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Preface

Todays modern manufacturing processes face shorter grodwycles, demand for more flex-
ibility and higher quality of the products. This results in mcreased need for new methods
in the area of modeling and controlling of process chainagt #lows self-adaption as well as
integration of expert knowledge.

This is the focus of the book at hand. It is one of the first botbled merges techniques
from classical control theory and modern, probabilisticahotivated artificial intelligence to
develop new methods for modeling and adaptive control oadyin processes. The key element
is a Bayesian network, that allows the explicit modeling ependencies between events. Thus,
expert knowledge can be easily integrated. However, inftareework also automatic detection
of the dependencies is possible. This makes Bayesian ritvperfectly suited for modeling
and control of manufacturing processes: during the firsipdesxpert knowledge can be used,
while in service the parameter can be adapted online witheert intervention.

The book gives a comprehensive introduction to Bayesianefsags well as to control the-
ory. A link is made between classical methods for descrilimg) handling linear and non-linear
dynamic systems at the one side and dynamic Bayesian networthe other side. Although the
book describes two applications from manufacturing tetdgoto prove the applicability, the
theory is developed in a general way. First, the readerlglgats used to linear and non-linear
dynamic systems before the relation is shown to dynamic Slagenetworks. Well known non-
linear units, like saturation or hysteresis, are discugséue following. The results of modeling
hydroforming and injection moulding show the benefits ofdlperoach.

Prof. Joachim Denzler
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Chapter 1

Introduction

1.1 Problem presentation

Manufacturing technology has to face several challengbs.time to market is getting shorter
[sfb95; GL99] on the one side, but a high quality is of gregpamance, as an unsatisfied cos-
tumer might change to the competitor [Pfe93] and tell hisxmpi a lot of other people [Pfe93].
An additional problem for countries like Germany are higlges[sfb95], so that there is a high
need for automation. The collaborative research center3eBries to master this challenge by
several measures, e.g. by experiments with new materialsrabination of new materials, or
the integration of several process-steps. To achieve thls gétso modeling plays an important
role [sfb95]. This is not only valid in the scope of the colhastive research center, but also for
manufacturing technology in general [Lan96].

A model is a simplified image of reality which abstracts, depeg on the intended appli-
cation, from unimportant details. In [Lan96] three differgroups of models are distinguished.
Process modelare a quantitative mapping of continuous processes. A segaup arecontrol
models describing the relationship between control devices arddchnical processemfor-
mation technical modelare used, if automation with a process computer is intenaled they
represent the automation tasks.

Within the scope of this thesis only process models are deemnll Process models can fur-
ther be characterized as either static, e.g. used for tloeilasibn of suitable settings for input
variables, or dynamic, if the course of the measured vaggaisl of interest. An example for a
static process model is the modeling of the distributiorhefforces during hydroforming, with
the aim to guarantee an equal distribution at all points cdisneement.

Depending on the planned application, different means fodeting are used, e.g. mathe-

1



2 CHAPTER 1. INTRODUCTION

matical models or Petri nets [Lan96].

In automation also statistical methods are used, e.g.@arttarts [Pfe98; GL99]. Control
charts record the output variables, representing the tguaiithe process. Additionally upper
and lower thresholds are defined. When measurements aradtyase thresholds an action is
required. In this thesis also a statistical approach isesiggl, based on Bayesian networks. But
in contrast to control charts the suggested approach aimmg@matic control, the input variables
are directly calculated using the statistical model.

Bayesian networks represent the distribution of multipliscrete or continuous, random
variables. For a better overview, the variables are digulag an acyclic, directed graph. The
broad applicability of Bayesian networks can be attributeseveral advantageous features.

» There are a lot of training algorithms available, both fo structure and the parameter of
Bayesian networks [Bun94; Jor99; Mur02; RS97; GH94; FKO03].

« Efficient inference algorithms are developed in the lasyé&é&rs [LS88; Lau92; LSKO01,
Pea88].

* Itis possible to work with missing measurements and hid@eiables [Mur98b].

To apply Bayesian networks to automation, there are a nuoflvequirements, listed shortly
in the following paragraphs. Of course, most of these regquénts are not only specific for
Bayesian networks, but for modeling in general.

First, the accuracy of the model is required; i.e., the dencetween reality and the predic-
tions of the models should be minimized.

The second desired feature is the ability to generalizatidmat means the model must be
able to make predictions also for yet unpresented settifitjgan- or output variables.

In many cases the structure of the model is also subject oefimg[Lan96]. In dependency
on the required application other demands may occur.

Sometimes a number of experiments is executed, to find outabkusetting for the input
variables. To reduce costs, usually test-plans are usee. airh is to reduce the number of
experiments with a small impact on the knowledge gained byettperiments. This leads to a
low number of training sets which complicates a statistazalysis, particularly with discrete
Bayesian networks.

If the modelis to be applied in quality management, theranisead for a permanent adaptation
as additional data are collected during the productiongsec

When dynamic models are applied in control, other requirgmiave to be met.
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As a controller should act without supervision of an oparat robust model and controller
is needed. An oscillation has to be avoided in all cases.

The calculation of the manipulated variables has to be domeal-time. The required
response-time depends on the controlled system.

* Failure of sensors should be compensated, so that syatfiliontrol is not affected.

An on-line adaptation of model-parameters is desiralilekeep track with a changing
environment.

In the next two sections the state of the art in control thesdiscussed, and a brief overview
about applications of Bayesian networks is given. In sactid the contribution of this thesis to
the field of modeling and control is sketched.

1.2 State of the art in modeling and control

In section 1.1 it is mentioned, that intelligent modelinglaontrol plays an important role for
manufacturing processes and industrial production. Adaigest part of this thesis considers
this problem from the point of view of Bayesian networksstlection deals with alternative
approaches, so that a more comprehensive picture is givenagproaches of traditional control
are omitted, they are discussed in chapter 3.

In the following different approaches from artificial inigence are discussed mainly from
the point of view of modeling manufacturing processes anddfistrial control. In the last
decades rule-based systems, neural networks, fuzzy t@uotutionary systems, and statistical
process control are frequently applied approaches in attoprocess control [JdS99; FJdS99].

Rule-based systenuse a knowledge base, with several rules, to define suitainleat ac-
tions. In comparison to the other algorithms, they play almneole in industrial control. Major
problems are the knowledge acquisition, needed to devamgriowledge base. An additional
drawback is, that usually a set of rules is not suited to ggaerumerical control signals, needed
for control purposes. One of the advantages is, that it ig ttagenerate an explanation for the
suggested control action.

Neural networksare typically divided into an input layer, several hiddeyels, and an output
layer. Typically each node in a layer is connected to eacle mothe succeeding layer. Of course
there are several exceptions, like Boltzmann machines9@leand Hopfield nets [RM86], which
are fully connected. Each layer consists of several nodas. bEhavior of the complete net is
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governed by the weights of the connections between the rasatethe activation function, which
maps the weighted input of the parent nodes to the outputinB®uhe training process, the
weights of a neural network are adapted, while the type oéaptthe structure, and the activation
function are kept constant. For the training process twieidiht scenarios are distinguished,
supervised and unsupervised learning.

During the unsupervised learning process only the inpuviesg It is the task of the training
process, to detect frequently occurring patterns. Oneefbst popular representative is the
Kohonen networkwhich consists of one in- and output layer. During the irgrprocess the
weights of the winner-neuron, whose weights are closestedrtput, are adapted, so that its
weights get closer to the presented input. Additionallg,weights of its neighbors are changed
in the same way, depending on the distance to the winner neukbthe end of the training
process neighbored neurons react on similar inputs.

In supervised learning the input and the desired output eesepted to the net. A well-
known example is the backpropagation algorithm. In thi®¢he weights are adapted in order
to minimize the error between actual and required output.

For the purpose of control one should keep in mind that ugula# direction of inference
is fixed. Thus it is impossible to train a neural network, sat tih simulates the behavior of a
dynamic system and put the desired value at the output nodget the manipulated value. In
[WSdS99] different methods for neural control are discdsse

The simplest one isupervised controlHere the neural network is trained, so that it copies
the behavior of an existing controller. After the trainirggfinished the neural network is used
instead of the controller, used for the training.

In the approach ofdirect inverse contrdlthe network “is trained to learn the inverse dy-
namics of the system” [WSdS99]. That means that the systetpsinis used as the input of the
neural network, which tries to predict the system’s inputchihas led to the observed output.
To correct the weights the predicted input is compared Withactual one, so that supervised
learning is possible. After the training process the nenetork acts as controller; i.e., the
desired value is used as input of the neural network, theubwtithe net is used as input signal
for the dynamic system.

In "neural adaptive contrdlthe neural network is trained to learn the parameters ofatpl
and adapt a controller based on this information. In cohtaasupervised control and to direct
inverse control the neural network does not act as contydlie to improve the performance of
an existing controller [WSdS99]. When only information absuccess or failure are available
reinforcement learning could be used.
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The great advantage of neural networks is the ability to @ge with new situations and to
learn nonlinear functions with an arbitrary precision. Awback is that a neural network is a
kind of black box, so that there is nearly no possibility ttenpret the training results.

Another approach is Fuzzy Logic, based on the theory of Fisety, suggested by Lotfi
Zadeh in the late sixties [Zad65]. In princigi@zzy Contro[Pre92; HR91] is based on a number
of control rules like

If 'Pressure’ =’high’ and 'Temperature’ =’high’ then 'Caaly temperature’ = 'low’,
which are given either by a knowledge engineer or are tramedmbination with a neural net-
work. In comparison to a rule based system, the predicatieegfreconditions are not evaluated
in a boolean manner, but are mapped to an interval [0 1], septeng the degree, a precondition
is fulfilled. After the degree of truth is assigned to eachdmate, the boolean operators are ap-
plied. Typically the result of the 'and’-operator is mapgedhe minimum of both truth-degrees,
the ’'or’-operator is mapped to the maximum of both operaridghis way a degree of truth is
assigned to the conclusion. To combine the results of skemdes, making predictions for the
same variabledefuzzyficatiomas to be applied to all results. A method regularly appligth
use the center of gravity as final result. Fuzzy control candmbined with neural networks to
train the fuzzy rules or with a rule based system to enabtegenerate numerical solutions.

When control is regarded as an optimization prob&mlutionary algorithmsan be applied
[Nom99]. An example might be the assignment of jobs to déféimanufacturing systems. The
main idea of evolutionary algorithms is to code the solutmg. the algorithm used for control,
in so called chromosomes, e.g. as strings or as trees witlatope and variables as leaves and
nodes. At the beginning a lot of solutions are collected inratmal population. Afterwards
the quality of the solution is judged by a fitness function. gemerate a new population, new
chromosomes are generated using the old population, whesenosomes, representing a good
solution are used more frequently. The new chromosomeshameged with a low probability,
e.g. by flipping a bit in the chromosomes. This imitates thecpss of mutation. After the new
population is generated, the iteration of evaluation armeggion of new chromosomes begins
once again. The idea is that the overall quality of the sohgiincreases, as better chromosomes
are preferred during reproduction. A monotonous increfideequality can be guaranteed, when
the best chromosome is kept in the population, i.e. thesebtrategy is applied. Evolutionary
algorithms are applied, when the fitness function can noifterentiated, i.e. the application of
gradient descent is impossible.

Statistical methodare seldom used. Chapter 7 of [Lu96] discusses the applicatistatisti-
cal process control, based on statistical process charesidEa is to apply principal component
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analysis on both the domain of in- and output variables,dace the dimension, and afterwards
learn the dependency between in- and output variables. dlpuediction of the quality of the
output is possible, and it is possible to trigger the charigleeoinput variables in real time, when
the process is out of control.

This section shows, that there are a lot of possibilitiegftalligent process control, Bayesian
networks are usually not mentioned in the literature abodustrial control. The next section
will give a coarse overview about the application of Bayesiatworks to show, that in principle
the preconditions for the application of Bayesian netwanksontrol are given.

1.3 Bayesian networks and their application

In the last section it was discussed that there are already af Imeans to deal with control
problems. This section shows that Bayesian networks argedpin different domains, e.g.
medical diagnosis, user-modeling, and data-mining. Sgupécations are time critical [HB95;
HRSB92]. As a lot of training algorithms are available thesthionportant prerequisites for
self-adaptive control are given.

In general Bayesian networks can be regarded as a mean &seapithe relation between
several random variables in a directed graph. The nodesaingttaph represent the random
variables. The arcs between the nodes stand for the depgndietihe nodes.

When a distribution of discrete random variables has to béetedl, the effort grows expo-
nentially with the number of used nodes. This has led to tmelasion, that it is an intractable
task to develop an expert system, based on probabilityyH8en96]. To avoid this exponential
growth of complexity, the inference process in a Bayesidawokk is based on local distributions
of one random variable, depending on its parents. This nmeamnt makes the statistical in-
ference tractable and reduces also the number of parambtexslecision theoretic framework
influence diagrams [Zha98a; Zha98b; Jen01], i.e. Bayessfnarks with additional nodes to
represent actions and their utility, are used. When timesdédent relations have to be repre-
sented dynamic Bayesian networks can be used. A deepeduction in Bayesian network and
dynamic Bayesian network is given in chapter 2.

The most popular application of Bayesian networks seem®tthé Office-Assistant, de-
livered the first time as part of the Office 97 package. Thestasi was developed within the
framework of the Lumiere project [HIBHR98; HH98], stagif993. The aim of the project
was to find out the goal and the needs of the user, based onatieeo$tthe program, past ac-
tions, and on a possible query to the help system. In a pio¢atywas even tried to save the
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estimated competency of the user in the registry, which Ishioel used as an additional source
of information. As the aims of the user vary within time, a Rymc Bayesian network is used
for the representation of the user’s goal [HIBHR98; Had9%je past actions are transformed
by the Lumiere Events Language into predicates, which @aregarded as random variables
and modeled in a Bayesian network. Thus the program canifigeattern like plan-less search
and a pause which might indicate the need for help. Using a&®8ag network a probability
distribution of the user’s need is calculated. In a protetgpcon popped up, when a threshold is
exceeded. In the final version this knowledge is used to ingamswering queries to the system
by the identification of the user’s goal.

From the historical view the first real-world applicatioms anedical expert systems, e.g. the
MUNIN system [Kit02; AJAr89] for “electromyographic diagnosis of the muscle and aerv
system”[Lau01], the pathfinder system [HHN91] for “diagisosf lymph vertex pathology”
[Lau01], which was later commercialized as the Intellipsgistem [Jen96]. Additional exam-
ples are the probabilistic reformulation [SMBEI1] of the INTERNIST-1/QMR knowledge base
and the Child system at the Great Ormond Street Hospital mdbo for the diagnosis of heart
diseases [Jen96].

The MUNIN system, developed at the University of Aalborg)sed for the diagnosis of 22
different diseases [Kit02] with 186 symptoms, and has thktylo detect several diseases at
the same time. It is structured in 12 units, representinigidint muscles and nerves, with 20 -
150 nodes each. Each unit is structured in three layers,entherfirst two layers represent the
pathological variables, and the last layer the variableslifagnosis.

In comparison to the MUNIN system, the PATHFINDER system aasmpler structure.
There is one central variable with more than 60 states, septang the different diagnoses. Thus
the system is not able to represent more than one disease sarfe time. As parents of the
diagnosis variable there are 130 information variablesietones linked with each other [Jen96].
First attempts of user modeling are also found in the PATHMER system [HIBHR98] in order
to adapt the questions and answers of the expert system tonmgetence of the user.

The Child system helps the pathologists at the hotline ofareat Ormond Street Hospital,
to decide whether a blue baby should be transported to aadexspital or not. The structure
and probabilities was initialized by experts, and latemiedi by existing cases. As a result the
system could compete with experts in that domain [Jen96].

Another domain of application is the modeling of techniggtems. A system, based on a

Bayesian model of a technical process is the Vista systen®3BIRSB92], “which has been
used for several years at NASA Mission Control Center in Hanis[Had99]. Its aim is to
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decide in real-time which information is displayed to thegiors in the control center. To do so
a model of the propulsion system, the example used by tha-fisiject, is developed including
all types of possible errors, e.g. failure of sensor data.eiVithe Bayesian model detects an
abnormal situation, the most probable causes are disptaykd user together with the necessary
sensor data, to deal with the situation. The utility of thieimation is measured by the expected
value of revealed information, a measure used to judge fifigy wf new information. The
decision, which information is displayed to the user, isdolasn an influence diagram, where the
utility of each action is measured be the expected valueisitformation.

The intended application in this thesis has to react intiead: Examples for systems reacting
in real-time are of course the Vista system. Another exanspbbject detection and tracking in
images of an infrared camera, supported by Bayesian ne$pRak98]. Also in control Bayesian
networks are discussed. Welch [WS99] discusses sortingribminated waste with a hybrid
Bayesian network. To achieve real-time properties onlyspaith changed evidence are updated.

This section has only shown the most prominent examplegr @pplications are Data-
Mining [Hec97], trouble-shooting, e.g. for printer [BH96JKO00], and surveillance of an un-
manned underwater vehicle [Had99]. A rich source of add@i@pplications is found in [CAC95;
HMWO95; Kit02; Lau01; Had99]. Haddawy [Had99] and F. V. Jamgien01] offer a list of avail-
able toolboxes for modeling Bayesian networks.

1.4 Contribution of the thesis

As seen in section 1.1, static and dynamic process modetisireguished. Applicable models
are developed in both domains.

Static modelsFor static models, the technique of piecewisear approximations evolved.
The main idea is to represent some input parameters both sceett node and a continuous
node. The discrete nodes are used to implement a kind ofteskedé the desired function. The
number of states, being proportional to the number of pamthe skeleton, depends on the
required accuracy and is restricted by the available mgiata. This approach has several
advantages.

» From the practical point of view no special software is riegpl

» The ideais based on the general idea of function approlemby (multiple) Taylor series,
itis not only applicable in the domain of modeling manufaictg processes. It is expected
that this technique is also applicable, e.g. in the field ¢d-amining.
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» Both discrete and continuous nodes are implemented BireEhus no discretization is
required. Therefore loss of information, caused by diszaigon, is avoided.

» As shown in section 5.1 each node has a special meaningisTlitdas easy to incorporate
a-priori knowledge into the model. For example it is easyadute initial parameters for
the Bayesian network. Also the interpretation of the tragniesults is easy, so that the
learned parameters can be used to gain insight in the mopededsses.

The concept of modeling a function or a manufacturing predas linear approximation
by multiple Taylor series is applied to different manufactg processes, e.g. to preforming and
calibration of hydroforming, and to injection moulding.dh cases a great accuracy of the model
is demonstrated. A comparison with the standard deviatidineodifferent processes shows that
a large part of the prediction error is due to scattering efdata.

Also theability to generalizatiorof Bayesian models is satisfactorily shown. This is partic-
ularly of importance, because test-plans that lead to ngssonfigurations are frequently used
in manufacturing technology. If the observation of a migstonfiguration is a prerequisite for
the training of the model generalization fails. The thessualsses the relationship between test-
plans and the structure of the Bayesian networks. It is ssigdethat for each set of discrete
nodes, being parent of an arbitrary node, all possiblenggttof the parent nodes have to be
observed. This criterion is applied with great successeaitbdeling of laser beam welding.

The development of Bayesian networks for different martufileg processes shows that
Bayesian networks provide a suitable mean to build accunaidels, which make sensible pre-
dictions even for yet unpresented inputs.

Dynamic modelsThe second focus of the thesis is the modeling of dynamic, astrof
the cases linear, processes. A framework is developed,e@ysamic Bayesian networks as
controller. The main idea is to estimate the state of theegystsing information about former
in- and output signals. Using the desired value as additemace of information, the Bayesian
network is able to calculate the required input signals,cwhead to the desired output. By
comparison between the predicted and the observed outpudisturbance variable is estimated.
Assuming, that the disturbance value changes slowly in esisgn to the sampling period, the
estimation of the disturbance variable is propagated tdutwe and can therefore be included
in the calculation of the input signal.

