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Control of a Hydroforming Press with Bayesian Networks
Rainer Deventer, Heinrich Niemann1 and Martino Celeghini 2

Abstract. The demands to automatic control for industrial plants
are growing due to an increased complexity of the manufacturing
processes. To face these challenges, intelligent control is getting
more and more important. For example, neural networks and fuzzy
logic are regularly used. The usage of Bayesian networks is sel-
dom mentioned even if many training algorithms are available and
Bayesian networks are also able to act under real-time conditions.
That means that main preconditions for a self-adaptive controller are
given. This paper explains how a Bayesian network is employed as a
controller. The main idea is to use the desired value as if it were al-
ready observed and to use marginalization for the calculation of the
input. This principle is successfully applied to the control of a hydro-
forming press. As a result the process characteristics in terms of an
uniform blank draw-in and the preforming pressure are improved.

1 INTRODUCTION

The current manufacturing technology has to face differentchal-
lenges. The time to market is getting shorter and the production pro-
cesses are getting more complex then ever. This developmentresults
in the need for self-adaptive and intelligent controllers.Many algo-
rithms which are used mainly in the AI-community are appliedin au-
tomatic control. Well-known examples are neural networks and fuzzy
logic. Applications of Bayesian networks are seldom mentioned even
if they offer attractive prerequisites and are used in many other do-
mains, sometimes under real-time conditions [13, 12]. Examples are
the application of Bayesian networks as spam-filter [11] andin med-
ical expert systems [1]. In this paper the distribution of forces in a
hydroforming press is modeled by a Bayesian network. The accu-
racy of the model is evaluated by cross-validation. As Bayesian net-
works define a unique distribution over random variables, there is no
difference between input and output variables. Thus the desired val-
ues can be entered as evidence for the nodes representing theoutput.
Afterwards the required input is calculated by marginalization. This
approach only works with a perfect model. In reality there are a lot of
external influences and it is tedious to include them all in the model.
For example imagine that the room temperature of an office should
be controlled. Beside the heating the temperature is influenced by the
staff opening a window or a door. The external factors which affects
the intended control are calleddisturbance values. To be prepared for
changes in the environment it is necessary to model also the influence
of the disturbance values [5].

Usually the disturbance value cannot be observed, but in thecase
discussed in this paper it is calculated as difference of theformer
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output and the desired value. As a result of Bayesian controlmain
process parameters of hydroforming are improved. Particularly the
preforming pressure is increased and a uniform draw-in of the blank
into the mould is achieved. Both characteristics improve the behavior
in subsequent processing steps.

The paper will start with a short introduction to the application, so
the reader, who is not familiar with hydroforming, will be able to un-
derstand the remaining parts. Afterwards the most important points
about Bayesian networks are listed. The section about Bayesian net-
works is restricted to networks with continuous nodes, as the flow of
forces can accurately be modeled by linear relationships. Bayesian
networks that use solely continuous nodes are also called Gaussian
networks. For more complex models hybrid Bayesian models [4, 14]
are applicable. At the beginning of section 4 different Bayesian mod-
els are compared by cross-validation. The model which makesac-
ceptable predictions for the input variables is used for control pur-
poses. The results of the experiments, discussed in section5.1, are
evaluated in section 5.2 by comparison to the status quo. Thearticle
finishes with a summary and suggestions for future research.

2 HYDROFORMING

New forming technologies have been developed in the last decades
in order to satisfy the increasing demand for lighter and more com-
plex parts, especially in the automotive industry. The hydroforming
of unwelded sheet metal pairs enables the production of complex
hollow parts with high geometric accuracy and improved mechani-
cal properties in a reduced number of process steps [10]. Theresults
of the forming process are mainly influenced by the internal pressure
Phf between the blanks and by the blank holder force of the press
required to provide tightness [9]. For complex geometries the distri-
bution of the clamping force in the flange area is determinantfor the
hydroforming process [8]: high local pressure has to be applied to
areas where a retain effect on the blank is needed and low contact
pressure is desired where more draw-in of the blank into the die is
required. For axially symmetric parts however the materialflow is
even more sensitive to the distribution of the contact pressure in the
blank holder. In case of an asymmetrical distribution of theforces, an
inhomogeneous draw-in of the blank occurs and premature failure by
tearing is observed. Therefore a good forming result for symmetrical
parts can be only achieved if the real contact pressure distribution
is almost uniform. This can be obtained by controlling the distri-
bution of the contact pressure in the blank holder. For this purpose
many technical solutions have been developed allowing the process
designer to influence the pressure distribution in the blankholder
during the hydroforming process. In the modern hydraulic presses
four up to six pistons are usually already placed inside the press ram
and can be used to get the desired contact pressure distribution, if



