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Control of a Hydroforming Press with Bayesian Networks

Rainer Deventer, Heinrich Niemann! and Martino Celeghini 2

Abstract.
are growing due to an increased complexity of the manufaxgjur
processes. To face these challenges, intelligent corgrgetting
more and more important. For example, neural networks armyfu
logic are regularly used. The usage of Bayesian network®lis s
dom mentioned even if many training algorithms are avadaid
Bayesian networks are also able to act under real-time tionsli
That means that main preconditions for a self-adaptiverobet are
given. This paper explains how a Bayesian network is emplagea
controller. The main idea is to use the desired value as ititeval-
ready observed and to use marginalization for the calanaif the
input. This principle is successfully applied to the cohtrfa hydro-
forming press. As a result the process characteristicsinst®f an
uniform blank draw-in and the preforming pressure are irmgdo

1 INTRODUCTION

The current manufacturing technology has to face diffedral-
lenges. The time to market is getting shorter and the praatugto-
cesses are getting more complex then ever. This developesrits
in the need for self-adaptive and intelligent controllévany algo-
rithms which are used mainly in the Al-community are appliedu-
tomatic control. Well-known examples are neural networidfazzy
logic. Applications of Bayesian networks are seldom mergtbeven
if they offer attractive prerequisites and are used in mahgrodo-
mains, sometimes under real-time conditions [13, 12]. Eplamare
the application of Bayesian networks as spam-filter [11]iamded-
ical expert systems [1]. In this paper the distribution afcés in a
hydroforming press is modeled by a Bayesian network. The-acc
racy of the model is evaluated by cross-validation. As Bayeset-
works define a unique distribution over random variablesefis no
difference between input and output variables. Thus thzetksgal-
ues can be entered as evidence for the nodes representiogpiog.
Afterwards the required input is calculated by marginaiaa This
approach only works with a perfect model. In reality thereatot of
external influences and it is tedious to include them all enrttodel.
For example imagine that the room temperature of an officaldho
be controlled. Beside the heating the temperature is infle@gby the
staff opening a window or a door. The external factors whifécts
the intended control are call@isturbance valueso be prepared for
changes in the environment it is necessary to model alsotfuence
of the disturbance values [5].

Usually the disturbance value cannot be observed, but indke
discussed in this paper it is calculated as difference offahmer
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The demands to automatic control for industrial plants output and the desired value. As a result of Bayesian conisoh

process parameters of hydroforming are improved. Paatilyuthe
preforming pressure is increased and a uniform draw-inebthnk
into the mould is achieved. Both characteristics improedabhavior
in subsequent processing steps.

The paper will start with a short introduction to the appiica, so
the reader, who is not familiar with hydroforming, will belalbo un-
derstand the remaining parts. Afterwards the most impbpaimts
about Bayesian networks are listed. The section about Bayest-
works is restricted to networks with continuous nodes, adltdw of
forces can accurately be modeled by linear relationshipgeBian
networks that use solely continuous nodes are also called<sm
networks. For more complex models hybrid Bayesian models4i
are applicable. At the beginning of section 4 different Baae mod-
els are compared by cross-validation. The model which makes
ceptable predictions for the input variables is used fortrabmpur-
poses. The results of the experiments, discussed in segtlorare
evaluated in section 5.2 by comparison to the status quoaftiae
finishes with a summary and suggestions for future research.

2 HYDROFORMING

New forming technologies have been developed in the lasidiec
in order to satisfy the increasing demand for lighter anderamm-
plex parts, especially in the automotive industry. The bfaiming
of unwelded sheet metal pairs enables the production of Emp
hollow parts with high geometric accuracy and improved raach
cal properties in a reduced number of process steps [10]ré&udts
of the forming process are mainly influenced by the internesgure
P between the blanks and by the blank holder force of the press
required to provide tightness [9]. For complex geometiesdistri-
bution of the clamping force in the flange area is determifarthe
hydroforming process [8]: high local pressure has to beiagpb
areas where a retain effect on the blank is needed and lovaatont
pressure is desired where more draw-in of the blank into thésd
required. For axially symmetric parts however the matdt@l is
even more sensitive to the distribution of the contact pness the
blank holder. In case of an asymmetrical distribution offtrees, an
inhomogeneous draw-in of the blank occurs and prematutedgiy
tearing is observed. Therefore a good forming result forragtrical
parts can be only achieved if the real contact pressureilistn