To ensure droad applicabilitya general model (state space model), well-known in control
theory, is used as controlled system to test the new approltuls model can easily be trans-
formed into two different structures for the dynamic Bagesnetwork. First, the state space
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approach, where the information about the state of thesyistetored in hidden state nodes, can
be used directly to deduce the structure.

In the second approach (difference equation model) thenmdton about the state of the
system is gathered by access to former in- and output nodesniparison between the state-
space approach and the difference equation approach shawhe latter is more stable in all
our experiments. The reason is that the lower number of hicdeles leads to better training
results.

Thus the primary precondition, tteability of a controller is fulfilled. In a second step the
provided accuracy, depending on the number of time-slioéstlerefore on the time required
for inference, is tested. It turns out, that the number okttices can be severely reduced.
Reducing the number of time-slices leads only to a minoregdn of the quality in terms of the
steady state error and the sum of the squared error.

For hybrid dynamic Bayesian networks inference time is prbpnal to k"east+ntuture with
k as the number of configurations per timeslice apgd; + n,.s. as the number of time-slices
used to represent past and future. Thus this result is of gngartance also for hybrid, dynamic
Bayesian networks. Despite the encouraging results inéeréime remains a great problem
before hybrid Bayesian networks might be applied for cdmiumposes.

1.5 Overview

This thesis is situated at the intersection of different dors. First the thesis can be seen from
the point of view of the intended application, i.e. the mauglof manufacturing processes and
the control of dynamic systems. On the other hand the useditiims are from the domain
of mathematics or computer science. As it is the aim thatttigsis is understandable for both
engineers and computer-scientists an introduction isngiell domains. Chapter 2 deals with
an introduction to Bayesian networks. A focus of this chapre hybrid Bayesian networks,
as they are needed to model nonlinear processes. Additiptied inference process used for
hybrid Bayesian networks, is also used for Dynamic Bayeseworks.

Chapter 3 introduces the most important points from corttiebry. Major theme is the
state space description, including a short discussion ohabforms. Also the description of
dynamic systems by difference equations is explained,iasitbory provides the background of
our models. Additional points are the setting of contrgli@arameter’s, to provide us with means,
to compare Bayesian controller with traditional ones.

The experiments with dynamic systems are discussed in@tsapptand 5. The former dis-
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cusses the application of Bayesian controllers to lineaadyic systems and the comparison of
state space and difference equation model.

The latter discusses the research concerning modelingaartcbtof non-linear systems. The
concept of linear approximation by multiple Taylor seriesntroduced. In the second part of
chapter 5 the control of nonlinear systems is discussed.

Chapter 6 introduces briefly the modeled manufacturinggsees. This chapter provides
only a short discussion of the parameters. The physicalgrvaakd is omitted.

The models developed for the manufacturing processes ithattaoduced in chapter 6, are
provided in chapter 7. Similar techniques to those, dissdigschapter 5, are used. An additional
requirement, discussed in chapter 8, is real-time. Herenthgsures which can be taken to react
in real-time, mainly the dependency on the number of timeesli is examined. The thesis
finishes with an overview about the results and suggestmrfsifure work in chapter 9.
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INTRODUCTION



Chapter 2

An introduction to Bayesian networks

2.1 Preliminaries

It is our aim to model technical processes using statistieaans. This section will shortly
introduce the terminology of probability theory, i.e. remdvariables and their dependencies are
discussed. A deeper introduction is given in [Bre69; Bre73]

Manufacturing processes depend on many different paraspetg. welding depends on the
power and the velocity of the laser beam. The quality of thetjmight be measured by the
tensile strength, i.e. the force needed to divide the twoksaln our experiments a forde in
an interval [ON , 5200 N] as set of possible outconmesas measured.

In a first case the engineer might be only interested whetteetansile strength exceeds a
thresholdF,,;,, i.e. a mapping

Fi(w) = (2.1)

1 ifw" S Fmin
2 otherwise

from the outcome of an experiment to a finite set{12} is used. In this casé; is adiscrete
random variableas F (w”) has only a finite number of possible values.

In a second case the tensile strength itself is of importareehe identity is used as mapping
Fy(w") = w". In this case the domain of the mappifgis infinite, F; is acontinuous random
variable. In the following discrete random variables are denote&bygontinuous ones by or
Z.

It is possible to assign a probabiliy( X (w") = z), abbreviated byP(z), to the resultX (w").
For continuous random variables a distributigh’ (w") = y), or shortep(y), has to be used, as

13
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it is not possible to assign a positive probability to a senglenty.

When modeling technical processes usually more than om®nawariable is involved, i.e.
dealing with probabilitiesP(X;, Xs,---, X, ) is essential. Sets of random variabl&s =
{X1, Xs, -, X, } are denoted by calligraphic characters, tfh§s(;, X, --- , X, ) is abbre-
viated by P(X).

A probability table which assigns a probability to each evelt = z1, Xo = 29, - -+ , X, =
Zny ), Will grow exponentially with the number of random variabley. To factorize the proba-
bility P(X;, Xs, -+, X,, ) theconditional probability

P(Xy, X5)
P(Xy| X)) = ———= 2.2
(XalX) = =55 (22)
might be used to rewrit® (X, X, -+, X,,,,) tO
nnN
P(Xy, Xa, -+, Xy) = P(X0) [[ P(Xil X, -+, X)) (2.3)

1=2

which is known as thehain rule Sometimes?(X,|X,, X3) = P(X|X3) holds, that is the
state of the random variable¥; does not matter, provided that the stateXof is known. In
this caseX; and X ; are callecconditionally independergiven X ,, denoted byX; 11 X 3| X .
When X, is empty,X; and X 5 are calledndependent

Conditional independency can be used, to rewrite the cludérto

nn

P(X1, X5, Xoy) = P(X0) [ [ PXGIP(X)) (2.4)
=2
whereP(X;) C {X;, Xy, -+, X;_1} are called th@arentsof X;. Variables which are not in the
set of parent$(X;) are assumed to be conditionally independenkaf WhenP(Xj;) is a true
subset of X, X», - - - , X;_1}, the conditional probability table fa?(X;|P(X;)) has less entries
thanP(X;| X1, Xo, -+, Xi_1).
As an example a snapshot of a family’s life is regarded. Ringt seasoy € { spr’,’ sum’

, ' fal’; win’} which has an influence on the state of the heafihge {"on’,’of f’}, and on
problems starting the caS{ € {'yes’,’no’'}), is observed. The heating is only switched on,
when the family is not absenti(€ {’yes’, no’}. The last random variable is the cost of energy
E. € {"low’ medium’,’ high’ }. The probability distribution
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P(A) P(S) P(E.|H) H="on" H="off

A="yes’ 0.15 S ="spr’ 0.25 E. ="low’ 0.1 0.9

A="no 0.85 S ="sum' 0.25 E, ="med 0.7 0.05
S="fal’ 0.25 E. ="high’ 0.2 0.05
S ="win’ 0.25

Table 2.1: Probabili- Table 2.2: Probabili- Table 2.3: Conditional probabilities for costs of
ties for nodedbsent ties for nodeSeason €energyk.

P(H ="on’|S,A) A="yes’ A="no P(Sp) P(Sp ="yes’|S)

S ='spr’ 0.1 0.3 S ='spr’ 0.05

S ="sum’ 0.01 0.05 S ="sum’ 0.05

S ="fal’ 0.1 0.3 S ="fal’ 0.05

S ="win’ 0.2 0.99 S ="win’ 0.3
Table 2.4: Conditional probabilities for node Table 2.5: Conditional probabili-
Heating ties for node starting problents

might be simplified to
P(S, A, H,Sp, B.) = P(S)P(A)P(H|S, A)P(Sp|S) P(E|H) (2.6)

which reflects the assumption that, e.g., the probabiliglbsience does not depend on the season,
and that the costs of energy are independent from the seadanf &eing absent, provided that
the state of the heating is given.

The probabilities for this example can be defined as in tébhles 2.5. They will be used later
in this chapter to illustrate the inference algorithm foryBsian networks. Table 2.4 shows only
the probability forP(H ='on’|S, A). As the probabilities sum to onB(H ='off'|S, A) =
1— P(H ='on’|S, A). The probabilities foiSp ='no’ are calculated similarly.

2.2 Definition of Bayesian networks with discrete variables

To illustrate conditional independency, a directed acygtaph (DAG) with edges pointing from
the parents of(X;) to X; is used.

The DAG representing the independencies of equation (& Bictured in figure 2.1. These
considerations result in the definition ofBayesian network Bayesian networks (BNs) are a
compact graphical representation of a probability distidn, and exhibit the conditional inde-
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AbsentA Seasord

NN

HeatingH StartingSp

Y
EnergyFE.

Figure 2.1: Graphical representation of the example

Figure 2.2: Two different Bayesian networks for the samé&ithistion

pendency of the distribution’s random variables.

Let{X,...,X,,} be asetof random variables, each of which takes values ie s@main
Dom(X;). ABayesian network oveX1, . .., X, , consists of two components: a directed acyclic
graphG(Vg, Eg), with Vg = {X;,..., X, } as its set of vertices anBlg = {X; — X;|X; €
P(X;)} as set of edges. To each nolle a conditional probability distribution (CPDP (X |
P(X;)) is assigned (see [SGS01], page 13).

Note that a Bayesian network defines a unique probabilitiridigion, but not vice versa.
A very simple example is the representation fX;, X5) in figure 2.2, which is equal to
P(X1)P(X3|X,) orto P(X,)P(X;]|X2). But usually there is an edge froi, to X, if chang-
ing X; has an influence oX,, i.e. X; may be regarded as causing an effect\on A detailed
discussion abousomorphic Bayesian networkise. BNs representing the same probability dis-
tribution, can be found in [HG95].

The next question is how changes in the evidence, e.g. dhgehatS = win’, changes the
probability distribution. Before introducing an algonitihfor the recalculation of the probability
distribution when new evidence is observed, a quantitatiseussion is given to gain a more
intuitive insight. This discussion (compare [Jen96; JeiSIAS01]) is based on different types of
connections in a BN.

If there is a directed pathy, — --- — X; — --- — X, from an arbitrary start nod& to an
end nodeX., this is called aserial connectiorbetweenX, and X.. ObservingX, has of course
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NN

Figure 2.3: Diverging connection (left) and collider (rtph

Xi

c

1

an influence on the probability distribution &f,, unless there is an evidence f&r. In our
example the observation that the season is winter woul@éaser the probability of high energy
costs, unless it is notified, that the heating is switched afftcommon causeX. for different
eventsX; - - - X; is usually modeled by diverging connection(Confer left hand side of figure
2.3). For example an observation that the heating is onteesud higher probability for winter,
which in turn leads to a higher probability for starting pieris with the car. This example shows
that a diverging connection also enables the flow of inforomai.e. an observation for one node
leads to a changed probability distribution of the otherenod

The last type of connection, calledllider (see right hand side of figure 2.3), is used to model
random variables(; - - - X;, all causing an effect oiX.. If X, is not observed, changes in the
probability distribution ofX;, 1 < ¢ < [ have no effect on the probability of;, 1 < j <1[,i # j.
For example observing that the family is absefitf %es’), has no effect on the seasfn

The three types of connections can now be used to charactégzinformation flow in a
Bayesian network.

In a serial connectiok;, — X; — X, — --- — X; — X, the information flow might be
blocked by instantiatind(;, so that changes of; no longer have an influence of.. Diverging
connectionsX; «— X. — X, show a similar behavior. Here the information flow betweégn
and.X; can be blocked by instantiating the common souxce

A collider X; — X, < X; shows a different behavior. When no information is givenuibo
X., changes inX; have no influence oX;. Contrarily, when evidence is given fof. or some
of its descendents the information flow betweérand X is enabled. These considerations lead
to the definition of d-separation.

Two distinct variablesX, and X, in a causal network are calledseparatedf, for all paths
betweenX, and X,, there is an intermediate variabl (distinct from X and X.) such that
either

* the connection is serial or diverging aid is instantiated or

» the connection is converging and neith€r nor any of X;’'s descendants have received
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evidence.

If X, andX, are not d-separated, we call thelktonnected

If the Bayesian network is readily defined, i.e. the DAG arel¢bnditional probabilities are
determined, there are several tasks for which the Bayesawonk might be used. The first one
is calledmarginalization Here the user is not interested in a distribution of all and/ariables
X = X,1UX 2, butonly in a partX,; € X of it. Thus it is necessary to calculate

P(Xp1) =Y P(Xp1, Xp0) ; (2.7)

X0

i.e., to sum over all the variableX ,, which are not in the marginal distribution. A similar op-
eration exists for continuous random variables, the orffeince is that in this case summation
is replaced by integration.

A second frequently occurring question is: How is the pralitgitalistribution P(X') changed,
if X; = x; is known, i.e. how isP(X|X; = z;) calculated? The next section introduces the fre-
guently used junction tree inference algorithm which is oray of efficiently calculating the
requested distributions.

2.2.1 Junction tree algorithm

To use the Bayesian network, e.g. in an expert system or imaaiter, an efficient inference
machine is necessary to calculate marginal distributiodyude evidence, or to calculate in-
stantiations of the random variables which lead to a maxjpnabability. One algorithm for
the propagation of evidence is introduced in [Pea88], bumast of the cases thjanction tree
algorithm is used as described e.g. in [LS88] or [Jen96], revlveference tasks are done in a
hypergraph callegunction tree The junction tree is generated from the DAG in several steps

Moralization and triangulation

As a first step, all nodes with a common child are connectedhésame time all directions in
the original DAG are dropped. The resulting graph is calledaaal graph The moral graph
resulting from figure 2.1 is given in figure 2.4. As a resultlink between the nodedbsent and
Season is added.

Next the moralized graph is triangulated. As the triangafats applied to an undirected
graph (directions are dropped during moralizatiG\y ¢, E¢), the edges irl; are denoted by
X, — X;.
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‘ AbsentA ‘7‘ Seasort ‘

‘ HeatingH ‘ ‘StartingSp‘

EnergyE.

Figure 2.4: Moral graph of figure 2.1

XI XZ X] Xz

X3 Xy X3 X,

——————

X7 X7

Figure 2.5: Triangulation of a graph

A undirected grapl(V g, Eg) is calledtriangulatedif any cycle X; — Xo — - -+ — X 4
— X, of length! > 3 has at least onehord i.e. a link.X; — X; between two non-consecutive
nodesX; and.X;.

If the required chords are not already in the set of edgey, dhe added, in order to get a
triangulated graph. Figure 2.4 is a trivial example for artgulated graph, as the longest cycle is
of length 3. A more complex example is given in figure 2.5 whiohtains the cycl&,—X;—
X5— X;—Xs—X,—X, which has no chord. To get a triangulated graph, the likiks-X,
X,—X;5, andX;—X, can be added.

The process of moralizing a graph is unique, whereas thegiation is not. It is of advan-
tage to add as few links as possible in order to obtain thagtkated graph, as the number of
links has a major influence on the time complexity of the iefee process. More information
about triangulation and its time-complexity is given in #&%0]. A more thorough introduction
into graph theory with respect to Bayesian networks is faarchapter 1 of [Lau96].
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Figure 2.6: Junction tree for example in figure 2.5

Junction tree

Itis now possible to identify subgraphs, where all nodegpamvise linked for example subgraph
G({A,S,H},{A—S,5—H, H—A}) in figure 2.4. Maximal subgraphs with this property are
calledcliguesand are used as nodes in a hypergraph.

This hypergraph is organized in a special way, so that aleedd; on a pathX, — X; —
X, —--- — X; — X, between the start hypernodé, and the end hypernod¥, contain the
nodes of the intersection betwe&n and X ., formally X ; O (X N X.). This property is also
known as theunning intersection propertyThe resulting tree is calledjain tree. The join tree
of our example contains three cliquds}, S, H}, {H, E.}, and{S, Sp}. According to [Jen01],
there is always a way to organize the cliques of a triangdlgtaph into a join tree.

For inference purposes additional nodes containing théoranvariables in the intersection
of two neighbored nodes are added. These additional noéesalledseparators The join
tree should be used for the inference process of Bayesiavoriet, thus a mean is missing
to calculate the distributions for random variables of thia jfree. To enable the calculation
of distributions, tables are attached to each clique andraém of the join tree, similar to the
conditional probability tables of a Bayesian network. Teh&sbles are callegotentials denoted
by ¢, e.g. the potential of a clique is denoted byy¢. In comparison to probabilities, the entries
of a potential do not sum to 1. Only after message passingusked later in this section, these
potentials may be used for the calculation of probabilities

The domainDom(¢) of a potentialy is the set of random variables being represented by
the potential. The resulting structure of a join tree, idaohg the separators, together with the
potentials for each node and separator, is called a junttsen Figure 2.6 shows the junction
tree of the example in figure 2.4. The rectangles are usedifues, the ellipses for separators.

Next, the mathematical properties of potentials are dssuis Afterwards the initialization
of the junction tree is discussed. As a result of the inigtion the junction tree represents the
same distribution as a Bayesian network.
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Season

’ ’ 3 ’

O(A,S,HY spr sum

Absent =Yes’ (3.75-1073,0.03375)  (3.75-107%,0.037125)

Absent = ho’ (0.06375,0.14875) (0.010625,0.2018754)
"fal’ Twin’

Absent = yes’  (3.75-1073,0.03375) (7.5-1073,0.03)

Absent = ho’ (0.06375,0.14875)  (0.210375,2.125 - 1073)

Table 2.6: Potential after initialization

Potentials

As starting point a simple example, which will later on bedis®initialize the nodd S, H, A}, is
givenin table 2.6. Each entry of the table is two dimensioeptesenting the values féfeating
=’on’ and Heating = of f'. To be able to use potentials for the inference process yeBan
networks, it is necessary to define multiplication, divisiand marginalization for potentials.
Multiplication of two potentialsp; and¢, is done by piecewise multiplication of the entries. If
Dom(¢;) = X1 U X andDom(¢2) = X, U X 3 the product ofp; andes is defined as

P1d2(x1, T2, T3) = O1(T1, T2)Pa(T2, T3) (2.8)

Division is defined in the same way as piecewise division eftéble entries.

As an example let us take the probability fdbsent asp; and the conditional probability
table for Heating asp, (see tables 2.1 and 2.4). The resulting potentia= ¢;¢, is given
in table 2.7. The two entries in parenthesis represent theesdor H ="on’ and 'of f’.The
potentialps('on’, spr’ yes’) = ¢1('yes’ )pa("on’ ) spr’) = 0.15-0.1 = 0.015. In a similar way
o3 of f')spr' ) yes’) = 0.15- 0.9 = 0.135 is calculated. After multiplication with the potential
¢(s) for the season table 2.6 is obtained.

Marginalization of a potential foX = X; U S to a potential foiS, also calledprojection

¢ = D dla,s) (2.9)

z1€Dom(X 1)

is defined similar to marginalization over probability tadl A complete definition of an algebra
using potentials is given e.g. in [Jen96] or [Jen01]. Negtrépresentation of probabilities by a
junction tree is discussed.
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Season
o3(H, S, A) "spr’ " sum’

A ="yes’ (0.015,0.135) (1.51073,0.1485)

A ="no (0.255,0.595)  (0.0425, 0.8075)
"fal’ "win’

A ="yes’ (0.015,0.135) (0.03,0.12)

A ="no (0.255,0.595) (0.8415,8.5-1073)

Table 2.7: Potential resulting from multiplication of thenclitional probabilities fordAbsent and
Heating

Representation of probabilities by a junction tree

So far the graphical representation of the junction treethadnathematical properties of poten-
tials are defined. The missing link is, how the junction tregether with the potentials defines
the probability distribution. The aim is that at all time thuotient of the product of all clique
potentials by the product of the separator potentials isketputhe probability distribution of the
Bayesian network, as expressed in 2.10.