connected to the tool’s blank holder by pillars and plates (e. g., for
the tool in figure 1). Using this solution the pistons do not have to
be integrated in the forming tool, which means a simpler design, but
it is not simple to predict the effects of the ram pistons on the con-
tact pressure distribution in the tool flange. This information can be
supplied by a specific measurement set-up which is integrated in the
tool [2]. Four load cells are positioned below the lower blank holder,
equally spaced in the tool flange (figure 2) in order to determine the
force flow in the forming tool. By this way the force flow of the con-
sidered press-tool system can be described by four input variables
(forces of the ram pistonsFfl, Frl, Frr, Ffr) and four output variables
(forces of the load cellsFl, Fre, Fri, Ff ). In order to model the force
flow of the tool used in the forming trials two different training sets
have been used. In the first training set equal forces at the cylinders
are used. This training set is close to the usual process parameters.
Due to the reduced drawing depth in the lower tool half, the contact
between the sheet and the tool bottom occurs at very low pressure
values. By this way the force resultant from the inner pressure on the
lower sheets is directly transmitted to the tool cavity and does not
influence the load cells under the blank holder. Consequently, by in-
creasing the inner pressurePhf the force resultant from the pressure
on the upper sheet acts against the blank holder force and thus the
measured force decreases.

For the second data set different forces are used at the cylinders.
These process parameters are necessary to model the flow of the
forces. But this time leakages occur at an early state of the process,
thus the data are not suitable to model the influence of the pres-
sure. This means that both data sets are necessary for training of the
Bayesian model.

Figure 1. Hydroforming press (side view)

3 BAYESIAN NETWORKS

In the last section, the hydroforming press together with the mea-
sured signals are shortly introduced. The aim is to develop astochas-
tic model of the relationship between the cylinder forcesFrl, · · · , Ffl

and the forces at the load cellsFre, · · · , Fl. After training the model
is used to calculate suitable inputs to obtain equal forces at all load
cells. One possibility to model the press is a Bayesian model. A sim-
ple example is given in figure 3. Here each sensor output is modeled
by a random variable represented by a node in the directed acyclic
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Figure 2. Measurement points (top view)

graph. A (conditional) probability distributionp, which depends also
on the parent nodes, is associated to each node. E.g., the distribution
p(Ff |Ffl, Ffr, Phf) is associated to the first node in the second layer.

Generally the distribution in a Bayesian network is calculated by
thechain rule

p(y1, y2, · · · , yn) = P (y1) ·

n∏
i=2

p(yi|p(i)), (1)

whereyi denotes the instantiation of the random variableYi and
p(yi|p(i)) denotes the instantiations of the parentsp(i) of the ran-
dom variableYi. At the beginning of the development of Bayesian
networks all random variables are assumed to be discrete [15], but
currently also hybrid Bayesian networks [14], where discrete and
continuous random variable are used at the same time, are employed.
A normal distribution

p(y|z) = N (α + �Tz, γ) (2)

which depends on three parametersα,�, andγ is associated to each
continuous node. The mean of the normal distribution depends on
a parameterα, and a weight vector� which is multiplied by the
instantiationz of the parents ofY . The (co)variance is denoted byγ.

During the training process the parametersα,�, andγ are adapted
by the EM algorithm [3] so that there is a maximal probabilityfor the
data given the parameters.

After the training an inference algorithm (usually the junction tree
algorithm [14]) can be used to calculate the distributionp(y|o) given
the observationso. This operation is calledintroduction of evidence.
For example, the calculation of the input forces is done withthe
model depicted in figure 4. Here the desired outputsw and the dis-
turbing valuez are assumed to be known.