is almost uniform. This can be obtained by controlling thstrik
bution of the contact pressure in the blank holder. For thippse
many technical solutions have been developed allowing theess
designer to influence the pressure distribution in the bllaolkier
during the hydroforming process. In the modern hydrauliespes
four up to six pistons are usually already placed inside tkegram
and can be used to get the desired contact pressure distnipift



connected to the tool’s blank holder by pillars and plategy(gfor
the tool in figure 1). Using this solution the pistons do notehto
be integrated in the forming tool, which means a simplergiediut Ram plate——"
it is not simple to predict the effects of the ram pistons an¢bn-

tact pressure distribution in the tool flange. This inforimatcan be Cylinders/
supplied by a specific measurement set-up which is integjratthe
tool [2]. Four load cells are positioned below the lower Blaolder,
equally spaced in the tool flange (figure 2) in order to deteentine
force flow in the forming tool. By this way the force flow of there
sidered press-tool system can be described by four inpiablas
(forces of the ram pistonBg, F1, Fir, Ft:) and four output variables
(forces of the load cell$), Fi., Fi, Ft). In order to model the force
flow of the tool used in the forming trials two different traig sets
have been used. In the first training set equal forces at tirdeys Load cells
are used. This training set is close to the usual processngaess.

Due to the reduced drawing depth in the lower tool half, thetact

between the sheet and the tool bottom occurs at very low ymess

values. By this way the force resultant from the inner pressa the

lower sheets is directly transmitted to the tool cavity anésinot

influence the load cells under the blank holder. Conseqyéntlin-

creasing the inner pressufg; the force resultant from the pressure

on the upper sheet acts against the blank holder force asdtitleu  graph. A (conditional) probability distribution, which depends also
measured force decreases. ~onthe parent nodes, is associated to each node. E.g., thibutisn
For the second data set different forces are used at thedey$in ﬁ(Fleﬁ, Fi., Put) is associated to the first node in the second layer.

These process parameters are necessary to model the flow of th Generally the distribution in a Bayesian network is caltedaby
forces. But this time leakages occur at an early state of theess,  thechain rule

thus the data are not suitable to model the influence of the- pre
sure. This means that both data sets are necessary fongahihe

Blank holder— |

Figure 2. Measurement points (top view)

n

Bayesian model. Py, Y2, yn) = Py1) - HP(ZM[D(Z'))’ 1)
1=2
\l! ‘L \lr wlf wherey; denotes the instantiation of the random variableand
FL‘] Fﬂ Ffr Frr

p(yi|p(?)) denotes the instantiations of the pargp({s) of the ran-
] dom variableY;. At the beginning of the development of Bayesian
Cylinders |_| networks all random variables are assumed to be discrete a6

currently also hybrid Bayesian networks [14], where ditzr@nd
| \ continuous random variable are used at the same time, aleysdp
A normal distribution

Pillars —— ] p(ylz) = N(a+ B z,7) )

Load cells which depends on three parameters, and+ is associated to each
Py continuous node. The mean of the normal distribution depemd
a parametery, and a weight vecto8 which is multiplied by the
instantiationz of the parents of". The (co)variance is denoted by
During the training process the parameter#, andy are adapted
by the EM algorithm [3] so that there is a maximal probabildythe
Figure 1. Hydroforming press (side view) data given the parameters.

After the training an inference algorithm (usually the jtiog tree
algorithm [14]) can be used to calculate the distribuf¢n|o) given
the observations. This operation is callethtroduction of evidence
For example, the calculation of the input forces is done i