_ HCECJ be
HSESJ Os

This property is ensured during initialization and is nesteanged throughout the complete in-

P(Xi1,++  Xay)

sy iy

(2.10)

ference process. Another desirable property, to be reaatibe end of the inference process is
theglobal consistency

X X
& =96 (2.11)

which means that the result of calculating the marginal mitaéis independent of the used
potential.

To guarantee equation (2.10) a potential of 1, that is a pialenith each table-entry equal to
1, is assigned to each clique and separator. Afterwardsaeectitional probability? (X;|P(X;))
is regarded as a potential;) and multiplied with a potentiapc with the domainF (i) C
Dom(C). The setf (i) = P(X;) U {X;} denotes the family of nod&; and contains the node
itself together with all its parents.

Usually it is said that a variabl; is assigned to a node in the junction tree, i.e. to a clique
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C of random variables. This results in

P(Xy, Xay) = ﬁP(XﬂlP(Xi)) (2.12)
= [ ¢re) (2.13)
= I ¢ (2.14)
CeCy
Ha:eu: oc
= == 2.15
HSeSJ ¢s ( )

The last equation holds, as all separatoese initialized to one.

Here it is important to notice that several potentials) may be assigned to the same node
in the junction tree, e.g4, S, andH may be all assigned to the cliqgel, S, 4} in the junction
tree. This assignment results in the potential of table Bi#t. only the assignment off to the
clique{A, S, H} is obligatory.

Direct after initialization the property of equation (2)i4 not given. For exampl$ﬁfE}c} 5
1, as no information about the state of the heating is asgigmthat clique.

Message passing

To ensure consistency of the junction tree, messages aseghstween the cliques of the junc-
tion tree. This results in a recalculation of the potentials

A cliqueC; is said to absorb knowledge from a cligqQg if the separato§,; betweert; and

C, gets as new potential*
¢5, = 0" (2.16)

the marginal ofC;. Afterwards the cliqué; is multiplied with the quotient of the new and the
old separator

o,
e, = oo, —2 . (2.17)
’ (bsij
After C; has absorbed knowledge fraby, equation (2.10) still holds, as
[lcec, 9¢ _ (HCewJ\{cj}) ¢C> be, (2.18)

Hses, 0% (Hse&\{sij}) ¢5) %5
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i.e. only the cliqueC, and separato®,; have changed. Including the assignments of equation
(2.16) and (2.17) leads to

(Ha:e (C5\{C;}) ‘Z) ) Qba: _ (HCE(CJ\{C} </>c> a:] 2.19)
<HS€(SJ\{SU}> %) % (HSG (5\(Si5) ¢s) S”¢
_ (HCE(CJ\{C ) %) ée, 020
<HSE (S:\{Si;}) ¢s) Sij

The first round of message passing is calbetlectEvidence During collectEvidence the
parent clique€,, absorb knowledge from their childrén,,. A parent clique is only allowed to
absorb knowledge from its child, if this child has finishesl khowledge absorption. Thus the
leaves of the junction tree are not changed during colledd#hce. The root node is the last one
to be updated as it has to wait until all of its children havesfied knowledge absorption.

In a second phagdistributeEvidencéhe children absorb knowledge from their parents. This
phase is similar to collectEvidence, but the messages atersthe other direction. After col-
lectEvidence and distributeEvidence are finished, it isgu@ed that the junction tree is globally
consistent. That is for any two potentialsand¢; which share common variabl& marginal-
ization results in the same potential

& =0 (2.21)

for S.

In our example the potentiadl;y £, is initialized with the conditional probability table of
E., i.e., ¢yupy = P(E|H). The potentiakg g} is initialized with P(Sp|S). The poten-
tial ¢ga,5,1y, Which is used as root, gets its first value from the producP@fl), P(S), and
P(H|S, A). When collectEvidence is called,%ggc} and gb%‘ﬁp} are calculated. As both are
equal to 1, i.e. a table with all entries equal to 1, nothingnges. During distribute evidence
Q%ﬁH} is calculated. The result, at the end of distributeEviderceummarized in table 2.8
which is used to update the separator potentjgh and the clique potentiab;; .. Similar

calculations are done for the other clique potentials,., .

Introduction of evidences

Another frequently occurring task is the calculation of giaal probabilities given new evi-
dences. Usuallhard andsoft evidenceare distinguished. Hard evidence means the knowledge
that X = z, and soft evidence means the exclusion of some statesXi.e.{z;, z;,z;---} C
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{H}
¢{A,S,H}

H="on’ 0.363875
H="off 0.636125

Table 2.8: Potentiab; '’y ., after distributeEvidence

Dom(X). Both types are handled in a similar way. A clique withe C; is selected from the
junction tree and all positions in the potential table¢gf, being not consistent with the evi-
dence, are set to zero. When evidence is entered, the roetaadld collectEvidence. After this
phase is finished, distributeEvidence is called. At the dndessage passing the junction tree is
consistent again. Marginal probabilities with respecti®new evidence

P(X,e)=> ¢c (2.22)

C\X

result from marginalizing using arbitrary cliquésD> X. Of course the same holds for a separa-
torS O X.

The message passing scheme in junction trees may be improd#terent ways. Shenoy
and Shafer[She97] save the division when calculating the pmentials. The main difference
to the junction tree algorithm is that the Shenoy-Shafeordigm sends messages that do not
include the part of the potential caused by the receiver.

2.2.2 Learning algorithms for Bayesian networks

Up to now, it was assumed that the conditional probabiliftés;|P(.X;)) are given, and only
guestions concerning the calculation of marginals and thbability of special configurations
are discussed. But in reality typically only the domain kiexlge of the modeled application
and a lot of data are given. That is, neither the structure tlm conditional probabilities are
given. The former is not within the scope of the thesis, forsguksion see e.g. [FMR98; CH92;
HGC95; HG95].

When learning the parameters of a distribution, e.g. theditimmal probabilities of the
Bayesian network of figure 2.1, it is of advantage, if all r®dee observed. But usually in-
complete data occur frequently during model developmerddi#onally the usage of hidden
nodes, which do not represent an existing value, is somstme#pful in order to reduce the
number of parameters. When learning the distribution, assumed that the unobserved values



26 CHAPTER 2. AN INTRODUCTION TO BAYESIAN NETWORKS

are missing at random, i.e. that no additional informatsgiven by the fact that some variables
are unobserved. This assumption is meaningful for the ieahoontext of this thesis. A short
discussion of the different types of missing data is givefGBLS99] or [RS97]. The data of
the modeled processes also contain continuous variabless, T is necessary to use a training
method which is able to deal also with continuous valuesgligevith discrete and continuous
values at the same time.

In a statistical approach, it is supposed that the type ofdib&ibution, e.g. Gaussian or
Dirichletian, is given and that only the paramet@rsf the distribution are trained. The parame-
ters of the distribution are regarded as an additional randariable, the probability of a special
configurationz given the parametesis therefore denoted by (x|0).

For learning, two different approaches can be used. Theofirsis themaximum likelihood
estimation. The aim is to maximize the (logarithmic) likelod of the observation3(x’). When
n.(x) denotes, how often a configuratians observed, the likelihood’

N

L) =[] r@) =[] P (2.23)

j=1

is defined as the product of the probability of tNeobservations. More often the log-likelihood
L(0) =) ne(a’)log(P(a’)) (2.24)
is used.

The second approach is the Bayesian approach which is ¢kazad by the given a priori
distributionp(8) of the parameters. The a-posteriori distributigf|z!, - - - , ) which incor-
porates the observations is calculated. Usually so catiegligate priors [Bun94] are used, so
that the a-posteriori distribution8|z!, - - - , =) is of the same family as the a-priori distribu-
tion. For discrete Bayesian networks a Dirichlet distribator for binary random variables a
Beta distribution [Rin97] may be used.

In the following the EM algorithm [DLR77; ST95] will be dissged. This algorithm is based
on the maximum likelihood principle. It is frequently usext fraining with missing data, and it
is able to deal with discrete and continuous data at the samee[Mur98a; MLP99]. It can be
even used for the estimation of a suitable structure of amynBayesian network [FMR98].
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Observatiore! A S H Sp E,

x! "yes' sum’  'on’ 'yes' 'med

2 1 ] 1 H 1 1 ’ ] ’ ]
T yes' ' sum on no med
x3 'yes' sum’ Toff  'no  low
xz? 'no’  sum’ 'off 'no  low
x’ 'no’ sum’ off 'no low’

Table 2.9: Possible observations for the Bayesian netwidiigure 2.1

In a Bayesian network the probabilify(x) is factorized by the chain rule to

nN
z) = [[ Plxolzec)) (2.25)
i=1

wherexp(x,)) denotes the configuration of the parent noBl€X’;) within the configuratione.
Similarly = (x,), denotes the configuration of the family ard, the instantiation of the-th
node withinz.

In table 2.9 five possible observations for the Bayesian ok figure 2.1 are listed. Using
the observatior! of table 2.9 the configuratiom%P(H)) = (yes’, sum’). Similarly the con-
figurationw%[F(H)) is equal to (on', yes’,’ sum’) and m%H) = ("on"). Using the factorization of
equation (2.25), the log-likelihood of equation (2.24)awritten to

ch )log(P(x)) = ch<m>1og<HP<w<i>|w<u><Xi>>>> (2.26)

i=1

= ZZTLC 10g z')|m([P(Xi)))) . (227)

r =1

To restrict the computation of the log-likelihood to locatforsn.(zr(x,))) andP(x |z @ (x,)))
equation (2.27) is adapted to

Z > ne(@Eey) log(Plaw|zexy) - (2.28)

=1 ZF(x;))

In equation (2.27) the terf?(H ='on’|A ="yes’, S ="sum’) occurs once for observation
! and once for observatiom?. In equation (2.28) the configuratioh ='on’, A ='yes’,
S =’sum’ counts twice as it is observed twice.
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A distribution of discrete random variables is determingdhz conditional probabilities
P(X; = wy|P(X;) = p(Xy) = 6,75 (2.29)

i.e. Hj’p(x") denotes the probability, that thieh random variableX; is instantiated with theg-th
valuez;; € {z;,zi, -+, T, } = Dom(X;) of its domain, and that their parents are instantiated
with p(X;). Now the log-likelihood

LO) =) > ne(rx,)log(ba, ™) . (2.30)

=1 F(x;))

can be expressed in terms of its parameterfAssuming that the parameter of different ran-
dom variables or for different parent configurations arenked (global respectively local meta

independence)[CDLS99; "™ is maximized by

AL ) nc(iL‘ F(X; )
em(igwxl)) _ Fx))) (2.31)
ne(Z(E(x.))
For the Bayesian network of figure 2.1, table 2.9 lists fiveeobations. Using equation (2.31)
results in
H,{A="yes' ,S='sum’}
Oros -

QH,{A:’yes’,S:’sum’}

/On/ -

WINW| —

If unobserved variableg have to be taken into account each configuration
T = uo (2.32)

consists of an unobserved partand an observed past Thuslog(P(o,u|6)) has to be max-
imized. Now things become more complicated as an estim#bionr depends or® and vice
versa. If unobserved variables occur, the EM algorithm camded. It employs two different
steps. In the first step (E-step) an estimath from the k-th iteration is used to calculate
expected values for the missing values

This missing values are now used to calculate the estimaiguts

Me(@F(x) = Elne(@@(x,)) 0", 0" - o] (2.33)



2.3. HYBRID BAYESIAN NETWORKS 29

of x((x,) given theN observation®’. The expected counts can be calculated

N

Ae(Trxy) = Y P(Xi = @), P(X;) = 2p(x,) 0%, o) (2.34)

J=1

using the probabilities?(X; = x(),P(X;) = @ (x,)|0"), 0’) that can easily be computed
using the junction tree algorithm or other inference aliponis for Bayesian networks. The next
step of the EM-algorithm is the maximization step. Simitaetuation (2.31) the new parameters
are now estimated by
HhT (X)) _ ﬁc(w([F(Xi))) (2.35)
o ne(®exy))

the counts are simply replaced by the estimated counts. &legparameters are now used in a
new expectation maximization loop. It is proven that thenestion of 8*) converges, but not
necessarily to a global maximum. Thus it is advantageouséatpriori information, instead of
starting with an arbitrary estimation fé¥”), to get a good initialization.

So far only inference and training of discrete Bayesian ndta/were discussed. The next

step will be to add continuous variables to the Bayesian ortw

2.3 Hybrid Bayesian networks

The data from the engineers do not only consist of discretiablas, like the type of blank,
but also continuous variables like temperature or press@nee possibility to cope with this
situation is to find a discretization of continuous variabkeg. by vector quantization. Of course,
discretization does not only result in a loss of informatidkdditionally, there is no mean to
make predictions for values between discrete values. Ttaeeims of advantage to enhance the
Bayesian network so that it can cope directly with contimiaandom variables.

To enable an analytical calculation of means and varianeeséstrictions apply. It is sup-
posed that there are only linear dependencies between titiewous variables and that the con-
tinuous variables are normally distributed.

The restriction to linear dependencies is overcome by usirtly, a discrete and continuous
node, for a continuous random variable, where the discratie s triggered by the continuous
on. In section 2.3.1 the distribution of a so called hybrid/&ian network is defined. For
inference there are two possible algorithms. The first amegduced 1992 by S. L. Lauritzen
[Lau92], uses two different representation schemes fordib&ibutions. Switching between
those representations involves a matrix inversion andasetbre numerically instable. This
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‘ Absent “ Season‘

Y
Heating ---

Figure 2.7: Example for a hybrid Bayesian network

drawback is fixed by the second approach, described by the aathor in [LJ99].

2.3.1 Definition of hybrid Bayesian networks

Similar to discrete Bayesian networks, also hybrid Bayesietworks are defined using a DAG.
The set of node¥ ¢
Vg=AgUITIg (2.36)

contains the random variables which can be partitionedsardte and continuous random vari-
ablesAg respectivelyl'g. Once again the conditional independencies are charaeteby the
structure of the DAG. Usually, it is assumed that discretéabdes have no continuous parents,
an exception is the 'variational approximation’ introddaée [Mur99]. Lerner [LSKO01] suggests
to expand the inference algorithm, so that also Softmax s\a@g@resenting a distribution of a
discrete random variable that depends on one or more cantiparents, can be handled.

The probability of discrete nodes can therefore be chaiaetkby a conditional probability
table. Continuous nodes are assumed to be normally distributed, i.e. a Gaussianbdigon
is defined for each configuratian of the discrete parent®(Y) N Ag. These normal distribu-
tions are defined by their mean and varian¢e). The mean of the CG (conditional Gaussian)
distribution

ply | ®,2) = N(a(x) + B(z) 2,7 (x)) (2.37)

depends on an offset(x), the evidence: given for the continuous parents and a weight vector
Bla).

As an example let us consider the energy cdstsas a continuous variable. The energy
costs depend on the temperatute The Season is regarded as parent of the temperature
The Bayesian network is depicted in figure 2.7. To distinguiscrete nodes from continuous
nodes, the discrete nodes are drawn as rectangle or squarmegrtinuous nodes are drawn as
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ASH S,Sp

H,71,ES

sir |
]

Figure 2.8: Junction tree for the example depicted in figure 2

p(rlS)  a(S) (S p(E¢|H ) a(H) B(H) ~(H)
S ="spr’ 12 5 H="off" 300 -0.2 100
S ="sum’ 20 5 H ="on’ 500 -20 100
S = fal’ 12 5
S ="win’ 5 5

Table 2.10: Distribution for node Table 2.11: Distribution for nod&;

ellipse or circle. The dashed lines are not part of the Bayesetwork. They are added during
moralization. No additional links are added during trialagjon, which results in the junction
tree depicted in figure 2.8. The conditional probabilitiess@efined as before in tables 2.1 — 2.5.
For the new continuous nodes the parameters in tables 2d1D.ah are used. They are selected
so that the model reflects a sensible behavior, e.g. the neeapetrature in summer is higher
than the mean temperature in winter.

The most frequently used inference algorithms for hybrigidd@an networks are both based
on a junction tree. The first steps towards a junction tregafization of the BN and triangu-
lation, are nearly identical to the steps for discrete BNBe ©nly difference is that the trian-
gulated graph is not allowed to contain a continuous péth-----Y;—---— X, between two
non-neighbored, discrete nod&s and.X,. A good overview about triangulation algorithms for
discrete BNs is given in [Kjae90], the proceeding for hybridBis described in [Ole93] and
[JJD94]. Using the triangulated graph a junction tree iswakted which has as special property
a strong root. The strong root is important for marginai@aturing message passing.

A clique Cg in a junction tree is atrong rootif any pairC4, Cg of neighbors on the tree
with C 4 closer toC g thanC g satisfies

(CB\Ca)CIg Vv (CgNCa) C Ag. (2.38)
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G—®| [

Root R [----------- "
‘

Figure 2.9: Two cliques with a hybrid separator

Root R ----

Figure 2.10: Two cliques with a discrete separator

According to Leimer [Lei89] the cliques of a decomposableked graph can always be
transformed in a junction tree with at least one strong root.

Neighboring cliques which might occur in a junction tree depicted in figure 2.9 and 2.10.

In figure 2.8 the cliqu¢ A, S, H } can be used as strong root. The separator betyuéef, H }
and{S, Sp} is a subset ofA;. When{S, H,7} = C4 and{H, , E¢} = Cpg, the set difference
Cp\Ca={H 1 EF\{S H,7} ={E} C I'g.

Using a junction tree with strong root guarantees that tharsgor potentials calculated dur-
ing collectEvidence are always CG-potentials. When cataulj the separator potentials in the
other direction usually a CG potential with the same meandisykrsion is used instead.

After the construction of the junction tree, each node of Bieis assigned to one clique
in the junction tree. That means the potential of the nodeuHiptied with the clique’s po-
tential. The representation of the potential depends omusiee inference algorithm. The first
one is described in [Lau92]. It works similarly to the algbm for discrete BNs; i.e., the joint
distribution is calculated by a division of the clique pdiels by the separator potentials. This
algorithm uses two different potential representatiorth@same time. The transformation from
one representation scheme to the other includes the caouta an inverse matrix. Sometimes
this leads to numerical instability. To avoid numericaltaislity, Lauritzen introduced a second
inference algorithm in [LJ99] which distinguishes betwesencalled head and tail variables. A
potential is proportional to a distribution of the head &htes given the tail variables.
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2.3.2 Inference in hybrid Bayesian networks

Moment and canonical characteristic

Up to now the strong root of the junction tree is discussea jlihction tree is used by both algo-
rithms. In analogy to discrete BNs, each variallés assigned to a clique, so thatF (X)) C C.
The potential of each variable is represented bynlbenent characteristjc.e. by its mearg(x),
the covariance matri¥’(x), and the probability of the configuratio¥x). The distribution of
continuous node¥’, given the configuration, is equal to

p(Y | z) = N(§(x), X(z)) (2.39)

whenever”(x) > 0. Beside the moment characteristic it is possible to repites€G-distribution
by thecanonical characteristid.e. by a potential

o(z,y) = x(z) exp(g(z) + h(z)"y —y" K(x)y/2) (2.40)

wherey(x) denotes an indicator function which is equal to 1/#ffx) > 0, andg(x) is a real
number. The length of the vectdr is equal to the length off. The symmetric matrixs is
the inverse of the covarianc®. Sometimes(x) is omitted andP(x) > 0 is required instead.
As both representation schemes are used for different tpesaduring inference process, a
transformation

P(z) o (det (3(x)))2 exp(g(a) + h(z)" Z(z)h(z)/2) (2.41)
((x) = K(z) 'h(z) (2.42)
Yx) = K(z)! (2.43)
Kz) = X(x)! (2.44)
h(z) = K(z)é(z) (2.45)
o) = log(P()) +log(det(K(w)))—|F |102g(27r)—£(w)TK(w)£(w) (2.46)

between the moment and the canonical characteristic hasdefined. The number of continu-
ous nodes in the potential is denoted|hy |.
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Initialization

The canonical characteristic is used for initialization

a@)?®  log2my(@))

glx) = — (@) 5 (2.47)
. - =) 1

h(x) @) ( B(a) ) (2.48)
o - L —B(=)"

K@ = 1@ < B(a) —ﬁ(w)ﬂ(w)T> (249)

using the parameters given by the definition of the BN.