The second operation which is of importance is themarginaliza-
tion. In many cases there are hidden nodes which cannot be observed
or are not of any interest. For example, the second layer in figure 4
models the ideal output and is assumed to be unobservable. Inthis
case the marginal distribution is calculated by integration

p(y1, · · · , yi−1, yi+1, · · · , yn) =

∫
∞

−∞

p(y1, · · · , yn)dyi (3)



over all possible instantiations. If discrete random variables are used
summation is used instead of integration. Using marginalization and
the introduction of evidence the model depicted in figure 4 can be
used to calculate the distribution of the forces at the cylinders given
the desired valuesw and the disturbancez. Thus it is possible to
calculate the input to obtain a desired output which is exactly the
task of a controller. It is also possible to model dynamic systems with
dynamic Bayesian networks. This is done with a similar approach,
but this time the disturbance is estimated as difference between the
predicted and observed model output [5].

4 MODELING AND CONTROL

4.1 Model selection

The first point in the development of a model based controlleris
usually the development of the structure. When modeling thehy-
droforming press the first consideration is that all cylinders are con-
trolled individually. Thus the four input variables are modeled as in-
dependent. Figure 1 shows that each of the cylinders might have an
influence on the forces of the load cells. First tests were made with
a fully connected model. That is the dashed edges in figure 3 are
included. The training of the model is done with the EM-algorithm
[16]. The weights of the nodes representing the forces at theload-
cellsFre, Fri, Ff , Fl are initialized with[−0.05 0.25 0.25 0.25 0.25].
That is, it is assumed that the pressure has a negative effecton the
forces at the load cells and that all cylinder forces have an equal
influence on the forces of the load cells. The other parameters are
initialized randomly.

After training the weights of the models were analyzed. The
adapted weights of all output nodes showed a similar pattern.
The influence of the input nodesFfl, · · · , Frr to the two neigh-
boring output nodes is large in comparison to the weights to the
two nodes further away. Usually two weights are between 0.4 and
0.6, the other two weights are between 0.05 and 0. For exam-
ple the weights from the nodesPhf , Ffl, Frl, Frr, Ffr to Fre are
[−0.3488 0.0634 0.5348 0.4251 − 0.0056]. The first weight in this
vector represents the influence of the pressure, i.e. an increased pres-
sure leads to decreased forces. The sum of all weights is close to 1,
that is there is no additional source of forces. As two weights are
much smaller than the other ones, it was decided to work with apar-
tially connected model, the dashed edges in figure 3 are omitted.

The next question to be answered concerns the offsetα of the out-
put nodes. An argumentation from the physical point of view leads to
the conclusion that the forces at the load cells are zero if there are no
forces at the cylinders. In contrary to this consideration apossibility
to train the offset is an additional degree of freedom and might lead
to better training results. To test the accuracy of the modelthe data
set is split arbitrarily into a training set which contains 90% of the
data and a disjoint validation set containing 10% of the data. After
training of the model, the pressurePhf , and the four cylinder forces
Ffl, · · · , Frr are entered as evidence and predictions are calculated
for the four forces at the load cellsFf , · · · , Fri. For each variable the
relative error

er =
abs(yp − y)

y
100% (4)

is calculated. That is the relative error is proportional tothe difference
between the predictionyp and the actual valuey. Similarly the rela-
tive error for the prediction of the cylinder forcesFfl, · · · , Frr (The
forces at the load cellsFf , · · · , Fri and the pressurePhf are entered as
evidence) and the pressurePhf (all forces are entered as evidence) are

Ffl Frl Frr Ffr

Ff Fl Fre Fri

Pihu

all Models fully connected Models

Figure 3. Models to be compared. Solid edges are element of all models,
dashed edges are omitted in partially connected model.

calculated. This procedure is repeated 10 times with different train-
ing and validation sets. The relative errors together with the standard
deviations are summarized in tables 1 and 2. The first number is the
relative error, the second number states the standard deviation of the
error.

