheret is the found translation
I - , andt; the calibrated translation of imagg. Thus,
For detection and calculation of the SIFT features the soft-the translational error is given as a percentage of the
ware of D. Lowe was used, which can be downloaded at
http://www.cs.ubc.ca/ Towe/keypoints/. average camera distance around the removed image.

ARS trans. 105.9% 799.9%  152.2%
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scene office santa candy
algorithm ARS PF ARS PF ARS PF
feature dist (all)  14.0 48.9 22.5 23.4 35.9 57.8
feature dist (init)  13.3 15.1 35.2 32.0 28.1 64.2
% tracked (all) 68.8% 68.1% 62.6% 62.3% 63.4% 54.8%
% tracked (init) 69.0% 68.7% 61.6% 60.9% 64.9% 55.9%

Table 3: Tracking accuracy of adaptive random search anttledilter in pixels and percentage of features
tracked for a full search (all) or initialized with the clatémage (init)

As can be seen, the ARS method outperforms thevith (c) the additional images, demonstrating the
PF approach in two out of three sequences. Thacreased viewing range of the extended light field
translational distances are generally within a fewas well as a reduction in distortions.
neighboring images, and the rotational ones within
a few degrees. Though this error is larger than if .
the closest image as per the SIFT method had bedd Conclusion
used, the results are quite usable for a global search,
especially since the rendered images are highly dale have presented two enhancing methods for solv-
pendant on accurate depth maps, which were ndbg the problem of accurately adding image data to
always available. The number of particles in the2 light field from an image sequence taken with a
santascene, equaling the number of camera imagegand-held camera. The first method based on SIFT
is larger than in the other scenes. Since both mettfeatures significantly improves the point tracking
ods use the same image comparison, it is expectdfPm the original image sequence to the additional
that with more iterations or particles, the PF methodMages. The second method obtains an estimate for
will match the ARS. However, for a limited number the camera pose of a new image by using images
of iterations, the ARS converges faster. rendered from the light field as state hypotheses in

For thesantascene, on a Pentium IV 2.66 GHz & Parameter search. _
processor, 20 iterations at 207 particles take about 1he €xperiments have shown that using one or
20 minutes for ARS, and 35 minutes for PF, mostlybOth methods successively reliably solves the prob-
due to the time-intensive rendering of the images. lem of extending a Ii_ght field. Nevertheless, both

The second set of feedback experiments agaiﬁ“athOds may yet pe 'mpro"ed’ the SIFT feature ap-
dealt with attaching a second sequence. Initializing,)ro"j‘(.:h €9 by_takmg Into account clustgrs o.f votes
of the search was tested both from all first sequencé‘ nelghborlng Images, and the_ pose es'Flmatlon_Wlll
camera parameters, and from the closest camera gneﬂt from any improvement in rendering quality.
per the SIFT neighbor search. The resulting pro-
posed_ camera parameters were thgn passed to thfeferences
light field extension process by using the projec-
tions of every known 3-D point as an estimate for 1] A Blake and A. Yuille, editorsActive Vision

the feature positions similar to the homograpty MIT Press, Cambridge, Massachusetts, Lon-
The results are listed in table 3. The slower con- don, England, 1992.
vergence of PF in thefficeandcandyscenes isre-  [2] C. Buehler, M. Bosse, L. McMillan, S. J.
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shows the reconstruction already seen in Fig. 1 but ~ SIGGRAPH '96 pages 43-54, New Orleans,
augmented by the camera positions of the additional ~ August 1996. ACM Press.

sequence. Images (b) and (c) show two images ren{4] R. Hartley. Euclidean reconstruction from un-
dered from the resulting light field without (b) and calibrated views. InApplications of Invari-
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Figure 3: Extended reconstruction of tkantaimage sequence (a) and rendered images without (b) and
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