During the initialization of the junction tree in figure 2.Bet random variableéZ$ has to
be assigned to the cliqugH, 7, E€}. This clique is the only one which contains the parents
P(ES) = {H,7}. The noder has to be assigned to the cliq{i§, H, 7}. For the initialization
of ¢gu.+, ey the distribution\V (E¢|H, ) is transformed in a potential. Using the parameters of
table 2.11 results in the following canonical charactarifstr the potentiaby - ge; .

300  log(2m - 100)
H — / / — _ _

= —450 — 3.22 = —453.22
300 1 3
h(H="off) = — =
( 1) 100 \ 0.2 ) ( 0.6 )

1 1 0.2
K(H="off) = —
( ff) 100\ 0.2 —-0.04 )

1 0.01 0.002
100 \ 0.002 —4-104

Provided the domainBom(¢;) = Dom(¢,) of two arbitrary potentialg; and¢, are equal,
the canonical characteristic can be used directly for thiéiphigation and division of potentials

(glyhlaKl) X (g27h27K2) = (gl +g2,h1 -+ hQ,Kl —+ KQ) . (250)

Usually the precondition of equal domains is not given, #wiexpansiorof the potentials from
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€.0.01x, v} (T1, Y1) 10 dix, x,,v,,v2} (T1, T2, Y1, Y2)

g{XhXQ,Yl,YQ}(wl?wQ) = g{Xl,Yl}(w1> (251)
hix, vy (x
h{Xl,XQ,YLYQ}(mlan) - < x 72 }( 1) ) (252)
K ,Y 1} (L1, T 0
K{Xl,XQ,YLYz}(wl;wQ) = < X 7Y5( ! 2> 0 ) (253)

may be necessary to guarantee equal domains. Using exparsiomultiplication, an initial
potential of all cliques in the junction tree is calculate@ihe separators are initialized with
¢s = 1,i.e.¢s5 = (0,0,0).

In the junction tree depicted in figure 2.8 the three variableS, and H are assigned to
the clique{A, S, H}. This cliqgue has to distinguish 16 different characterssty, h, K), one
for each configuration. For the configuratidn="yes’,S ="spr’, H ='on’, the new potential

DT as.m} is

Qb?A,S,H} = ¢{A}(A = /3/63/) X ¢{S}(5 = ISPTI) X
biasm(A="yes', S ="spr',H ="on")
= (—1.8971,0,0) x (—1.3863,0,0) x (—2.3036,0,0)
— (—5.586,0,0) .

For the other cliques no multiplication is necessary duniitggalization.

Marginalization and message passing

Directly after the initialization, message passing isgaged. For message passing equations
(2.16) and (2.17) are used, but with a changed potentialidefinn comparison to the discrete
case. According to equation (2.16) marginals have to beulzbd during message passing.
Marginalization of a CG-distribution over continuous \ednlies results in a CG-distribution. For
marginalization over a discrete variable, a sum of multpéissians with different weights has
to be calculated. The resulting potential is not necegsai@G-potential. E.g. figure 2.11 shows
a mixture of two Gaussians.

Marginalization of a CG-potential is only guaranteed tautes a CG-potential, if marginal-

izing is carried out over a continuous variable. The maﬂgiﬁé,xi};l}},ﬂ = (¢, h,K') of
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Figure 2.11: Mixture of two Gaussians

b(x.v1vsy = (9, h, K) with
h K, K
h = 1 K — 11 12
h2 K21K22

L [ Y1 [log(2m) — log(det (K11 (@) + hy (@) K () ha()

g'(=) = g(=) (2.54)
W(x) = hy(z) - Ko(z)K (z)hi(z) (2.55)
K'(z) = Koy(x) - Ky(x)K;) (z)Kz(x) (2.56)

is a so callegstrong marginain contrary to thaveak marginalvhere only mean and dispersion
of the overall distribution are preserved.

Marginalization over discrete variables results in a C@ptal only if there are no continu-
ous variables in the domain of the potential or if these ewtus random variables are removed
by marginalization first.

When sending messages in the direction of the strong rodtpagsmarginalization takes
place. Calling distributeEvidence from the strong rooteakvmarginalization fromx, x, v, =
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(P, 57 2) tO (bl{Xl Y} (P,, f/’ 2/)

(X1,X2¥} =
Pl(x;) = ZP (1, @) (2.57)
g(w) = Z€ wl’?,(wfl’wz) (2.58)
22(531@2)1[’(531@2)
e = Ty
%(5(55‘17%’2) —&(21))" (&(z1, x2) — €' (1)) P (21, T2)
e (2.59)

may take place, where only the mean and dispersion of thei€@bdtion are preserved. After
sending messages in both directions, the junction treensistnt, i.e. for two neighboring
cliquesC,; andC, with separatof

b ~ o, (2.60)

holds, wherexx means that the first two moments are identical. After mespageing is fin-
ished, the cliques represent the true marginals for deseagiables, for the hybrid case it is only
guaranteed that mean and dispersion of a cligiue

ge ~ ¢!* (2.61)

are equal to the marginal of the joint potential

To get the junction tree in figure 2.8 globally consistentlemEvidence is called. First the

marginalgb’f Hop = gbﬁHHfE}c is calculated and assigned to the separator. Directlyvediels the

new separator potentla{H 7 is multiplied with ¢y 7, -

gbjES’Hﬂ—} = ¢{S7H7T} X gbjEH,’T} * (262)

The division by the old separator potential is omitted hexr¢hés potential is initialized to one.
Afterwards the strong rodtA, S, H} is updated. First the new separator potentials

* *|{S,
¢{S,H} = ¢{ng}} (2.63)
% S
Pisy = ¢g9,5}§ } (2.64)
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are calculated. Then the strong root gets the new potential

Plasy = Plasmy X Oy X Plsy - (2.65)

Once again the division by the old separator potential istewhi as they are equal to 1 directly
after initialization. All the calculated marginals arecstg marginals. Considering the property
of the strong root it can be seen that during collectEvidenegginalization always leads to
strong marginals. During distribute evidence weak maitgioecur, whenzsgiﬁ} is calculated.
Here marginalization over the discrete variakeason is necessary. In this case a mixture of
eight Gaussians is approximated by a mixture of two Gaussi&n equality of the potentials is

therefore not possible.

Introduction of evidences

The last task is the introduction of evidences. Discretd@awiesX = x are entered by multi-
plication of the potential with an indicator function so tlilae potential is zero for impossible
configurations. In contrast to discrete evidences, forinaous evidence¥” = y all cliquesC
with {Y'} C C have to be changed. Suppose that a poteatial(g, h, K) with

h — hl(w) K — K., Ky
hy(iﬂ) Ky, Kyy
is simplified, by entering” = y. The new potentiap’ = (¢’, h’, K’) is calculated by removing
the components far” by

J(@) = gle)+ hy(@)y - 2 (2.6
W) = hi@) - yKy(@) 2.67)
K'(x) = K (). (2.68)

Of course the introduction of evidences leads to a smallenaiio of ¢’. After entering the
evidence, the junction tree is inconsistent. Thus the fanstcollectEvidence and distributeEv-
idence must be called again to come to a consistent junate@n tAfter message passing the
clique potentials are proportional to the marginalized{alistribution.

Unfortunately it turned out that the frequent transformatbetween moment and canonical
characteristic is numerical unstable due to the matrixrgiea. This drawback is avoided in the
inference algorithm introduced in [LJ99]. The main ideaaspartition the set of continuous
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] @

Figure 2.12: Equivalent network for the training of the ndde

variables intcdheadandtail, so that a potential represents a CG distribution of the kaadbles
depending on the tail variables.

2.3.3 Learning the parameters of a hybrid Bayesian network

The aim is comparable to the aim in section 2.2.2, i.e. tonl¢lae parameters of the modeled
distribution. For discrete nodes conditional probabitaples are learned, the technique is the
same, if no arcs{ — Y from discrete to continuous nodes are allowed. For the ooatis
nodes the mean, the weight vecto3, and the variance are the parameters to be estimated.
If global and local independence of the parameters are saphd is sufficient to maximize the
parameters of each family independently. Of course, foestanation of the instantiation, the
complete Bayesian network has to be used. When assuminguvéiat continuous nod¥ has

at least one continuous parefitwhose last element is 1, the meacan be modeled by the last
column of the weight vectg8.

As an example see figure 2.12 which shows an equivalent nefiwonode £, where the
meana is replaced by the weight of the link— E¢.

The distribution of nodé&” with discrete parentX” and continuous paren% becomes

pyle, z) = eXp(%(y —B(x)" 2y (y - B(=)"2) , (2.69)

2m)y

where~ is the variance of the normal distribution. For the more gainease of a multidimen-
sional normal distribution see [Mur98a]. For the purposthefthesis one-dimensional distribu-
tions are sufficient.

Using an indicator function,(x;) being 1 iff z; = « and 0 otherwise, the part of the
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ESS Remark

d So0m1 6 with 6, = E[6,(a7)|0]
Syva L1 % Euly)l0’

Szyv.a Z (5J Ep[z7y7]07] Only if Y has continuous parents
S72T & ZJ 1 6 Ep[27(27)T|07] Only if Y has continuous parents
Sy.x Z E.[y|o7] Only if Y has no continuous parents

Table 2.12: Essential Sufficient Statistics for trainindigbrid Bayesian networks

log-likelihood depending on the parametersois

= log HH p(yf |27 @l 07)]P==)) (2.70)
j=1 =
The vectolo denotes théV observations, but all random variables andxz may be unobserved.
Once again the problem is that an estimation of the parametguires the knowledge of the
instantiation of the unobserved variables and vice versathe solution the EM-algorithm might
be used. It starts with an arbitrary parameter@s&t This is used to calculate the estimated log-
likelihood

N

;ZEZ%(W log(y(@))+6a(27)(y —B(@) =) (@) (y = B(x)"2/)|o’]. (2.71)

To keep track of theV training examples, thessential sufficient statisti@SS), listed in table
2.12 are used.

The indexz in E, is used to denote the expectation given tkat= x. The values used by
these formulas are calculated by enterras evidence and then using the junction tree algorithm
to calculate the missing values.

Using the statistics the new estimations

BE)" = SovaSsyra (2.72)
R o Syv.e B( )TSZZT,:B

Yz) = i ) (2.73)
aw) = 2o (2.74)

da
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H T ES 1
“on’ 10 493 1
“on’ 13 457 1
‘of f* 27 107 1
‘of f* 19 209 1
‘of f* 22 153 1

Table 2.13: Numbers used for the training of the paramefersae £

are calculated. The Bayesian network is used to calculatexpected values of the unobserved
random variables given the parameter of the last M-step.s@lexpected values are used to
calculate the ESS. When all training cases are includeci& 85, the parameters are maximized
using equations (2.72) to (2.74), where the last one is useddntinuous random variables
without continuous parents. For a discussion of the multedisional case see [Mur98a].

As an example we regard the training Bf, with F(E¢) = {H, 1, ES}. To simplify the
example, we assume that all variables are observed so thaamwégnore the other random
variables of the example and one EM-step is sufficient to titeé parameters. As training cases
the values in table 2.13 are observed.

The observations of table 2.13 results in the followingistas

dH:’on’ = 2
da=rofy = 3
Syy pr—ton = 493% +457% = 451898
Syyh—ron = [10 1]493 +[13 1]457 = [10871 950]
10 13 269 23
Sz27 Heton) = ] [ 10 1 ] + { [ 13 1 } = 93 9

This ESS results in the following new parameters for the nggle

AT
= [-12 613

5 = 0.

The results is obviously correct as there are two param&iete/o examples so that a variance
equal to zero meets expectation.
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Figure 2.13: A Hidden Markov Model as an example of a Dynanagdsian network

2.4 Dynamic Bayesian networks

The networks discussed in the previous sections had one oartrait, namely there is only one
random variable for each measurement. This is sufficiergdare of the engineering processes
discussed in this thesis, but for many purposes it is nottidedarly for the analysis of time
series, for medical purposes (e.g. the regular measureshenpatients fever), or for dynamic
processes described by differential equations, it is rsacgdo represent the measured data at
different points in time. So information about the past cambed for the prediction of the future.

The main idea is to represent each point in time by a sepamtedtan network, called time-
slices. These time-slices are linked together by tempalgée (cf. [Kjae92] [Kjee93]) or inter
slice connections. Usually the Markov assumption holds

Lo, L1, - 7wt71J—|—wt+17"' 7wt+k‘wt’ (275)

i.e. the future is conditionally independent of the pastgithe present. The nodés having
links to neighbored time slices are called theerfacenodes. Kjeerulff defines the interface as all
nodes with incoming links from previous time slices [Kjee9&hereas K. P. Murphy [Mur02]
distinguishes between forward and backward interface evtieg forward interface of a time-
slice contains all nodes with an edge to the next time-sliceéhe backward interface all nodes
with an incoming edge from the previous time-slice are idelil

As an example the HMM in figure 2.13 can be regarded. Here Sweate state nodes; are
in the forward interface of time slice

Usually the nodes representing the same random variablféeaedt points in time, e.g. the
nodesY;,, Y;,, andY;, have the same parameters. An exception are sometimes tee abthe
first time-slice. In figure 2.13(;, has no incoming links, thus the node represents a probabilit
P(X;,) which is in most of the cases different from(X;|X; 1), < t < t4,. So the first
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time-slice represents the a-priori distribution, the otitae-slices the distribution of the random
variables at time, given the information at timé— 1. This leads to the following definition of
a DBN, taken from [Mur02]

A DBN is defined to be a pair (BNBN_.,, where BN is a BN which defines the prior and
BN_. is a two slice temporal Bayes net, which defifi&sy,| X, ;) by means of a DAG as follows

P(Xy|Xi1) HP Xid|P(Xi)) (2.76)

whereX; ; is the:-th node at time. In this definitionX is either a discrete or a continuous
random variable.

There are a lot of different inference algorithms. The sespbne, used for the experiments
discussed in chapter 4, is to unroll the DBN g, time-slices, so that it becomes a hybrid
Bayesian network as discussed in section 2.3.1 with,.. nodes, where,, denotes the number
of nodes in each time slice. E.g. figure 2.13 can be regardad&N withn,, = 2 unrolled to 4
time-slices. The advantage is that the same inferenceitigoas discussed in section 2.3.1 can
be applied. The disadvantage is the fixed number of timesslice

To deal with a varying number of time slices Kjeerulff [Kjae¥Jae93] suggests a reorgani-
zation of the junction tree. Murphy discusses several @rfee algorithms in his thesis [Mur02],
one of them is the interface algorithm. The first step is tlgaoization in a junction tree with the
restriction that all interface nodes are in one clique. Thisbe forced by adding additional links
to the moralized graph. After triangulation there is ongwé which separates the time-slices
from each other. For example see figure 2.14 which shows tiegiqun tree resulting from figure
2.13.

Now each time slice is represented by a junction tree, whictiains additional nodes from
the previous time-slice. This junction tree contains dyaghe clique which is linked to the
previous time slice and one clique linked to the next timesslAs figure 2.14 shows, the cliques
to the previous and to the next time slice might collapse ®digue.

The interface algorithm starts by calling collectEvidefmethe clique containing the nodes
of the forward interface, first for the junction trde, which represents the nodes of the first time
slice. Afterwards the cliques with the forward interface/to J; . call collectEvidence. This
results in an absorption of knowledge from the previous tifice.

In the backward pass, the forward interface cliques aréngatlistribute evidence, starting
in the junction tree/; . . This step includes the distribution of the knowledge to fhevious
time-slice.
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Figure 2.14: Junction tree of the HMM in figure 2.13
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In our example first collectEvidence is called by the cliqfés, , X, }, { X,,, X, } and fi-
nally by {X,, X;,}. This finishes the forward pass. During the backward pagshiiteEvi-
dence is called by X;,, Xy, }, {X4,, X, } and at the end by .X,,, X;,}.

In the discussed example all separators are discrete dnesall calculated marginals are
strong. Usually this can not be guaranteed so that week nmasgmight occur in both the
forward and the backward pass.

In the next section the basics of control theory are intredu@fter the introduction to con-
trol theory is finished, the application of dynamic Bayesiatworks as controller is discussed.



Chapter 3
Control of dynamic systems

The overall aim is to study the question whether Bayesiawarés can be used for control

purposes. To show the limits and preconditions for the us&8ayesian controller, this chapter

starts with a characterization of dynamic systems. Aftedwdinear systems, together with the
theory of Kalman Filters, are discussed. The knowledge dlbmar systems leads to a general
structure of Bayesian networks and suitable paramet@nggtt-or non-linear units, prototypical

models are provided for some frequently occurring transfes. For a discussion of non-linear
systems see section 3.2. In section 3.3 traditional contedhods and criteria to judge the quality
of control are introduced. These criteria allow a comparigetween traditional and Bayesian
controller.

Generally each dynamic system, denoted as transferaumitaps an input function(¢) to
an output functiory™ ()
y" () = elu(t)]. (3.1)

Firstly, we restrict ourself tdéime invariantsystems. In time invariant systems a delayed input
signalu(t — t,) leads to the same, delayed output signal

y" (t —to) = plu(t —to)]. (3.2)

Even if equation (3.2) does not hold exactly, it is a commopraach in parameter estimation
to assume time invariance. In practice this leads to satigfyesults, if changes of the plant are
much slower than the adaptation of the controller (cf. [§)L9Thus, from now on it is assumed
that dynamic systems are time invariant.

The second property of dynamic systems, which simplifieyarsaand control, isinearity.

45
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A transfer unity is linear if and only if for arbitrary constants andc,

plerun(t) + caua(t)] = crplua (t)] + caplua(t)] (3.3)

holds.

In the next two sections the descriptions of linear and moeal systems, as they are usually
used in control theory, are discussed. The aim of the dismuss to guarantee that the new
approach, introduced in this thesis, is applicable to a wathge of systems. The main idea is
to model typical linear and non-linear systems, and show timse systems respectively the
developed models may be combined to more complex systems.

The knowledge about typical non-linear units also demaiessr the theoretical limits of
Bayesian models for the modeling of dynamic processes. Qfseothese limits are not iden-
tical with the limits of a stochastic approach in generalBagesian networks are restricted to
a mixture of Gaussians. Using patrticle filters [TL98; IB98yropen a complete new range of
applications.

3.1 Description of linear dynamic systems

This section discusses two different approaches for théenadtical description of linear, dy-
namic systems. Both of them correspond to a special Bayestmork. The first discussed
description is the state-space description, which is assal dor multiple input multiple output
systems (MIMO). The description by difference equatiordeto Bayesian networks with less
hidden nodes and thus shows a better training behavior.

A dynamic system may be regarded as a black box with sevgrat and output signals
andy™ respectively. We distinguish the output of the mogleland the observed outpgtwhere
the latter includes also the influences of the disturbandala =°.