Table 1. Relative error in percent for the prediction of input variables

Ffl Frl Frr Frr

α tr. 9.32±16.99 10.34±16.08 11.1±20.91 14.93±21.02
α = 0 16.17±18.44 17.78±17.37 21.48±20.27 9.55±9.62

α tr. = Offset of output-nodes trained

Table 2. Relative error in percent for the prediction of output variables

Ff Fl Fre Fri

α tr. 6.34± 7.39 11.17± 17.99 9.64±9.02 10.07± 26.89
α = 0 6.25±7.25 39.94± 51.69 35.61±111.98 34.70± 57.75

α tr. = Offset of output-nodes trained

A comparison between the model with a fixed offsetα of the
output-node with the model with a trained offset shows that it makes
no sense to fix the mean of the output node. The simple explanation
is that the mean of the output-nodes is an additional parameter to
be adapted, so the regression with this additional parameter is more
successful.

The prediction of the pressure results in a very large relative error
(approximately 3300% with a standard deviation between 6900 and
8700%). The reason is that there are a lot of examples with a pres-
sure close to zero (e.g. all the examples with different input forces).
Thus even a small error might result in a great relative error. That
is the relative error is no sensible mean to judge the accuracy of the
prediction for the pressurePhf .

The model shows that an increasing pressure leads to decreasing
forces at the load cells. This effect can not be neglected. After train-
ing the weights between the pressurePhf and the forcesFf , · · · , Fri

take on values between -0.25 and -0.45. As the pressure increases up
to 200 bar, a high pressure leads to force differences at the load cells
of up to 90 kN for each load cell. As the pressure depends on thevol-
ume of the hydroforming fluid pressed between the blanks it cannot
be regarded as a parameter which can be controlled directly,but as
a disturbance value. That is the cylinder force must be increased in



order to compensate an increasing pressure. The disturbance is cal-
culated as difference between the desired and the observed output.
Thus the high relative error for the prediction of the hydroforming
pressure does not matter. It is part of the observed disturbance value.

The discussion leads to the conclusion that a partially connected
model is used as base for the controller. The means of the output
nodes are trained to increase the accuracy. As the model evaluation
is based on a not observed validation set, the model is also able to
make predictions for yet unobserved examples. So it can be used for
control purposes.

The next section shows how the model is extended to use it as a
controller for the hydroforming press introduced in section 2.

4.2 Control

In section 4.1 it is shown that a prediction of the forces at the cylin-
ders given the desired forces at the load cells is possible. To model
the hydroforming press, a partially connected net is applied. But a
controller must not only be able to calculate suitable inputs under
ideal conditions. It must react to disturbances or a changedenviron-
ment. In control theory controllers are frequently triggered by errors,
for example the deviation of the desired output from the required.
The control model in figure 4 is therefore supplemented with addi-
tional nodes for the disturbance. According to control theory [17] it is
possible (for linear systems only) to sum all disturbance variablesz′

to one variablez which is added to the output. For the hydroforming
press this results in

w = F + z, (5)

wherez denotes the disturbance andw the observed output at arbi-
trary positions. This consideration results in the third and fourth layer
of figure 4. According to equation (5) the edgesF → w andz → w

Ffl Frl Frr Ffr

Ff Fl Fre Fri

zf
zl zre zri

wf
wl wre wri

Figure 4. Bayesian controller for the hydroforming press

between the estimated output-force respectively the disturbance and
the measured output force both have weight 1. The disturbance is
calculated as difference between the measured force and thedesired
value. Thus both the desired valuesw andz are regarded as observed,
they are marked by shaded nodes in figure 4. The node representing
the pressure is no longer needed, as the influence of the pressurePhf

is included in the disturbance. An increased pressure leadsto a neg-
ative disturbance. To keep the output close to the desired value the
forces at the cylinders are increased.

The control cycle works as follows: After the observations are en-
tered as evidence, the required input is calculated by marginalization
and sent via an DA-converter to the cylinders of the hydroforming
press. After the new inputs are calculated, the output is measured
once again, so that the next control cycle takes place. In thenext sec-
tion 5.1 the experiments executed with the hydroforming press are
explained and at the end in section 5.2 the results are discussed.