3 BAYESIAN NETWORKS model depicted in figure 4. Here the desired outputand the dis-
turbing valuez are assumed to be known.
In the last section, the hydroforming press together with rirea- The second operation which is of importance is therginaliza-

sured signals are shortly introduced. The aim is to devekipghas-  tion. In many cases there are hidden nodes which cannot be oliserve
tic model of the relationship between the cylinder forégs---, F;, ~ Or are not of any interest. For example, the second layer inefig

and the forces at the load celfs., - - - , F1. After training the model ~models the ideal output and is assumed to be unobservahiiisin

is used to calculate suitable inputs to obtain equal forcedi fbad ~ case the marginal distribution is calculated by integratio

cells. One possibility to model the press is a Bayesian mddsim-
ple example is given in figure 3. Here each sensor output iseledd
by a random variable represented by a node in the directediacy

gee)

p(yl,m,yz'fl,ym,-wyn):/ p(y1, -, yn)dy:  (3)

oo



over all possible instantiations. If discrete random \zga are used
summation is used instead of integration. Using margiatbtn and
the introduction of evidence the model depicted in figure & loa
used to calculate the distribution of the forces at the dgis given
the desired valuesy and the disturbance. Thus it is possible to
calculate the input to obtain a desired output which is dxabe
task of a controller. It is also possible to model dynamidesys with
dynamic Bayesian networks. This is done with a similar appino
but this time the disturbance is estimated as differencedet the
predicted and observed model output [5].

4 MODELING AND CONTROL
4.1 Model selection

The first point in the development of a model based contradler

usually the development of the structure. When modelinghthe
droforming press the first consideration is that all cylirsdare con-
trolled individually. Thus the four input variables are netetl as in-
dependent. Figure 1 shows that each of the cylinders mighg &a
influence on the forces of the load cells. First tests wereemeith

— all Models

----» fully connected Models

Figure 3. Models to be compared. Solid edges are element of all models,
dashed edges are omitted in partially connected model.

calculated. This procedure is repeated 10 times with diffetrain-

ing and validation sets. The relative errors together withstandard
deviations are summarized in tables 1 and 2. The first nunsitéei
relative error, the second number states the standardtidevat the

error.

a fully connected model. That is the dashed edges in figuree 3 ar

included. The training of the model is done with the EM-aitjon

[16]. The weights of the nodes representing the forces atoide-

cellsFre, Fyi, Fy, Fy are initialized with{—0.05 0.25 0.25 0.25 0.25].

That is, it is assumed that the pressure has a negative effette
forces at the load cells and that all cylinder forces have guale
influence on the forces of the load cells. The other parameter
initialized randomly.

After training the weights of the models were analyzed. The

Table 1. Relative error in percent for the prediction of input vateh

Fa Fy Fir Fir
atr. 9.32+16.99 10.3416.08 11.#20.91 14.9321.02
a=0 16.1#18.44 17.7&17.37 21.4820.27 9.55%-9.62

a tr. = Offset of output-nodes trained

adapted weights of all output nodes showed a similar pattern

The influence of the input nodeEy,-- -, F;, to the two neigh-

boring output nodes is large in comparison to the weightsh&o t
two nodes further away. Usually two weights are between Ad} a
0.6, the other two weights are between 0.05 and 0. For exam-—g¥r.

ple the weights from the nodeB.¢, Fa, Fy1, Fir, Fie 10 Fre are
[—0.3488 0.0634 0.5348 0.4251 — 0.0056]. The first weight in this
vector represents the influence of the pressure, i.e. aedeed pres-
sure leads to decreased forces. The sum of all weights is thos,
that is there is no additional source of forces. As two weigire
much smaller than the other ones, it was decided to work witiara
tially connected model, the dashed edges in figure 3 areeahnitt
The next question to be answered concerns the affeéthe out-
put nodes. An argumentation from the physical point of vieads to
the conclusion that the forces at the load cells are zer@itthre no
forces at the cylinders. In contrary to this consideratigrossibility
to train the offset is an additional degree of freedom anchtrigad
to better training results. To test the accuracy of the mtueldata
set is split arbitrarily into a training set which contairn3® of the
data and a disjoint validation set containing 10% of the .dafter
training of the model, the pressuf&;, and the four cylinder forces

Table 2. Relative error in percent for the prediction of output vhlis

Ff H Flre Fri
6.34+£7.39 11.17+£17.99 9.64+9.02 10.07+ 26.89
a=0 6.25+7.25 39.9451.69 35.61111.98 34.7Gk 57.75

a tr. = Offset of output-nodes trained

A comparison between the model with a fixed offsef the
output-node with the model with a trained offset shows thatskes
no sense to fix the mean of the output node. The simple expanat
is that the mean of the output-nodes is an additional paemtet
be adapted, so the regression with this additional parariseteore
successful.