The current output of the dynamic system does not depenty soie¢he input signal, but also
on an internal stat&X ® or on former in- and output signals. Linear, time invariaygtems with
one-dimensional in- and output, are regularly describeditbgrential equations

Zagdlym@ Zb;dj“@. (3.4)

Only systems withn < n are physical realizable. As a simple example a car with nidss
accelerated by a forcE and slowed down by friction and a spring, is discussed. Tic&dn is
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proportional to the product of a constarand the velocity = % the excursior of the spring
causes a forcks. Thus 2s() 4
S S
b— + ks = F(t 3.5
iz g ks = Q) (3.5)
holds. By substitution:; = % andzx, = s the example can be transformed to a system of

differential equations of first order

M

dxi(t) b _k 21 (t) 1
dt M M M
[ 0 ] [ 1 0 ] [ (1) g [ F@ (3.6)
S<t) = x2<t)7 (37)
or generally
dw;f” — Az’ + Bu(t) (3.8)
y"(t) = Cx’+ Du(t) . (3.9

Equations (3.8) and (3.9) are called the state-space gasordf a dynamic system. The matrix
A at the left hand side of equation (3.8) describes the trafjgcif the stater®. For a homo-
geneous system, i.e.(t) = 0, the description of the system by the transfer mattiand the
current statex; is sufficient to calculate the state of the system in the &utihe influence of the
inputu on the statec® is described by the input matri. The first equation of the state-space
description describes therefore the state transitionanfied by the inpud.

The modeled output of a system depends in many cases onlgatater® as described by
the output matrixC, for jump Markov systems it depends also on the input

The state-space description is also used to describe meditiput multiple-output (MIMO)
systems. In the general cageis an x n matrix, wheren is equal to the order of the system,
the state vectox® is n x 1 vector. Then x r input matrix B describes the reaction of the
dimensional input. The x n-dimensional output matri' depends on the dimensierof the
output. The feedthrough matri® is of dimensiorv x r.

In reality all dynamic systems are exposed to disturbingierftesz?’. For linear systems
it is possible to add the system’s reaction to all disturleavariables to one variabted which
has an effect on the output of the system. Thus the obserupdtauis the sum of the model’s
output and the disturbance variable.

q(t) =y™"(t) +2°(1) (3.10)
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Figure 3.1: Step response of a second order system

The dynamic system is displayed as dashed box in figure 3.@. nTdnipulation reaction de-
scribes the response of the system to the input sig(¥al e.g. the reaction to the impulse func-
tion. Mathematically the manipulation reaction can be dbsd by the state-space description.
The disturbance reaction defines the reaction on, usuatignirolled, environmental influ-
encesz?(t). Itis the task of a controller to reduce the effect of a disaunce as fast as possible.

To get a good impression of a dynamic system, it is helpfubtrard the response to different
input signals, e.g. thstep function

0 ift<0
t) = 3.11
o) { 1ift>0 (311)
or theimpulse function
Lifo<t<$
t)y=14 ° - : 3.12
ult) { 0 ift>s (312)

which can approximately be regarded as a very short impdldarationd. Figure 3.1 displays
the step response of a system describedhy) = y™ + 0.1% + 0.0Ide;” which is one of
our test systems. The impulse response of the same systdrows $n figure 3.2. A second
order system may overshoot and needs a long time to conveayedw value. In this thesis we
will show how to calculate an input signal, so that overshapis avoided and the output settles

quickly to its new value. This method is based on Kalman §ltes described in section 3.1.2.
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Figure 3.2: Impulse response of a second order system

The example of a second order system is now used to discussatiin@l angular frequency
and the dampind of a dynamic system. Generally, a second order delay eleiméescribed

by

d*y™(t dy™(t .
dt2( ) im d; )y (3.13)

The factorK describes the gain of the system, that is the quotient of tityeud by a constant
input signal. T} andT; are two time constants. The ratio ©f and7; describes thelamping
ratio [LWO0O; Unb97a]

Kou(t) =T?

T

D=—. 3.14
o7 (3.14)
Thenatural angular frequency
1
= — 3.15
Wo T, ( )

describes the oscillation behavior. For an undamped syst&en = 0, theresonance frequency
Wy =woV1—2D2 (3.16)

is equal to the natural angular frequency.

According to the damping five different systems are distisiged. They show different step
responses.

Overdamped systems with > 1 converge to their new output without any overshoot. There
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Figure 3.3: Calculation of delay ting, and raise tim&,

are different parameters to characterize overdampedsygste.g. the step response is character-
ized by the gaink, the delay timel;,, and the rise tim&,. The time constant¥, andT, are
calculated as depicted in figure 3.3. In a simple approachiégl@ and Nichols they are used
to determine the parameters of a controller.

Critically damped systems with = 1 show a faster increase of the output than systems with
higher damping. If the damping is between 0 and 1, an overshoot together with an oscillation
with decreasing amplitude is observed, as shown in figure\@Hen a damping of O is reached
the amplitude of the oscillation keeps constant. Furtheresesing of the damping to a value
between -1 and 0 leads to an unstable system whose step sedpmsan increasing amplitude.

For the more general casefth order system theaplace transformatioms helpful which
maps a functiory (¢) to

F(s) :/ f(t)exp(—st)dt . (3.17)
0
The quotient7(s) of the Laplace transformed out- and input sighiél(s) respectivelyU (s)
_Y"(s)
G(s) = 00s) (3.18)

is calledtransfer functiorof the dynamic system. Linear single-input single-outSiBQ) sys-
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tems are described by
bG + b§s + - - - b, s™ B(s)

Gls) = af +afs+ -+ ags” - A(s) (3.19)

the quotient of two polynomiald(s) and B(s).
Sometimes the described system reacts with a dEJagalleddead-timeto changes of the
input. This is modeled by an additional teem’«, so that

B(s) _r
= et 2
G(s) As) e (3.20)
Please note that(s) and B(s) are used for the description of the system, wheiéé&ss) and
U (s) denote the Laplace-transformed in- and output signalseTamimpression of the behavior
of the dynamic system the homogeneous systemui#. = 0, is regarded. In the Laplace
transformed this leads #3(s) = 0 and thus to

A(s) =ag+ajs+---ars" =0, (3.21)

usually called theharacteristic equation

If all zeross, with A(sg) = 0 are in the left half s-plane, i.e. the real p&«d(s;) < 0, the
system is stable. If at least ong has a real parRe(s;) > 0 or if a multiple pole is placed on
the imaginary axis, i.eRe(s;) = 0, the system is unstable.

In equations (3.8) and (3.9} is an x n matrix, wheren denotes the order of the differential
equation. For single input single output systems, i.e. hBtAndu are scalars instead of vectors,
B andC are vectors of length and D is a scalar. Thus, there ar@ + 2n + 1 parameters in
the state space description. Comparing the number of péeesna the state space description
with the maximal number of parameters in differential egqura3.4) leads to the conclusion that
there are many possible state space descriptions for the diffierential equation. Reducing the
number of parameters would result in a smaller search sgguessible state space descriptions,
which means a more robust and effective learning proces#.ig bxactly what is done by normal
forms.

3.1.1 Normal forms

As mentioned in the last paragraph of section 3.1, there isnigue state space description for
a given differential equation. As a simple example imagiglgy@amic system with gaii’;. To
model such a system the amplification can either take plaweskea the input. and the state:®
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or between the state® and the outpug™.

Control theory distinguishes several normal forms, usubk form of the matriced, B, C,
andD makes the difference. As this chapter is no introductiorotttiol theory, only th@bserv-
able canonical fornis discussed. The reason to use the observable canoniceldarf practical
nature and will be explained later.

By a transformation process, defined e.g. in chapter 1.6 ob@Jb], the matriced\, B, C,
andD take the form

00 O 0 0 —a
1 0 O 0 0 —a bo

4 - |01 0 0 0 —a B — b
.............................. (3.22)
0 0 1 0 —a,o bn1
I 0 O 01 —Aap—1 ]

C = [000---1] D = b

Itis important to note that the introduction of normal forimgeither a restriction of the dynamic
system, nor is the input/output-behavior of the system ghdn Only the internal state of the
system is concerned. Using the observable canonical foemtimber of free parameters is
reduced t@n + 1. This number is equal to the number of parameters in therdifteal equation
(3.4), provided that. = m anda,, is normalized to 1. So no redundancy is left.

Up to now only the description of systems in continuous timpa&ce is discussed. The next
section 3.1.2 describes the transformation to discrete tomain. This transformation is also
suitable to deduce the weights of a DBN, modeling the system.

3.1.2 Kalman filter

For digital control the output signalgt¢) are not measured for all points in time, usually the
measurements are taken regularly with a fixed sampling ¢petit. The same is valid for the
input signalu(t), which is only calculated for special points in time. Betwé®o pointt and

t + 1itis assumed that, is constant, i.eu(r) = u; fort < 7 < t + 1. Linear time discrete
systems are described in the same way as continuous timensg;sonly the coefficients have
to be changed. The coefficients are deduced by comparisomltod filters, a well-known
method for tracking and prediction of stationary, lineasteyns. It can be used to calculate
the parameters of time discrete systems as described iors&cl, equations (3.8) and (3.9).
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Furthermore Kalman filters are a special case of DBNs, soethdts obtained for Kalman filter,
e.g. in [Gel94], may be used without any changes.

Kalman filters represent a time discrete system whose satsition
x;/,, = ApxT; + Bpnu, (3.23)

is described by the matridgy. In this equatiort is used as index to denote a time discrete
system. The index ‘BN’ is used, as the transfer matrices ifiereht for time discrete systems.

To calculateAgy, a solution of differential equation (3.8) is needed s, has to integrate
all the state transitions betweérandt + 1. As long as no input is present, equation (3.8) is
solved by

x’(t) = x°(to)P(t, to) (3.24)

where ‘
(t—to)
i!

b(t,t)) = i A’ (3.25)
=0

is calledtransfer matrix Assumingt = t,,; andt, = t; with a constant time difference
AT = ty.11 — ty the matrix
Apn = DP(try1,tr) (3.26)

depends only on the time differenc¥l” and A. ThusAgy is constant for alk; i.e., the param-
eters of a DBN, modeling the dynamic system, are indeperfdantthe time slice.

Taking into account the influence of the input on the statddd¢a

tht+1
BBNut = / di(tqul, T)B’U,(T)dT (327)
12
which simplifies to
L AATY
Bgn = AT ——B 2
BN ;) (i +1)! (3.28)

if only systems with a constant sampling peridd’ = ¢, — t;, and a constant inpat, = u(7)
within one time-slice are considered. To build a DBN whicbdrporates equations (3.26) and
(3.28), Bgy is used as weight matrix between the input nodes and therstdis as shown in
figure 3.4. Matrix®(AT') describes the transition from one state to the next and iisfitre used
as weight matrix for the inter slice connection between ttates in neighboring time slices. This
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Figure 3.4: Bayesian network used for modeling the statesitian

means that the state at time- 1 is calculated by

wS

xy, = [®(AT) Bgx]- [ ut ] : (3.29)
t

In a BN the mearg of the normal distribution is equal ® = o + 3z. In contrast to equation

(2.37), describing the one-dimensional cases a vector, angd is a matrix.

The offseta has to be set to zero and the weights of the state ddtare set to
B = [QS(AT) BBN] ) (3.30)

so that the weights of the state nodes reflect the state ticansi the presence of input. The
output depends linearly on the state and is not time depéndkus the matrixC and D remain
unchanged also in a time discrete system. Figure 3.4 showsinve-slices of a linear DBN.
The nodes of the net are pictured as circles, the rectangdassad to display the weights of the
Bayesian net. It is assumed that the modeled system is no jankov system, i.e.D = 0.
As a further consequence, the dimension of the hidden statesnis equal to the order of the
differential equation describing the system.
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3.1.3 Description of dynamic systems by difference equatio

In the state-space description (3.8) and (3.9) the statasually cannot be observed. Even
if the parameters of a Bayesian network can be trained ae#pgt occurrence of unobserved
variables, it is more cumbersome. According to our expegethe number of needed iterations
and examples is higher in the presence of unobserved vasiabhus it would be desirable to
model with a description without hidden variables.

The starting point is again the description by differengigliation (3.4). The derivatives of a
function f can be approximated by the finite differences

df . fEAT) — f([k — 1]AT)

dt t=kAT N AT 53D
a2 f _ J(RAT) — 2f([k — 1JAT) + f([k — 2]AT)
Wy AT o
df _ f(RAT) = 3f([k — 1JAT) + 3f([k — 2]AT) — f([k — 3]AT) (3.33)
At | _oar AT?3 A

Derivatives of higher order are approximated in a similannmea. Thus it is possible to rewrite
equation (3.4) using expressions (3.31) to (3.33) instédukalerivatives. This procedure results
in a difference equation which can be solved for

Yy =— Z aiys”; + Z bit—i—a (3.34)
i=1 i=0

with d = % as the discrete dead-time. Please note that the coefficreatpiations (3.4) and
(3.34) are different, the coefficients for the time continsisystem are marked by the superscript
c. Itis not possible to rewrite the differential equation tdiierence equation without adapting
the coefficients As only the structure will be used, a description of thet¢farmation algorithm

is omitted. The available algorithms are discussed e.gch(2].

In analogy to the description of dynamic systems by the Lagpleansformation, time discrete
systems are often described by #ransformatiorof a functionf (k)

[e.e]

Z{f(k)} = F(z)=>_ f(k)z"" . (3.35)

k=0

For a transformation the Z-transformation might be used.
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For single input single output systems the Z-transfornmeliéads to a transfer function

_ Y™(z)  bo+bizt 4 -bnz*”Z_d

G(z) U(z)  1+az7l4---apz™m

(3.36)
Once again the system is described by two polynomidls) = 1 + a;27t + ---a,2z7", and
B(z) =by+biz7t +---b,27", and the dead timé.

The description by Z-transformation has similar advargaggethe Laplace transformation;
e.g., the convolution integral, which is used to calculbgedutput of the serial connection of two
systems, is mapped to the multiplication of the two Z-tran$finctions. Similarly, the addition
of two z-transfer functions is used to calculate the outpinvo parallel systems.

The difference equation (3.34) can also be used for estimafithe parameters andb;. As-
suming that there are+ N —1 input- output pairs,_, 1, U —nio Ui N1, Gt—ntls s GiN—1,
the errore,, ; between the observed valgge ; and the predicted values is, according to equation
(3.34), equal to

€t = Qg — Qraj—101 — ey j—202 * ** — Qg j—ply + Uy 101 F Uy 202 -+ Uy jny - (3.37)

Foralle; 1 - - - 4 v this results in a system of N linear equations

- - - - - - ai
€41 qt+1 qt T Qt—nt1 Ut st Ut—n41 .
€142 qi+2 qt+1 T Qt—nd2 U1 o Up—n42
. . . . a
= : — : : " (3.38)
by
| €&t+N | | dt+N | | dt+N-1 " Qt—n+N Ut+N-1 Ut—n+N | b
n

or shortere(N) = g(N) — M (N)Z(N). The matrixM denotes the matrix for the observations
of the input- and output values. It is necessary to solvedtisation for the parameter vectar.
This can be done by the least square approach, the sum ofitheesicerror is minimized by

1

E=[M(N)"M(N)]" M(N)q(N) . (3.39)
The approach just discussed is only valid for white neis@ the case of colored noise, there is
no closed solution; a possible approach is e.g. gradiecedésr the EM-algorithm. This case
is discussed more deeply in [Unb97a].
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The estimation of the control parameters may lead to a gelf¥y controller whose basic
principle is the identification of the system in the first séeqol the calculation of the controller’s
parameters in dependence of the plant model in a second step.

3.2 Non-Linearities in dynamic systems

For linear systems, discussed in the last section, equgi8nhold. All other systems are called
non-linear. In this section an overview about frequentlgusdng non-linear units in control
theory is given. Later on this list will be used to developtptgpical models for as many non-
linear units as possible. The prototypical models can bebooed among each other or with a
linear sub-system. According to [SL91] the decompositiba gystem in a linear and a non-
linear subsystem is often possible and useful.

When analyzing non-linear systems the Laplace transforsed longer the quotient of two
polynomials. But it is still possible to characterize theytwo differential equations

s = f(z° u,t) (3.40)

m

y" = g’ u,t) (3.41)
with arbitrary non-linear functiong andg, and the initial state
x’(ty) = x - (3.42)

The state-space description of linear systems is a spexsal of differential equations (3.40)
and (3.41). For modeling purposes and to analyze the behaivitynamic systems, differential
equation (3.40) may be linearized by a Taylor series. Theatipg pointz*, @ is usually an
equilibrium point; i.e., the derivative of the state is zerbhus f(x*,@,t) = 0. Using the
substitutions

Ax®(t) = x°(t) — x? (3.43)
Au(t) = wu(t)—u (3.44)

to denote the deviation from the operating point, diffel@rgquation (3.40) is approximated by

Ai® ~ AAz® + BAu (3.45)
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where A and B denote the Jacobian matrices

[ ofi(z®u) . Ofi(xiu) ]
Oxf oxs,
A = : : (3.46)
Ofn(z°,u) Ofn(x°,u) _ ~
U = u
i afl(msvu) . afl(msvu) T
8u1 aur
B = : : : (3.47)
Ofn(z®w) . Ofn(z’u) s A
Ouq Our | r = x
U = u

For a discussion see [Unb97a]. In this case the system camobeled approximately as de-
scribed in section 3.1. If linearization is no solution te tmodeling problem, special solutions
for each data set or rather engineering process have to ledoged. In many cases common
transfer units are met [F0l93; SL91; Unb97b]. In this smttsome of them are introduced. In
section 5.1 Bayesian networks are introduced to model thosdinear units.

A common phenomenon in engineeringé&uration When a valve is closed, further dimin-
ishing the pressure has no effect. The same happens in aifiamgtor very high inputs the
maximal output is reached. Further increasing the inpus da¢ change the output. Assuming a
linear gain between minimal and maximal output, this typaai-linear unit is described by

~Ymax I U < —Usat
ym(u) = %Latxu if —Usat S u S Usat (348)
yrqllax If Uu Z Usat,

This function consists of three different linear parts, do'st approach for modeling might be
a discrete node with three states as a switch. This switchrisnp of a continuous node which
models the output.

Another non-linear unit, which might be applied as a simplaperature controller is the
two-point element

m _ergax if u<0
y"(u) = . : (3.49)
ym o if uw>0

Another possibility to express this relationship betweerand output is

Y™ (1) = ~Yumax SIN() (3.50)
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When using this unit as a controller the input of the systenidis = 3., sgnw(t) — q(t)); i.e.,
the input is positive if the desired value is greater thanciimeent value and vice versa. When
systems with dead-tim&; has to be controlled an oscillation with the angular freguen

™

WOZQ—’IE

(3.52)
[Unb97b; F0l93] is observed. Thus, for systems with no e tiead time, a controller which
reacts only when the deviation from the desired value iselatgan a thresholdg is from
advantage. Thusthree-point controllewith three possible outputsy,". . 0,y .

—ygfax if u < Up
y"(u) = 0 if —ue < u <ug (3.52)
Yoo f u > ueg

might be used for control purposes. It is possible to repiasby two two-point elements:

yi(u) = P Beegny — o) (3.53)
v() = ey Smesgru 4 up) (3.54)
y() =y + g () = P (sgru — ve) + SQu +ue)) . (355)

A similar behavior is shown by the next function which showdemd zondetween the
thresholds-ug andug. For inputs smaller or greater than the thresholds the dutpu

ms(u+ ug) Iif u < —ug
y"(u) =14 0 if —ug <u<ug (3.56)
ms(u — ug) Iif u > ug

is also proportional to the slope, (confer figure 3.5).