5 Experiments

5.1 Experimental setup

The forming trials were performed using an axially symmetric cup
tool for double sheet hydroforming with inner diameter of 150 mm,
with a drawing depth equal to 50 mm. The blank diameter was 250
mm and the material used was the mild steel FeP04 with a thickness
of 1.5 mm. The total blank holder force was set to 700 kN, which
is an optimal value for the considered part. The experimentswere
performed alternatively with and without blank holder force control,
in order to clearly show the effects on the forming results. Further-
more the blanks were placed not in the middle of the tool, but dis-
placed with respectively 5 mm and 10 mm offset from the tool center.
This offset induces an asymmetrical distribution of the contact pres-
sure in the blank holder, which results in an asymmetrical draw-in of
the blank. The forming trials were stopped at the maximum pressure
Pmax

hf achievable at the given blank holder force, when leakages of
hydroforming fluid occur. In order to compare the forming results
with and without control of the blank holder force, both tightness
limit and blank draw-in were measured for the formed parts. The
higher the tightness limit pressure and the more homogeneous the
blank draw-in, the better is the forming of the part. The results are
discussed in the next section.

5.2 Results

To test the control described in section 4.2 the blank on the top
was inserted with a displacement of 5 and 10 mm. To evaluate the
Bayesian controller the results are compared with the status quo at
the chair of manufacturing technology, i.e. equal forces are used for
all four cylinders. The results are listed in table 3. The first row shows
that the maximal forces∆Fmax are halved. The same is valid when
the mean values of the maximal forces during the complete produc-
tion ∆Fmax are compared. Also in that case the maximal difference
between the forces is halved, both for the displacement of 5 and 10
mm. The equal distribution of the forces has a positive influence on

Table 3. Results of control

5 mm displacement 10 mm displacement
NC BNC NC BNC

∆Fmax [kN] 41.5 26.0 45.8 26.4

∆Fmax [kN] 32.9 18.0 38.2 21.1

Pmax
hf

[bar] 180.4 205.1 154.0 164.4
|s0◦ − s180◦ | [mm] 2.9 2.7 6.0 1.4
|s90◦ − s270◦ |[mm] 12.4 5.2 24.9 15.5

BNC Control with Bayesian network
NC Equal forces at cylinder

the flow of the blank into the form. The forth and fifth row of table 3
lists the difference of the blank draw-ins between the fronts0◦ and



the rears180◦ (row 4) and the lefts90◦ and the rights270◦ . The dis-
placement of the blank is included in the fifth row. That is twothirds
of the difference of 15.5 mm mentioned in the last column dates back
to the displacement of 10 mm. It gets clear that the blank is drawn
more uniformly into the form if the hydroforming press is controlled
by a Bayesian network.

An additional advantage of the control is the higher preforming
pressure listed in the third row of table 3. Usually a higher preform-
ing pressure means that more blank is drawn into the form. That is
the minimal thickness of the blank is higher, so that a higherpressure
during calibration can be used.

That is all three quality criteria are improved by the usage of a
Bayesian network. As the controller is based on the very general idea
to enter both the desired value and the disturbance as evidence and
to calculated the input by marginalization it is expected that this idea
is transferable to other stochastic models and control tasks.

6 SUMMARY

The main idea of a Bayesian controller is to model the dependency
between the input and output variables. After the model is readily
trained the desired value is entered as evidence and the input vari-
ables are gained by marginalization. This principle is successfully
applied to the model of a hydroforming press to control the distribu-
tion of the forces at the blank holder.

The model consists of the structure, i.e. the dependency of the ran-
dom variables. There are many possible sources for the structure.
When manufacturing processes are modeled, the knowledge ofthe
engineers can be used to get an initial idea of the structure.The pa-
rameters can be trained by the EM-algorithm. For the training of the
model it is necessary to use different input signals, so thatthe rela-
tionship between multiple inputs and outputs is learned.

Different structures are judged by the relative error of thepredic-
tion. For the calculation of the relative error cross validation is used,
so that the capability to make predictions for yet unknown examples
is tested. Of course the discussion with engineers is only one possi-
bility, there is a rich source of literature about structurelearning, e.g.
[6, 7]. But the reader should keep in mind, that the distribution of
the input variables is not arbitrary, but stems from a test plan. Thus a
dependency between input variables should be avoided.

As a result of the Bayesian controller the force difference at the
blank holder is halved, the draw-in of the blank is more uniform and
the preforming pressure is increased. Thus the usage of a Bayesian
controller is a great improvement in comparison to the status quo.

But the current blank geometry used for the experiments is rel-
atively simple. Further experiments are needed with more complex
forms.
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