The prediction of the pressure results in a very large redatiror
(approximately 3300% with a standard deviation betweerDGo@i
8700%). The reason is that there are a lot of examples witles: pr
sure close to zero (e.g. all the examples with different iripices).
Thus even a small error might result in a great relative effbat
is the relative error is no sensible mean to judge the acgwhthe

Fa,---, Fy,y are entered as evidence and predictions are calculategrediction for the pressurB,;.
for the four forces at the load cells, - - -, F;. For each variable the The model shows that an increasing pressure leads to degeas
relative error abs(ys — 1) forces at the load cells. This effect can not be neglectetkrAfain-

er = #100% 4) ing the weights between the pressiitig and the forced:, - - -, Fri

is calculated. That is the relative error is proportionahedifference
between the predictiop, and the actual valug. Similarly the rela-
tive error for the prediction of the cylinder forcés, - - -, Fir (The
forces at the load cellB:, - - -, Fy; and the pressurBys are entered as

take on values between -0.25 and -0.45. As the pressuraseselp
to 200 bar, a high pressure leads to force differences ab#tkdells
of up to 90 kN for each load cell. As the pressure depends ovahe
ume of the hydroforming fluid pressed between the blanksnhca
be regarded as a parameter which can be controlled dirbctlyas

evidence) and the pressufg; (all forces are entered as evidence) are a disturbance value. That is the cylinder force must be aszd in



order to compensate an increasing pressure. The dist@lhsmal-
culated as difference between the desired and the obsentpdto
Thus the high relative error for the prediction of the hydrafing
pressure does not matter. It is part of the observed distagbeaalue.
The discussion leads to the conclusion that a partially eotau
model is used as base for the controller. The means of theubutp
nodes are trained to increase the accuracy. As the modelatial
is based on a not observed validation set, the model is alsot@b
make predictions for yet unobserved examples. So it can dxtfos
control purposes.
The next section shows how the model is extended to use it as
controller for the hydroforming press introduced in sett?o

4.2 Control

In section 4.1 it is shown that a prediction of the forces atdylin-
ders given the desired forces at the load cells is possiblenddel
the hydroforming press, a partially connected net is agplBut a
controller must not only be able to calculate suitable isputder
ideal conditions. It must react to disturbances or a chaegedon-
ment. In control theory controllers are frequently trigegtby errors,
for example the deviation of the desired output from the iregu
The control model in figure 4 is therefore supplemented witthi-a
tional nodes for the disturbance. According to control thigd7] itis
possible (for linear systems only) to sum all disturbanaéaires:’
to one variable: which is added to the output. For the hydroforming
press this results in

w=F+z, 5

wherez denotes the disturbance andthe observed output at arbi-

trary positions. This consideration results in the third &ourth layer
of figure 4. According to equation (5) the edgés— w andz — w

Figure 4. Bayesian controller for the hydroforming press

between the estimated output-force respectively the iahce and
the measured output force both have weight 1. The distugb@nc
calculated as difference between the measured force artte#ied
value. Thus both the desired valuesndz are regarded as observed,
they are marked by shaded nodes in figure 4. The node repregsent
the pressure is no longer needed, as the influence of thauped3s

is included in the disturbance. An increased pressure lesalfieg-
ative disturbance. To keep the output close to the desirkc the
forces at the cylinders are increased.

The control cycle works as follows: After the observations en-
tered as evidence, the required input is calculated by maligation
and sent via an DA-converter to the cylinders of the hydmfag
press. After the new inputs are calculated, the output issored
once again, so that the next control cycle takes place. Ingkesec-
tion 5.1 the experiments executed with the hydroforminggrare
explained and at the end in section 5.2 the results are disdus