Up to now all the introduced non-linearities consist of nplé lines. Of course this is not
valid for all non-linearities. Simple counter-examples ar

Y™ (u) = u? (3.57)

or arbitrary non linear functions, e.g. the dependency eetwvolume and pressure in hydro-
forming.
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Figure 3.5: Dead zone Figure 3.6: Hysteresis

Another class of non-linearities depends not only on thetiiput also on the first derivative,
e.g. the input/output dependency depicted in figure 3.6.rélfeeno unique output fotg <
u(t) < ug. Thehysteresisvas first observed in magnets, the function is equal to

_ygllax |f u < —Uue
y"(u,u) = ym osgnu —ym osgna)) if —ug <u<ug - (3.58)
yg}ax if w> U

If more than one input is used also the multiplication or simn of two signals is non-linear. Of
course this list is not complete. But it allows to draw someatosions. To model non-linearities
with multiple lines or the dependency of the derivative @& itput signal it is important to model
the sgn-function.

For the general casg” = f(u) a Taylor series with multiple operating points is appliedeT
same approach might also be suitable for

Y™ = up(t)us(t) (3.59)
with operating points; and,
oy™ oy™
™ U — — 3.60
ST By, T B |y 250

A direct representation with hybrid Bayesian networks ispassible, as the mean output of a
continuous node depends linearly on the instantiationefriput nodes.

If the hybrid Bayesian network is inaccurate for the dategoimdeled sampling mechanisms
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like particle filters might be used. E.g. BUGS, a system base®ibbs-sampling [STBG964a,;
STBGY96b; STBG96c¢], allows the usage of deterministic na@@snon-Gaussian distributions.
But the disadvantage is that there are no inference mechanisth a closed solution for the
general case.

Another problem in dealing with non-linearities is the a#iten of equilibrium points with
xs = 0. In linear systems

x5 = Ax® + Bpgyu = 0 = x°* = A ' Bpyu (3.61)

there is one equilibrium point for systems witlat(A) # 0. For systems withlet(A) = 0
there might be an infinite number of equilibrium points or eofhe latter case is impossible for
u = 0. For the non-linear case multiple equilibrium points caouwc

In the next section two different approaches for controljchtcalculate the input signals
using the deviation of the current output from the desirddeyaare introduced. First PID con-
trollers, which are widely used in industry, are discussEoe second approach are Dead-Beat
controllers which guarantee a minimal settling time. Fodiadnal approaches see [Unb97a;
Sch02].

3.3 Controlled systems

The aim of a controller is to change the inpubf a dynamic system so that the output of a
system is kept close or equal to the desired value. A simmenpie is the room-temperature,
controlled by the heating. Here the desired valus the favorite temperature of the inhabitants.
This temperature should be kept constant despite distaesare.g. opened doors or windows.
Usually the controller is driven by the error, the differenmetween the desired value and the
output.

In section 1.2 approaches, usually referred to as inteitigentrol, are discussed. This sec-
tion deals with traditional approaches, i.e. PID- and DBadt controllers.

Additionally, several criteria are developed to judge teef@rmance of the controller dis-
cussed in this section and the Bayesian controller in chdpte

The main elements of a control loop are depicted in figure 3&revall variables are assumed
to be one-dimensional. The desired valués compared with the outpytof the system; e.g.
the current temperature is compared with the desired one.

The difference between desired and current valissused as input for the controller which
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Figure 3.7: Block diagram of a controlled system

calculates the input for the actuator. The changed inputevaf the dynamic system results in a
new output. Thenanipulation reactiordescribes how the system responds to new inputs. The
manipulation reaction can e.g. be described by a differegoation or the state-space description
as discussed in section 3.1. A crucial feature of contrdlesféedback loop which compares the
output with the desired value.

Additionally, the controller has to deal with multiple disbances:? (¢) from the environ-
ment. In a detailed approach the effect of each disturbaasédbe modeled by its own transfer
function, but for linear systems it is possible to substitiite effect of all disturbances by one
disturbance variable

Z(s) = an-(s)Z@-(s) (3.62)

which is added to the output. This model is similar to the apph used for system identification.
From now onz? is added to the outpyt™ so thatg(t) = y™(t) + z%(t).

In many cases controllers use the er@rn = w(t) — ¢(t) as input, a model of the dynamic
system is not needed. To judge the performance of a contthliee are several measures. The
selection of a suitable measure depends on the applicdti@nintegral over the squared error

I :/0 (e(t) — exo ) dt (3.63)

is frequently used, where,, denotes the steady state error; i.e., the error which resvadier
convergence to a steady state. In digital control the esronly known for special points in time
so that the squared error sum

teonv

Ij=) _ AT(e; — ex)’ (3.64)
t=0

is used instead of the integral. Summation is stoppéd,atwhen all signals are converged to
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their final value. For practical reasons, convergence igrasd when all changes in the last 25
time slices are smaller thel)—.

The next section explains the function of a PID controllefchitis very popular in industry.
As second controller type also the Dead-Beat controlleefsdd. The Dead-Beat controller is a
digital filter which guarantees minimal settling time. Asdiback a mathematical model of the
dynamic system is required for parameter setting of the filte

3.3.1 Different types of controllers

The task of a controller is to minimize the effects of an odogy disturbance. Widely used are
PID controllers which have an output proportional to theeend to the integral/derivative of
the error. There are different approaches for the seleofitdme controller-parameters depending
on the user’s requirements. When the mathematical deseript the plant is given, a calcu-
lation which minimizes the squared error, as defined by egu#8.63) (for the calculation see
[Unb97a]), or the settling time might be used. For a disaussif techniques from artificial
intelligence see section 1.2.

This section starts with the discussion of tAE controller. Afterwards one method for
the selection of the parameters which minimizes the sgttiime is given. It presupposes a
mathematical description of the plant. If the plant pararseare unknown parameter estima-
tion might be used, e.g. the EM algorithm. These considmratiead to the first type of self
adaptive controllers, known alf tuning controller6STC), which estimate the plant’s param-
eters and calculate the controller's parameters accdydinbhis approach is opposed to the
model-reference adaptive controll@WlRAC) which uses a reference model to specify the ideal
response of the adaptive control system. The adaptatiomeofdntroller’'s parameters has the
aim to approximate the reference model.

PID controller

A PID controller consists of three different parts, someheih may be missing. The (P)roportional
part of a PID controller leads to an output

u(t) = Kee(t) (3.65)

proportional to the error and to the gain of the control&r Exceptionally, the output is de-
noted byu(t¢) as the controller’s output is usually used as the input ofifreamic system. The
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disadvantage of a pure P controller is the remaining stetadg srror which is proportional to

1

when the input is proportional to the step functioft). The closed loop gaik, = K.Kj is the
product of the controller’s gaii’. and the plant’s gairk.

To avoid the steady state error, an (I)ntegral part, whosaubu

u(t) = % i e(r)dr (3.67)
U(s) = j{i;E(s) (3.68)

is proportional to the integral of the error, is added. Thgpatu(t) of the integral part depends
on the integral timd’;. Both the controller gairk’. and the integral tim&}; are used to adapt the
Pl-controller to different dynamic systems. The Pl-colrareduces the steady state error for a
disturbance’(t) = zdo(t) to zero.

To reduce the overshoot, a control signal

ut) = KCTDdZEf) (3.69)
U(s) = KJIpsE(s) (3.70)

proportional to the derivative of the error is used. The (pive part is governed by the
derivative time constarty. So a PID controller, which combines all three parts, hasthput

K. [* de(t
u(t) = Kee(t) + —/ e(t)dr + K.Ip () . (3.71)
Tr Jo dt
As it is impossible to realize a pure D controller, a Dinit with
T15
= K. E 3.72
Uls) = KTy 5 B(s) (3.72)

is used. Its behavior depends on the one hand on the deevetie constani}, and on the other
hand on the time constait.

In most of the cases the controller uses the etftor = w(t) — ¢(¢) as input signal which
results in the control loop depicted in figure 3.8 with
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H?— GC(S) - G(S) —_:O—y:@

Figure 3.8: Typical control loop

Y™(s) = Z%s)+ [W(s) = Y™ (5)]Ge(s)G(s) (3.73)
s = Gis) G2+ 1 fc(izggzs)ms) | (3.74)
Neglecting the disturbance variable, equation (3.74)déad
") = ) (3.75)
or to the control transfer function
Gls) = Y™(s) Ge(s)G(s) (3.76)

W(s) 1+ Go(s)G(s)

which reflects the reaction of the system, when the desirkeva changed. This equation can
be used to calculate the transfer function of the controll€r)

1 Gul(s)

Cels) = G T= Gl

(3.77)

provided that the desired command response is known.

A similar equation in the discrete time domain can be usedjiordi out controller settings
for a filter, which guarantees that the new desired valueasired within finite time. This filter,
called Dead Beat controller, is discussed in the next sectio

Dead Beat Controller

In digital control an equation similar to (3.77)

Go(z) = (3.78)
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is used. The only difference is that z-transformation isdusstead of Laplace-transformation.
To design a controller, the control transfer functi@p(z) is assumed to be equal to the desired
control transfer functiork,,(z). Thus the controller results in

I Gulz) Alz)  Ful(2)

GC(Z) = G(Z) 1— Gw(z) - B(Z)Z_d 1-— Fw(z)

(3.79)

whered is the discrete dead-time= %. In order to get a realizable controller the dead-time of
the closed loop is at least the dead-time of the system. Treugtuired control transfer function

is restricted to
K(z)z

N(z)
whereK (z) and N(z) are arbitrary polynomials, provided thd(z) and B(z) have only zeros
within the unit circle. That is, equation (3.80) is only aippble for stable systems.

Fy(z) = (3.80)

One possible design criterion is that the outpitis equal to the desired value, after a
finite number of time steps. This requirement is expressatidyestriction ofF,, (z) to

F,(2) = K(2)z7¢ . (3.81)

This selection guarantees only that the output is equal éadésired value at sampling time.
Therefore stability of the input signals is used as nextireguent. The selection

(3.82)

guarantees a stable input (for an explanation see [Unb3##)2 and additionally a minimal
settling time. Together with equation (3.79) this resuits i

Ge(z) = . (3.83)

The approach of a Dead-Beat controller is not restrictedable dynamic systems. The appli-
cation to unstable systems leads to further restrictiossudsed e.g. in [Unb97a; Sch02].

Not in all cases a mathematical description of the plantuemi An empirical approach was
introduced e.g. by Ziegler and Nichols [ZN42]. Even if sigaestrictions apply, it is still very
popular (confer page 246, [Unb97a]). The approach by Zieghel Nichols is therefore also
compared to the Bayesian controller.
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Figure 3.9: Output signal fok, = K.;;

Settings using raise and delay time Controller settingsgusiitical gain

Type of controller Ko T; T |
P KL% 0-5Kcm't
ST,
PI O?T_7 3331—‘u 0-45Kcrit 0'85T0Tit
PID 1?2 Ti: 2Tu 05Tu 0-6Kcrit 0'85Tcrit 0. 12Tcrit

Table 3.1: Controller settings based on the methods of &iegid Nichols

Empirical approach

Another frequently used method is developed by Ziegler aimthds. It is valid for systems
approximated by first order systems with dead tifhe

K
= 2 —T, .84

which are determined by a time time constdint the gaink; and the dead tim&;. The step
response of such systems is characterized by thelggithe raise timel}, and the delay time
T,. The parameter are figured out using the intersection ofahgent with the x-axis and the
line with y™(t) = K, as displayed in figure 3.3. In [ZN42] the settings given indgah1 are
suggested.

A second method, also by Ziegler and Nichols, is based on #gsorement of the critical
controller gaink,, ;.

Critical controller gain means that the controller gaipof a P controller is increased until
oscillation is observed, as depicted in figure 3.9. The dumdt.,;; of the oscillation is measured.
Afterwards the formulas given in table 3.1 are used for d@djesit of the parameter.
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Chapter 4

Modeling Linear Dynamic Systems with
Bayesian Networks

As seen in chapter 3 automatic control is a field with a londitian. Also self-adaptive control
has a history of more than 50 years. Of course, self-adaptm&ol requires a kind of learning
or training algorithm which either refines the adaptatiorthef controller directly, or first im-
proves the model, and afterwards the controller’s parametepending on it. Frequently used
approaches in adaptive control are neural networks andyAuagic. Bayesian networks are
seldom used, although they offer a lot of attractive praperfor the usage in adaptive control.
The main advantage is the similarity between Kalman filtet BBNs. Thus, a-priori knowl-
edge from control theory can easily be used to deduce thetsteuand parameters of a suitable
model. Afterwards the Bayesian network is used without dranges to figure out suitable input
for the system to be controlled.

For non-linear systems, there are no models readily availalm principle, there are also
structure learning algorithms, but experience in modefiragufacturing processes shows that a
lot of know-how about the modeled process is required dutingelopment of the model.

For the modeling of non-linear systems a strategy that stsef two different steps is sug-
gested in this thesis. Firstly, well known non-lineariteee modeled. Secondly, the primitive
units developed in the first step can be combined - either bglanformed knowledge-engineer
or by a modified structure learning algorithm - to a complexdeioThe suggestions for the first
step are described in chapter 5.1, the second step is beyesdape of this thesis.

In the next section the similarities between Kalman filted &BNs are used to map the
state-space model to a DBN. As DBNs are not only able to preefsults from given inputs, but
also to calculate suitable input signals to obtain a desitggut, this model will be used to infer

69
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suitable manipulated variables, given the desired value.

Additionally the test systems, used to evaluate the new ¢ygentroller, are introduced. In
section 4.2 it is shown how normal forms (confer section13.are applied to reduce the search
space for training of Bayesian networks.

The trained models are tested with the same systems asiiorséc, so that the performance
of the trained model can be compared with the analytical oftee results obtained with this
structure are sufficient in most cases. In one case howemaremyence of the output signal is
not achieved. To accomplish convergence in all cases a destaucture, based on difference
equations, is tested. When assuming that there is no dastaebduring training, there are no
hidden nodes left. Thus greater accuracy is obtained wsthtlaining data. The disadvantage of
this model is that the Markov assumption is not met. So moth®tools for Bayesian models
are not able to deal with such models directly. A work aroundescribed in section 4.3, the
expansion of the Bayesian toolbox together with the expemisifor controlling higher order
systems are described in section 4.4.

As the control with Bayesian networks is a completely newragph, a comparison with
traditional approaches is also necessary. One methodienélgy used in industrial control, are
PID controllers. A traditional method for figuring out thektting is introduced by Ziegler and
Nichols [ZN42]. A modern mean, used in Digital control, aredd-Beat [Sch02] controllers.
Dead Beat controllers are used to eliminate the deviatidghebutput from the desired value in
a finite number of time steps.

The comparison with these approaches, which finishes ticagison of Bayesian control of
linear systems, is presented in section 4.5. Linear systeean important subset of dynamic
systems. Sometimes the approaches introduced in thiseshanat also suitable for non linear
systems, provided that linearization around the operagioigt is possible. The other cases are
discussed in the next chapter which deals with nonlinedesys

4.1 Principle of a model based controller

The mainidea of a Bayesian controller is that the dynamitesyss modeled by a DBN [DDNO02a,;
DDNO3a]. The desired value is entered as evidence. A cdiocuolaf the marginal distribution
of the input nodes results in the input which may be used teeaelhthe desired value. A linear
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SISO system may be modeled by the state-space description

x;,, = ApxT;+ bpnuy 4.1)
yi" = caNxi +dpNuy (4.2)
wherex; represents the state of the systemthe input, andy;” the undisturbed output of the

system. These equations were readily discussed in sectipc@mpare with equations (3.8),
(3.9), and (3.23) for time discrete systems.

Provided that the state; and the input:; are normally distributed, a Bayesian network, as
displayed in figure 4.1(a), can be used to calculate the mete dollowing stater;, ; and the
outputy;”. The distribution of a continuous nodewith parentsZ is given by

py|z)=N(a+pBz,7), (4.3)

wherea denotes the mearfi the weight vector of the linkZ — Y, and~ the variance of the
distribution.

Setting the mean = 0 results in

plas, | un @) = N(B j ) (4.4)
t

Py | un ) = N(Bs f ) (4.5)
t

for the distributions ofX;, ;, andY ™ in figure 4.1(a). The weigh®, isn x (n + r)-dimensional
for an-dimensional state anddimensional output. Weigl#, is o x (n+)-dimensional, where
o denotes the output-dimension. Wh@nandg3, are set to

B1 = [Apn bpx] (4.6)
B2 = [can dpN] 4.7)

the Bayesian network depicted in figure 4.1(a) models the $tansition and output of a dy-
namic system as intended. Such a network can be used foresguoptrol purposes, when no
disturbances occur (confer [DDNOOa]). For real applicadidisturbances have to be considered.
In reality these disturbance variables may affect everyahEor linear systems all disturbance
variables, together with their transfer functions, can diéeal to a disturbance variabig which
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acts directly on the output of the dynamic system. Thus ieessary to distinguish the modeled
output of the systerp;” and the observed or measured output

@ =y + 2 (4.8)

which includes the disturbance variabig Following this discussion figure 4.1(a) has to be
extended to figure 4.1, which includes nodes for the reptasen of the disturbance variable.
In the case discussed here, the modeled outpudepends only on the input and the state, and
not on the system’s output (compare to the state-spaceiplé®cr discussed in section 3.1,
equations (3.8) - (3.10)). Therefore

@ =y + zf = cpN] + dpNut + zf (4.9
can be modeled directly, the weight vecthy, of node(), is equal to
Bq. = [ean dpx 1] . (4.10)

The connection between the input nddeand the output nod&;™ or ;, depicted as dashed
line, is only necessary for systems which react immediaielghanging the input.

For systems to be controlled by a Bayesian network, the teffea disturbance at time
has to be eliminated, by changing subsequent inputs j > 1. Thus the disturbance has to
be estimated for the future. This is done by estimation offtheer disturbance as difference
between the modeled and the observed output. Afterwarslgs#timation is propagated into the
future. This is done by adding a link betwegii and Z¢,, as displayed in figure 4.1. When
assuming that the disturbance usually stays constant frentime step to the next, this link gets
a fixed weight of one.

If there are large changes of the disturbance from one tiroet® the next, the frequency of
the disturbance might be larger or close to the samplingiaqy. Thus the precondition of the
sampling theorem does no longer hold. As a consequencertipgisg rate, set manually before
the training, should be increased.

Adding some more time-slices and the link betweghand Z7, , leads to figure 4.2. The
Npast tiMe-slices at the left hand side are reserved for the reptason of the past. In figure 4.2
three time-slices, denoted bby- 2 - - - ¢ are used for the past. Each time-slice consists of four
different nodes. The layer at the top represents the inploé. ifiputu; has an influence on the
statex; ;. The state nodes are depicted as second layer in figure 4e2hirtl layer is used for
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(b) Inclusion of disturbance vari-
able

(a) State-space descrip-
tion without disturbance

variable

Figure 4.1: Model for state-space description
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Figure 4.2: State-space model used for control
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the estimation of the disturbance variabfe The observed outpyt, shown in the forth layer, is
a linear function of the disturbance variabfeand the state:_ ;. The information available for
the past is the input;_,, .. +1 - - - u; and the observed outpyt ,, .. +1 - - - G-

The outputy, is determined by, andz;, ,, the inputu,;, has no influence o ;. Thus
no evidence is given faf; ;.

For the future it is necessary to tell the controller the @ebvaluew (compare with section
3.3). This is achieved by using as additional evidence fa@¢.;, that is¢;.o = - - - = ¢,,,, = w.

The main idea is to enter, ¢ andw as evidence of the shaded nodes in figure 4.2 and use
the (marginal) distribution ofi as input. To come to a working system, which shows a good
performance, some missing parameters have to be set. l@rglarameters of the input nodes
are yet undiscussed. The mean of the input depends on thefgamsystem and on the desired
value. Both of them are unknown. That means that nothing ssvknabout the mean of the
system. This is expressed by a large variance

For the selected model all nodes in a layer have the same ptaen Exceptionally the
parameters for the nodes in the first time-slice might besbfiit from the parameters used for
the remaining time-slices, as nodes in the first time-sleesno parents. Thus, in figure 4.2,
the parameters far? , are different from the parameters f8f. However, usually it makes no
sense to add information about the time-slice when paramate discussed in a DBN.

A large variancey; for the input nodes means that the meanhas only a negligible influ-
ence on the marginal distribution 6f. Beside the lack of knowledge about a suitable mean of
the input, there is a second consideration which leads tsatree result. If the desired valueis
changed, the Bayesian network regards this change as ahearin the future.This observation
can be explained by three different causes:

» The input has changed which leads to the new desired vahis.idthe required reaction.
Please imagine that your guest is shivering. As a reactienwil increase the desired
temperatureo. It is the task of the controller to increase the measuregézaturey, e.qg.
by increasing the flow of hot water through the heating, iyeclianging the input.

» The disturbance variable will change in the future. If biothand output had been constant
in the past, there is no reason that this will happen.

* The system changes the estimation of the state. As thensysteler consideration is
regarded as time invariant this is the least likely causeabfaanged input.

Only the first possibility results in the desired behaviar.ehsure that a changed output (a new
desired value) is explained by a changed input the dispeddithe input node has to be setto a
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maximum. In our application the covariance matfix. = diag(yi,- - ,7,) is diagonal. To get
a maximal covariance for the input nodes meansthat> v; 1 <1 < n should hold.

This concludes the discussion about the parametdrs @he next node under consideration
is the state node. Mean and weights of this node are caldyldite covariance is yet unknown.
First it is supposed that the used model is correct, expdelsgea minimal covariance. Also
considerations about an occurring disturbance leads tedhee result. When a disturbance
occurs the observatiap,; no longer fits to the state estimation. As, depends o}, , and
!, there are two possible explanations for a deviation betwiee®stimated and the observed
output:

» The estimation ofc; , or ¢ is wrong. This is synonymous with an erroneous model.
* The disturbance has changed.

As the second explanation is much more likely than the first tre covariance of the disturbing
value in the first time-slice is selected larger than the dawae of the state-nodes, i.Ex:s =
diag(y1, ;) Yze, > v 1 < i < n. For the remaining time-slices the varianegsyza,
and-,, are selected in the same order of magnitude.

The last parameter to be selected is the mean of the diseehamniable. The disturbance is
regarded as white noise, the meas is set to zero.

4.1.1 Calculation of the input signal

Control is an ongoing task; i.e., in regular intervals newpatisignals are measured, and new
input signals have to be calculated. When this task is finisieold signals are moved one
time-slice to the left, the oldest-one is deleted and theetiirsignals are entered at time-slice
This is necessary as we work with a DBN of finite length.

This section discusses the steps of one complete circlenvdainsists of calculation of new
input, measurements, and shifting the evidences to the left

At the beginning of each circle the signals ,, ... 4+1 - U, G—npase 1, @, Q42 = W =
Gi+3 = -+ - q1,,,, are entered as evidence. Afterwards the input signals - - u;; are calculated
by marginalization. The new input signale.,

k
1
m Z Wi Ut 4 (4.11)
i=1 " =1

is calculated as a weighted sumkosignals. For our experiments = k£ + 1 — 7 is used so that

Unew =
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Table 4.1: Test systems for evaluation
System K T} 15 Description

1 2 1 0.1 Damped system with gain two with no tendency to owath

2 2 0.1 0.1 System with damping < 1. Thus the step response shows an
overshoot

3 10 0.05 0.1 System with high gain and a large tendency tesbwoet.

the input signals for the near future get a strong weight.nlf@ahe predictionu, ., is used for
the calculation ofi,., this might result in an oscillating signal.

After calculation, the input signal is sent to Simulink wiis used for the simulation of
the dynamic system. Simulink calculates the output of tletesy and the last in- and output is
stored. Afterwards all signals are shifted one time-slacée left, so that the total number of
time-slices is kept constant.

4.1.2 Evaluation of the controller

For evaluation of the controller, the reference and theudisince reaction is used. Reference
reaction means that the system’s response is evaluatdés, ddsired valua is changed. The
disturbance reaction tests the ability of the controllezltminate the effects of the disturbance.

For the evaluation three different systems of second odéscribed by the differential equa-
tion

dem

d m
Ku(t) = y™(6) + i + Ti—

dt
are used. The test systems are listed in table 4.1.

(4.12)

As discussed in section 3.1, the behavior of a linear dynaystem is characterized by the
dampingD = 2% The step response of system number 1 has a danipingl. Thus, it shows
no overshoot, as the step response of systems 2 and 3. In gsampi@ system number 1 and 2,
test system 3 has a larger gain. Thus the three test systemvsdgferent characteristics. They
can be therefore be regarded as being representative foladgeof linear second order systems.

To use the Bayesian network as controller the weights has sebso that the DBN models
the behavior of the dynamic system to be controlled. Usimegstibstitution:; = y™ andxj =
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% — 23 leads to the following equivalent system of first order diffatial equations

doi(t) 0 1| =) 0
[d;é'it) ] — [_L _ﬂl L o +| g |u) (4.13)
dt T2 T3 2 T3
m ]
y"(t) = Lo "t (4.14)
Ty
From this equation the state-space description
0 1 0
T 3 (4.15)
c = [10] d = 0

is deduced. Using equations (3.26) and (3.28) the statespascription is transformed to a
discrete time state-space description. With the consfantsystem 1 andA7T = 0.05 s this

leads to
Ao _ | 09605 o00006] . [ o0701
BN COUBN T 1.09262

-0.9631 -0.0026
(4.16)

CBN = [10] dpy = 0 .

For the judgment of the Bayesian controller, first the delsnadue is changed from 0to 10 to
test the reference reaction. The in- and output signpaéspectivelyu are recorded to calculate
the evaluation criteria given in table 4.2. For example thigliag timet, until the difference
between desired value and outguemains under a threshold is measured. A second evaluation
criterion is the squared error sum.

After convergence of in- and output signals the disturbaridés changed from 0 to 1, so that
the disturbance reaction is tested.

The results, shown in table 4.3, are obtained with a dynarmaieBian network with a sam-
pling period of AT = 0.05 s. It should be stressed that there is nearly no steady state &f
course also Pl and PID controllers are able to reduce thdysttate error to zero.

The timet,(z? = 0, %) until the desired value is obtained is acceptable. It carobgpared
to a Dead-Beat controller, explained in section 3.3.1, whoansfer function is calculated using
the plant’s transfer function. This type of controller ideato achieve the desired value in a finite
number of time steps which is equal to the order of the dynaystem and a term, depending
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Table 4.2: Used evaluation criteria for controllers
Criterion Description

Squared error surfy(z?) Calculated according to equation (3.64). This sum is similéhe
squared integral criterion, but is adapted to the time disccase.

Overshoot Difference between the maximal output and thizetbgalue

oo Steady state error, that is the remaining error after cgarere of
the output signal.

ty(z? = 0,c%) Time from changing the desired valueuntil the difference be-

tween the desired value and the current observed outpuinema
smaller thart% of the desired value.

to(2¢ =1,c%) Same ag,(z¢ = 0,c%), but the disturbance is changed from 0 to
1.

on the dead time of the system. For our examples a Dead-Betabtier would react in 0.1 s as
the test-systems are of second order and have no dead time.

The price for the short reaction time of the Dead-Beat cdletrare large input signals which
might exceed the capability of the actuators. The reactine for the Bayesian controller can be
shortened when,,.,, = u;,;. Please confer with section 4.5 for a comparison betweee®&ay
controller and traditional controller.

As a result of this section it is concluded that Bayesian ratlers work as intended, if they
are supplied with a correct model. The next step towards faagl@ptive controller is to use
training algorithms to get the weights of the Bayesian nekwd his will be the subject of the
next section.

4.2 Trained Bayesian controller

Before starting the discussion about the training of theeBan network it is necessary to clar-
ify which parameters are trained. In the preceeding sectioras explained that a Bayesian

controller needs a special relationship between the nade/ariances, in order to guarantee an
optimal performance of the controller. Thus, the followipgrameters are excluded from the
training:

» Covariance of the input nodes. The result is that the ctatreeacts to a changed distur-
bance or desired value by adapting the input.

» The covariance of the nodes representing the disturb&uoreur test models this value is
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Table 4.3: Results for Bayesian controller with calculatesights

System 1 2 3
I4(z% = 0) 84 9.6 103
eoo(2¢ =10 002 001 O
Overshoot 0.02 0.56 0.92
Iy(z4=1) 0.15 0.19 0.23
eoo(z =1) 0 0 0.01
ty(z?=0,1%)[s] 0.45 0.45 0.7
ty(z? = 0, 3%)[s] 0.35 0.4 0.45
ty(z?=1,1%)[s] 0.45 0.55 0.6
ts(z¢=1,3%)[s] 0.3 0.35 0.45

fixed to 5 for the first time-slice, for the remaining timeeglsy,. = 0.01.
« The links betweerZ? andQ; get a fixed weight of one.

Excluding the parameters from training has the positive gffiect that the search space is re-
stricted. This is relevant as the EM-algorithm, used foinire, converges towards a local ex-
tremum.

Beside the reduction of the search space, obtained by fikegarameter listed above, the
search space is further restricted by the usage of normalsfadiscussed in section 3.1.1. The
consideration starts with the observation that the diffea¢ equation

n

(4.17)

depends on less parameters than the state-space desc(quider equations (3.8) and (3.9),
discussed in section 3.1). Thus there is no unique mappaorg & differential equation to the
state-space description. The usage of the observable icahéorm removes this ambiguity.
When using the observable canonical foegy is set to[0 - - - 0 1], thus only one link from the
last state node to the output is needed. The net simplifieg@istdd in figure 4.3 which uses a
dynamic system of second order as example.

The dashed line fromj , to z7 ,,, at the right hand side should indicate that this connection
is superfluous as long as only the normal form is regarded,eXperiments in this section are

made with a net wherej , andxy ,, are connected, as experiments have shown that the results
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Figure 4.3: Simplification of a dynamic system of second orde

are slightly better if a net including this edge is used.

The link Z¢ — Q, is part of the representation of equation (3.10); i.e., theeoved output is
obtained by adding the modeled output to the disturbancgablar Thus all links td); are fixed,
therefore this node is excluded from training.

The next question concerns the used training signals. W wg$¢ = ugepo(t), Which is
similar to the step respons€t), but with different step heights.,. As second training signal
the impulse response was used. This means that

Uimpulse t=20
U = 4.18
' { 0 t>0 (4.18)

With winpuse @S random number. Both signals are frequently used in dahgory.

For the training 40 time-series were generated using SitkulThen the Bayesian network
is trained for 5 iterations to adapt the weights of the states. Afterwards, new simulations
are started to gain fresh training signals. The procedurepsated 4 times so that all in all 20
iterations are made. According to our experience 20 inatiare sufficient for training. As
training algorithm the EM-algorithm is used, as this altfon is also able to deal with hidden
variables, e.g. the state nod&$ and X5. The experiments carried out are the same as in the last
section, first the desired value is changed from 0 to 10 tauew@lthe reference reaction. After
convergence the disturbance is increased. Thus, in therfostent, the output signal increases
from 10 to 11. Each experiment is repeated 10 times so thatlasstability of the introduced
approach can be judged.
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Table 4.4: Results of experiments with state-space mogsies 1

Experiment number 1 2 3 4 5 6 7 8 9 10 Mean
I4(z% = 0) 746 743 745 761 737 769 7.67 7.63 751 noConv. 7.53
eoo(2? =0) 0.01 -0.01 0.01 0.00 -0.01 0.01 0.02 001 0.00 noConv. 0.01
Overshoot 053 031 052 045 038 055 049 050 0.53 naCodv8

Iy(z7=1) 0.15 0.15 0.16 0.16 0.15 0.18 0.17 0.17 0.16 noConv. 0.16
eoo(2? =1) 0.03 0.02 0.03 0.04 0.02 0.04 005 0.04 0.03 noConv. 0.03

to(z4 = 0,1%)[s] 0.70 0.60 0.70 0.70 050 0.75 0.75 0.75 0.70 noConv. 0.68
s(2%=10,3%)[s] 050 035 045 050 040 055 055 055 050 noConv. 0.48
)
)

(24
te(2% =1,1%)[s] 055 045 050 055 045 055 060 055 055 noConv. 0.53
ts(z%=1,3%)[s] 030 030 030 035 030 035 035 035 035 noConv. 0.33

Table 4.5: Results of experiments with state-space mogsies 2

Experiment number 1 2 3 4 5 6 7 8 9 10 Mean
I4(z%1=0) 945 946 947 950 950 940 943 951 952 944 947
eoo(29 =0 -0.01 -0.00 -0.010 -0.01 -0.00 -0.00 -0.01 -0.01 -0.01 0.00000.
Overshoot 072 103 079 068 111 129 0.78 0.76 0.67 0.988 0.
Iy(z7=1) 026 0.27 027 029 027 026 027 028 029 028 0.27
eoo(2? =1) 0.01 002 000 001 001 001 001 001 001 0.02 0.01

ts(2%=0,1%)[s] 055 085 065 055 08 070 060 080 075 085 0.72
ts(2%=0,3%)[s] 045 070 045 045 070 055 045 050 045 055 0.53
te(2% =1,1%)[s] 070 0v5 075 08 070 075 070 080 090 0.85 0.78
ts(z?=1,3%)[s] 060 060 060 065 060 060 060 060 065 0.65 0.62

In general, the results for the trained Bayesian contrditted in tables 4.4 to 4.6, are similar
to the results obtained for the analytical case. The mosiarpoint is the missing convergence
in the tenth case of table 4.4. Thus the mean given in the ¢dsitrn is taken from the first nine
cases.

The squared error suify of the trained Bayesian controller is better than in the il
case. The reason for this fact gets obvious, when the ingoékior the trained case is compared
with the analytical case. It becomes evident that the tchawmtroller shows a stronger reaction
as the controller whose weights are set analytically.

The larger input signals lead to a larger overshoot of 0.4&imparison to 0.02 in the an-
alytical case. The mean amount of the steady state errohéoreference reaction is 0.01. In
the worst case — not including case 10 which shows no corweege the steady state erray,
is 0.02, which corresponds to 2 %0 of the desired value. Fodiiirbance reaction the steady
state error amounts to 0.05 in the worst case which is woiase tie steady state error in the
reference reaction.

The results for system 2, shown in table 4.5, are slightlyebbéhan the results for system 1.
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Figure 4.4: Signals for system 2

Particularly convergence was achieved in all cases. Tlablkstied tendency, observed in the
evaluation of the first test-system, is also valid for sysgnThe squared error sum is slightly
smaller as in the analytical case. This is due to a largettif@ompare figures 4.4(a) and 4.4(b))
which also leads to a larger overshoot.

The mean of the steady state error is less or equal to 1%. ofebieed value for both the
reference and disturbance reaction.

The settling time is better for the inferred model, e.g. thferired model needs 0.45 s until
the new desired value is reached, the average time for time¢ranodel is 0.72 s.

The model for system three show the limits of the state-spppeoach. The average steady-
state error for the third test system is 0.26, but the medid@h@2 shows that in most cases an
acceptable result is obtained.

Also the steady state error for the disturbance reactiowsltbat the training process is at
its limits. The average steady state error is 0.35, whiclei®hd 3% of the desired value. But
also for the disturbance reaction the median of approxinate5s is acceptable.

The settling timet,(2¢ = 0, ¢%) is much larger as in the analytical case. That is due to two
cases with a remaining error larger than 1 or 3% (Confer talieexperiment number 3 and 4).

When these two cases are left out of the calculation the mgath = 0,1%) is equal to
0.84s.
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Table 4.6: Results of experiments with state-space mogsies 3

Experiment number 1 2 3 4 5 6 7 8 9 10 Mean
I4(z% = 0) 10.03 9.82 10.01 25.37 10.06 9.84 9.87 10.00 9.86 11.39 11.63
eoo(29 =0 0.03 001 -051 195 0.02 0.00 0.01 0.02 0.00 0.08 0.26
Overshoot 115 086 175 727 124 091 1.04 126 1.04 0.8874 1.
Iy(z1=1) 052 045 002 015 052 039 049 043 036 092 043
eoo(2? =1) 0.09 006 041 254 0.04 0.03 004 005 0.02 019 0.35
ts(2=0,1%)[s] 1.00 0.60 4.70 18.00 1.00 045 050 090 0.50 1.80 295
ts(24=0,3%)[s] 050 0.40 470 18.00 055 045 045 055 045 0.65 2.67
ts(2¥=1,1%)[s] 1.85 1.40 3.70 14.05 1.30 095 125 1.00 0.85 550 3.19
ts(z=1,3%)[s] 1.00 095 3.70 1405 095 0.75 090 0.80 0.70 1.80 256

As summary of the experiments described in section 4.1 g i$.concluded that Bayesian
networks are a suitable mean for self-adaptive controligeal a successful training process is
given. In section 4.3 a second model based on the differequatiens, introduced in section
3.1.3, is examined. This model has the great advantageohldden nodes. The Experiments
described in section 4.3 have shown that a higher accuracgntrol is achieved, even if less
examples are needed for training.

4.3 Higher order Markov-model

In section 3.1.3 a second possibility for describing linggnamic systems was introduced. In
the description by difference equation (confer equatioB4g

Y= =) ayl + Y b (4.19)
=1 =1

no hidden nodes are left. Instead of using state nodes, farmand outputs:;,_; andy;”, re-
spectively are taken to calculate a prediction of the neatu As in the state-space description
also the disturbance variable has to be taken into accounat i¥, the estimation of? has to be
added toy;” to figure out the observed output. This consideration leadlse model depicted in
figure 4.5 which shows a dynamic system of second order.

In comparison to the state-space model it is not possiblate the layer for the modeled
outputy™. Adding the disturbance variabl¢ to y directly (confer figure 4.6) leads to wrong
predictions in presence of a disturbance.

When looking at figure 4.5, particularly at nodg’,, one notices that the Markov assump-
tion, explained in section 2.4, is not metig$, depends also or/” andU,. For models of higher
order arecourse tg,”; andU,_;,7 > 1 is necessary for the prediction Bf}’,. This causes prob-
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Figure 4.5: Modeling of equation (3.34) by a dynamic Bayesiatwork

lems, as some of the toolboxes for Bayesian networks, inguithe one implemented by K. P.
Murphy which is used for our experiments, are not able to datll Markov models of higher
order. There are two obvious solutions.

» Adding additional nodes to the model with the task to tran#fie values of random vari-
ables, belonging to former time-slices, to the current @@2N02b].

» Reimplementation of a small part of the Bayesian netwodkox. Due to the evaluation
mechanism, the unrolling of the dynamic Bayesian netwtwkiecessary expansion of the
toolbox is restricted to the generation of the Bayesian akwThe evaluation algorithm
does not need to be changed. Also the training algorithmfisil@ouched as it is also
based on the unchanged unrolled Bayesian network. Thasesthined with this model
to control systems of second and third order are discusssetiion 4.4.

The first approach, used tor the experiments in this sedt@asmthe advantage that it can be used
for rapid prototyping so that the supposition that the défece equation model is advantageous
for a Bayesian controller can be checked easily. When adhditinodes are used, the same value
is represented by two different nodes in different timeesi This leads to the structure in figure
4.7.

Of course it has to be guaranteed that the same value is edsigmodes representing the
same value. For example the valugsindy;™ are represented in the first and second time-slice in
figure 4.7. It is guaranteed by two different mechanismsahatodes representing or y;* get
the same value. For input nodes the value is entered twicadenee. For systems that show no
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Figure 4.6: Faulty model which leads to incorrect predictio

immediate reaction on changes of the input nodes, the lieksdenu, andy;” are superfluous.
Thus, one of the input nodes is unnecessary.