5 Experiments
8.1 Experimental setup

The forming trials were performed using an axially symneettip

tool for double sheet hydroforming with inner diameter 00x6m,

with a drawing depth equal to 50 mm. The blank diameter was 250
mm and the material used was the mild steel FeP04 with a tbgskn
of 1.5 mm. The total blank holder force was set to 700 kN, which
is an optimal value for the considered part. The experimesmte
performed alternatively with and without blank holder femntrol,

in order to clearly show the effects on the forming resultstifer-
more the blanks were placed not in the middle of the tool, st d
placed with respectively 5 mm and 10 mm offset from the tootee
This offset induces an asymmetrical distribution of thetaohpres-
sure in the blank holder, which results in an asymmetricalvdin of

the blank. The forming trials were stopped at the maximursgree
Pp™* achievable at the given blank holder force, when leakages of
hydroforming fluid occur. In order to compare the formingules
with and without control of the blank holder force, both tigéss
limit and blank draw-in were measured for the formed partse T
higher the tightness limit pressure and the more homogenta!
blank draw-in, the better is the forming of the part. The lssare
discussed in the next section.

5.2 Results

To test the control described in section 4.2 the blank on tipe t
was inserted with a displacement of 5 and 10 mm. To evaluate th
Bayesian controller the results are compared with the stgio at
the chair of manufacturing technology, i.e. equal forcesused for

all four cylinders. The results are listed in table 3. The fiosy shows
that the maximal forcea Fi,.x are halved. The same is valid when
the mean values of the maximal forces during the completdyaro
tion A Fiax are compared. Also in that case the maximal difference
between the forces is halved, both for the displacement oid518
mm. The equal distribution of the forces has a positive imit@eon

Table 3. Results of control

5 mm displacement 10 mm displacement

NC BNC NC BNC
AFmax [KN] 415 26.0 45.8 26.4
AFmax [kN] 32.9 18.0 38.2 21.1
Pax [bar] 180.4 205.1 154.0 164.4
|sgo — s1800 | [mm] 2.9 2.7 6.0 1.4
|sggo — saroo|[[mm]  12.4 5.2 24.9 15.5

BNC Control with Bayesian network
NC Equal forces at cylinder

the flow of the blank into the form. The forth and fifth row of lal3

lists the difference of the blank draw-inbetween the frontoe and



the rears;spo (row 4) and the leftgoo and the rightsa7oo . The dis-
placement of the blank is included in the fifth row. That is tivds
of the difference of 15.5 mm mentioned in the last columnsibtek

to the displacement of 10 mm. It gets clear that the blankasvdr

more uniformly into the form if the hydroforming press is ¢afled
by a Bayesian network.

An additional advantage of the control is the higher prefagm

pressure listed in the third row of table 3. Usually a highefgrm-

ing pressure means that more blank is drawn into the formt iSha
the minimal thickness of the blank is higher, so that a higinessure

during calibration can be used.

That is all three quality criteria are improved by the usafj@ o

Bayesian network. As the controller is based on the very geidea
to enter both the desired value and the disturbance as eéderd
to calculated the input by marginalization it is expectedt this idea
is transferable to other stochastic models and controktask

6 SUMMARY

The main idea of a Bayesian controller is to model the deparyde

between the input and output variables. After the model aslife
trained the desired value is entered as evidence and thée\vagu
ables are gained by marginalization. This principle is sastully
applied to the model of a hydroforming press to control thstritiu-
tion of the forces at the blank holder.

The model consists of the structure, i.e. the dependendyeotin-

dom variables. There are many possible sources for thetsteuc
When manufacturing processes are modeled, the knowledtie of

engineers can be used to get an initial idea of the structime pa-
rameters can be trained by the EM-algorithm. For the trginiithe
model it is necessary to use different input signals, sottiatela-
tionship between multiple inputs and outputs is learned.
Different structures are judged by the relative error ofphedic-
tion. For the calculation of the relative error cross vdiiolais used,
so that the capability to make predictions for yet unknowanegles
is tested. Of course the discussion with engineers is ondypmssi-
bility, there is a rich source of literature about structi@@ning, e.g.
[6, 7]. But the reader should keep in mind, that the distidsubf

the input variables is not arbitrary, but stems from a testpThus a

dependency between input variables should be avoided.
As a result of the Bayesian controller the force differencéha
blank holder is halved, the draw-in of the blank is more umif@and

the preforming pressure is increased. Thus the usage of esiay

controller is a great improvement in comparison to the stgtio.

But the current blank geometry used for the experimentslis re

atively simple. Further experiments are needed with moreptex
forms.
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