For the modeled output of the system this is not possibleaas ik no evidence given fgf".
The solution in this case is a link between two nodes reptegethe same value with a fixed
weight of one. An example is the link betwegfi in the time-slice at the left and in the middle
of figure 4.7.

The next step concerns the training of the Bayesian netwOtk. aim using the difference
equation is to use as less hidden nodes as possible. Whaniagghat there is no disturbance
during training, it is possible to sef = 0 andy™ = ¢. Thus there are no hidden nodes left.

Similar to the experiments with the state-space descripfisome of the parameters are
clamped in order to guarantee that the controller acts andetd. The following parameters
are excluded from training:

 Variance of the input nodegs;
 Variance of the modeled outptif

 Both edges td@) has a fixed weight of one, the variangg is set to a small value, for the
described experimentg, = 0.01

« The connection betweefi! and Z¢, , has a fixed weight of one, the variance of the first
time-slice is set to three (at the first time-slice it is nosgible to make proper predictions
as the information from former signals is missing), in thmaeing time-slices ;. = 0.01.
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Figure 4.7: Model for difference equation with redundande®

As there are no hidden nodes left, the number of iterationsdaced to five, but of course the
convergence of the EM-algorithm is observed immediatelye fumber of data sets used for
training remains 40.

The results obtained for system 1 with the difference equatnodel are depicted in table
4.7. The most important result is that the control signaveoged in all cases; i.e., the differ-
ence equation model shows the stability necessary for reddhapplications. This argument is
supported by the low distortion of the training results. Wheble 4.4 and 4.7 are compared the
most impressive result is that the dynamic system contteli¢h the difference equation model
shows nearly no overshoot in comparison to an overshood8f@.the state-space model.

Table 4.7: Results of experiments with higher order Markadet, system 1

Experiment number 1 2 3 4 5 6 7 8 9 10 mean
I4(z% = 0) 851 851 851 851 851 851 851 851 851 851 851
eoo(2% =0) -0.09 -0.09 -0.05 -0.07 -0.05 -0.10 -0.08 -0.07 -0.06 -0.06070
Overshoot -0.09 -0.09 -0.05 -0.07 -0.05 -0.10 -0.08 -0.07.060 -0.06 -0.07
Iy(z7 =1) 0.11 0.11 o011 o041 021 021 022 0212 011 011 o011
eoo(z4=1) 0.02 002 005 004 005 0.00 003 004 0.04 0.05 0.03

ts(z% = 0,1%)[s] 075 075 060 060 060 240 065 065 060 060 0.82
ts(24 = 0,3%)[s] 045 045 040 040 040 045 040 040 040 040 042
ts(2% =1,1%)[s] 030 060 030 030 030 060 030 030 030 030 0.36
ts(z4=1,3%)[s] 025 025 025 025 025 025 025 025 025 0.25 0.25
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Figure 4.8: Signals of difference equation controllerteysl

The squared error sum for the reference reaction is bettahéstate-space model. The
reason for this is the same as in the comparison between #igtiaal and trained state-space
model. The larger overshoot results in a faster reductiothefdifference between observed
output and desired value and therefore to a smaller squar@dsem (compare figure 4.8).

For the disturbance reaction the difference equation ngid@l's better results, a hint that the
difference equation model is trained more accurately. Gomg the settling time shows similar
results. The state-space model is slightly better as lortheseference reaction is compared
(0.68 s in comparison to 0.82 s of the difference equationef)odf the disturbance reaction is
compared the difference equation model shows better ss€uB3 s vs. 0.255).

Using system 2 for comparison shows similar results as sydteLess overshoot (0.45 vs.
0.88) of the difference equation model which leads to a Hiygiorse squared error sur (9.82
vs. 9.47). Despite the worse squared error sum the setitirgg that is the time until the desired
value is reached, is shorter for the difference equationahod

As mentioned in section 4.2, system 3 is suited to show thi¢ dihthe state-space approach.
Comparing the results of the state-space model and theahffe equation model, depicted in
tables 4.6 and 4.9, shows that the new structure clearlycowsgs this limit.
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Table 4.8: Results of experiments with higher order Markadet, system 2

Experiment number 1 2 3 4 5 6 7 8 9 10 mean
I4(z% = 0) 982 983 982 982 982 982 982 983 983 982 982
eoo(24 =0) 0.03 -0.03 -0.05 -0.04 -0.03 -0.05 -0.04 -0.03 -0.04 -0.04040.
Overshoot 045 045 043 044 045 043 044 046 044 0445 0.
Iz =1) 0.16 0.16 0.16 016 0.16 0.16 0.16 0.16 0.16 0.16 0.16
eoo(z4 =1) -0.04 -0.04 -0.06 -0.05 -0.04 -0.05 -0.05 -0.04 -0.05 -0.08.05

ts(z4 =0,1%)[s] 045 045 045 045 045 045 045 045 045 045 045

(24 =0,3%)[s] 040 040 040 040 040 040 040 040 040 040 0.0
ts(2% =1,1%)[s] 03 035 035 03 03 03 035 035 035 035 035
to(z4=1,3%)[s] 025 025 025 025 025 025 025 025 025 0.25 0.25

Table 4.9: Results of experiments with higher order Markadet, system 3

Experiment number 1 2 3 4 5 6 7 8 9 10 mean
I4(z% = 0) 990 989 989 10.10 9.89 989 990 989 991 989 9.92
oo (28 =0) 001 001 001 003 001 001 001 o001 001 0.010 0.02
Overshoot 115 115 115 115 115 115 115 115 1.15 1.1515 1.
Id(zd =1) 019 019 019 018 019 019 019 019 019 0.19 0.19
eoo(z? =1) -0.04 -0.04 -0.04 0.00 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04.030

t (24=0,1%)[s] 070 065 065 170 065 065 065 065 075 065 0.77
ty(2d = o, 3%)[s] 0.45 045 045 1.05 045 045 045 045 045 045 051
(x¢=1,1%)[s] 0.60 0.60 0.60 055 060 060 060 0.60 0.60 0.60 0.60
(¢ = )

ls
ts(z 1,3%) [s] 025 025 025 030 025 025 025 025 030 0.25 0.26

S

The results obtained with the difference equation modelragdl respects better than these
obtained with the state-space model. As usual the stat®spadel shows the larger overshoot.
In this case this does not lead to a smaller squared error Baenfact that the trained difference
eguation model sometimes even surpasses the state spaekwhode weights are set, is par-
ticularly from interest. For instance the squared error sismaller for both, the reference and
the disturbance reaction. Also the settling times are pehd same. The disadvantage of the
approach with redundant nodes, as depicted in figure 4.fieisverhead for the computation of
the redundant nodes which increases linearly with the afidgre system.

4.4 Modeling of higher order systems

In sections 4.1 to 4.3 all used test systems are of second &waen if the approach with redun-
dant nodes is still possible for higher order systems, afloverhead is caused by this solution.
In principle there are different possibilities to model tgyss with ordem > 2 which will be
discussed in this section more or less from the theoretmiak jpf view.
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When the state-space approach is used, it is possiblereaise the number of state nodes
or the dimension of the state node to model a system of higider.o

Splitting the system in subsystems of second order.

Splitting of the system in parallel subsystems.

Usage of higher order Markov models, being able to predietdutput by resource to
former in- and output signals.

» Approximation of a higher order system by a system of secvddr.

When the state-space approach is used, it is theoretidatiypassible to model MIMO sys-
tems of higher order. But as seen in section 4.2 the trainfitigeostate-space model might cause
problems. One additional problem for systems witk 2 is the high number of the state nodes
itself. When the junction tree of the higher order model iastaucted, the state nodes and all
of their parents are all content of one clique. For a SISOesystf forth order this leads to
nine-dimensional cliques, as;_, andU,_, are parents of the state nod&¥s. This leads to nu-
merical problems during inversion of the covariance matngluded in the inference algorithm
introduced in [Lau92].

One solution of the problem is to split the system in a semain@ction of second order
systems. The idea is to split the numerator and denominatbedransfer function

N(s) _ Ni(s) Na(s)  Nnja(s)

Gls) = 5 &~ DA Dole) " Doale) (4.20)

into polynomialsN;(s) and D;(s) of second order. This reduces the numerical problems, but
there are two restrictions. This approach is only suitabeSiSO systems, as the transfer func-
tion of MIMO systems are polynomial matrices. The otherresons is the training which
might cause problems.

The second approach is the division in parallel subsystessusing that all poles i (s)
are real

G(S):Z (( Ck,1 I Ck,2 +_”+%) (4.21)

—\(s—sk) (s—s) (s — sp)m*

wherep is the number of different poles; is a pole ofD(s) andr, denotes how oftefis — sy)
occurs the decomposition 6f(s). ThusG(s) is decomposed in parallel subsystems, as parallel
subsystems are mapped to the sum of their transfer functideshe number of poles is not
always known before modeling starts, this approach canmoskd in all cases.
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Table 4.10: Test results for system number 4

BN4
Lo(z% = 0) 66.45
oo(2¢ = 0) 0.05
Overshoot 1.80
Ta(z? = 1) 1.44
eoo(28=1) 0.09
t(z1=0,1%)[s] 7.12
ts(z21=10,3%)[s] 4.40
ts(24=1,1%)[s] 10.92
ts(z7=1,3%)[s] 3.68

The most promising approach is the application of higheeoiMarkov models. For the
evaluation of this approach the Bayesian toolbox is expausdethat Markov models of higher
order can be implemented directly without the usage of rddobtnodes. For a third order system

B 0.4s +2
©0.01834+0.552+0.2s + 1

G(s) (4.22)
whose step response shows an overshoot, the results actedepi table 4.10. The results
are obtained with a sampling period dff" = 0.4 s and 40 training examples. Trials with
AT = 0.05 s fail. The reason for this might be the small number of timeesd, so that a long
term prediction is not given. For the reference reaction theddisturbance reaction the steady
state error is below the 1% level. For a comparison with trawfal controller see section 4.5.
The last possibility for modeling higher order systems isdtect a model of lower order, for

example
K

(1 + Tls)(l + TQS)
might be used . Other models are introduced in [Unb97a].

G(s) = (4.23)

4.5 Comparison to Pl and Dead-Beat controller

In sections 4.1 to 4.4 the capabilities of Bayesian cordrslare examined based on the criteria
listed in table 4.2. This section deals with controllersdiseindustrial practice in order to com-
pare their performance with the Bayesian controller (see DDNO3b]). Due to the numerous
methods to figure out controller settings it is impossibleyout all current approaches.

We have selected the approach by Ziegler and Nichols [ZN4#thy despite its age, is
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Figure 4.9: Setup for experiments with Pl and Dead-Beatrotiat

Table 4.11: Settings for PI controller
Number K.ix taie ControllerD(z)

1 3258 0.1 14:6612-6.039

2 225 0.9 L2080

3 0.213 0.37 0059 0.0807
. ) z—1

4 64  0.17 288:-19.0549

one of the most commonly used approaches. When this appi®agiplied to digital control a
high sampling period has to be selected so that the contogilrates nearly in a continuous time
space. Moreover this mechanism is originally developed¥erdamped systems, a precondition
only given for system 1.

Dead-Beat controllers are particularly designed for digibntrol. They guarantee that the
desired value is reached within a finite number of time stelppending on the order of the
system and the dead time. Therefore this type of contrdlsuited to give a lower bound for the
settling timet,. But is has to be kept in mind, that this method is based onxhet&nowledge
of the transfer function and of the desired reference reactParticularly, the first requisite is
usually not given. For our experiments the control loop diui in figure 4.9 is used.

To figure out the settings according to Ziegler and Nichodsdbntroller is first used as pure
P-controller, i.eG(z) = K.. The controller gaink. is increased until the closed loop starts
oscillation. The controller gaik..;; and the critical time,,;; are measured. For our test sys-
tems these values are given in table 4.11. Afterwards th&ater is calculated according to
table 3.1. The resulting controller is dedicated for cambins time. To adapt it to discrete time
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Table 4.12: Settings for Dead-Beat controller

Number Transfer functiot¥(z) ControllerD(z)

1 0.07912~140.01882—2 1-0.95782~14-0.0067z 2
1—0.95782—1+40.0067z—2 0.0978—0.07912—1—0.0188z—2

2 0.20882~140.17662—2 1-1.41382~140.60652 2
1—1.41382=1+40.60652 2 0.3854—0.20882~1—0.1766z 2

3 1.128641.0377z~1 o1 1-1.56222~140.77882—2
1—1.56222—1+40.7788z 2 2.1663—1.12862—1—1.03772—2

4 0.5442~140.05292—2—0.0127z 3 1-1.5732"140.86512—2—2.0612e—09z 3

1-1.57302—140.86512—2—2.0612e—09z—3 0.5842—0.5442—1-0.05292—2+0.0127z—3

the controller setting was mapped to discrete time domamgubke according matlab function.
This mapping was done using the same sampling pefiddas for the Bayesian controller to
ensure compatibility of results. But this selection is disemble as it does not guarantee the
requirement that the controller operates in nearly cootiisutime. For the tests, discussed in this
section, only Pl-controllers are used. Tests with PID culgr yield no satisfying results. Possi-
ble reasons may be the fact that the Ziegler-Nichols apprsagsually restricted to overdamped
systems in continuous time domain.

For the Dead-Beat controller the dynamic system is mappetistoete time domain and
afterwards the controller was calculated. The results epécted in table 4.12.

The controllers listed above are compared to a Bayesiamaitant based on the difference
equation model. In difference to the results, discussedahan 4.3, the models are implemented
directly using an expansion of the BN-toolbox for highereriarkov models. Two different
settings for the Bayesian network are tested. The firsteeysialled BNT1, uses only, ; for
the calculation ofi,.,. That is the number of nodésin equation (4.11) is setto 1. Hence

Unew = Ut41 - (424)
The second version BNT4 uses four nodes for the calculafian.@, i.e

1
Upew = 10 (41 + Btpro + 2Upy3 + Upga) (4.25)

As figures 4.10(a) and 4.10(b) show, one of the main effedisaisthe input signal is damped
down. This makes sense, because the actuator might be tedosfollow the oscillation. The
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Table 4.13: Test results for system number 1 and 2

Test System AT = 0.05 s || Test System 247 = 0.05 s

ZN DB BN1 BN4 | ZN DB BN1 BN4

I4(24 = 0) 12.43 52 498 8.09| 15.39 6.04 5.02 9.66
eso(2? = 0) 0 0.01 0.03 0.06| 0 0 0.01 0.02
Overshoot 882 0.01 0.06 0.06 403 O 0.36 0.54
Ig(z4 =1) 0.12 0.05 0.09 0.11|0.15 0.06 0.11 0.16
eoo(2¢=1) 0 0.01 0.02 0.03| 0 0 0.03 0.04
ty(z4 =0,1%)[s] 1.1 0.1 0.10 050|335 01 035 045
ts(2¢=0,3%)[s] 0.85 0.1 0.10 0.35| 25 0.1 0.20 0.40
ti(z¢=1,1%)[s] 055 0.1 0.15 0.55| 15 0.1 0.15 0.30
ts(2¢=1,3%)[s] 0.3 0.05 0.15 0.20| 0.5 0.1 0.15 0.25

Table 4.14: Test results for system number 3 and 4
Test System AT = 0.05 s Test System 4
ZN DB BN1 BN4 | ZN DB BN1 BN4
Iq(z4 = 0) 2151 6.15 4.97 9.89| 13.87 40.20 39.80 66.45
oo(2% = 0) 001 O 0.00 0.00)0.00 O 0.03 0.05
Overshoot 1.70 O 0.00 1.15/6.34 0.22 0.23 1.80
Iq(z4 =1) 0.21 0.06 0.12 0.19/|0.31 040 094 1.44
eoo(2¢=1) 0 0 0.03 0040 0 0.05 0.09
ty(z=0,1%)[s] 6.05 0.1 0.05 0.65|2.65 1.2 3.88 7.12
ts(z2=0,3%)[s] 4.4 0.1 0.05 0.45| 2.0 0.8 2.32 4.40
ty(z4=1,1%)[s] 2.5 0.1 055 0.60( 1.5 0.4 548 10.92

ty(z=1,3%)[s] 1.05 0.1 0.15 0.25/0.85 0.4 1.20 3.68

results for Ziegler Nichols are worst. Particular for sys#, the sampling period\T" has to be
decreased to 0.05s. The other systems were testedWitk 0.4 s. That means that the squared
error sum in table 4.14 should not be compared to BN1, BN4tlam@ead-Beat controller.

The comparison for system 1 shows that the Bayesian netwdfkdhows similar results as
the Dead-Beat controller. For an overdamped system it nigisensible to select only one node
for the calculation ofu,.,. In this case similar settling times are obtained. Systems two and
three both have a damping < 1, so that oscillation is possible. The results for BN1 and DB
are similar, but as figure 4.10(a) shows, too large inputagyiead to oscillation. Also the Dead-
Beat controller shows a sudden change of the input signiagédie¢ginning (see figure 4.11 for the
in- and output signals of the Dead-Beat controller) For tleadBeat controller an appropriate
mean to limit the signals of the actuator is to increase timepdiag period AT, for Bayesian
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Figure 4.10: Signals of Bayesian controller, system 2, thasedifference equation
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Figure 4.11: Signals of system 2 for the Dead-Beat controlle
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networks the number of nodes used for calculation,@f can be increased. This leads of course
to an increase of the squared error sum, as the first inpudlsigidecreased. Additionally, the
settling time is increased.

The right hand side of table 4.14 shows that the Bayesiananktapproach is also suitable
for systems of third order. The steady state error is belowof%he desired value. But the
settling time is worse than for the Dead-Beat controller.

In chapter 4 the application of Bayesian controllers todmgystems has been discussed.
The next chapter discusses the modeling of non-lineanitiés Bayesian networks. In some
books about non-linear control, some frequently occurfungtions are listed. The idea is to
design models for these elements which can be combined te ownplex models and have
the advantage, that a lot of a-priori knowledge can be usethi®odesign. Thus some of the
parameters can be clamped, so that the training effort iscestl

Itis hard to compare the different methods. The Bayesiatrolder has a high time-complexity.
According to [Lau92] the “most complex operation is the weatrginalization over a given
cligue. If the clique contains discrete variabl®&s € Ag with state space of cardinalityy
and ¢ continuous variables, then the computational complextyfi the order of magnitude
¢’ HXeAg nx’.

In this chapter only continuous nodes are used, thus an Uippieof the time complexity
is ¢3. The largest clique of the state-space description camntainstate nodes plus the input
nodes (remember that at least one cligue must contain tteersides and its parents). The time
complexity of ¢® results from matrix inversion, hence it makes no differetia only strong
marginalization is applied during inference.

The training time of a state-space model with 25 nodes iscequpiately 1600 s, the evalua-
tion time 0.43 s. Thus the run-time is the weak point of thed3@gn network. Its advantage is
the ability to adapt itself to different systems.

In contrary to the Bayesian controller the Dead Beat coletraé based on a mathematical
description. If this description is available or can berastied, the Dead-Beat controller is a good
choice, because it guarantees a minimal settling time anddhtrol signals are easily calculated.

The approach of Ziegler and Nichols is restricted to overgkearsystems. Additionally, it is
originally developed for continuous time systems. Thus & very valuable empirical formula,
but far from optimal.

So the Bayesian controller is recommended if the systemkaawin, In the other case the
Dead-Beat controller offers better features. But the realdeuld keep in mind that the Bayesian
controller is in a prototypical stage (compare chapter Qrddver the comparison of this chapter
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is incomplete as other self-adaptive methods are not redard



Chapter 5

Bayesian networks for modeling nonlinear
dynamic systems

This section discusses the approximation of a nonlineantiom by piecewise linear approxima-
tion. In a first approach, introduced in section “Linear Agepmation”, it is shown how a hybrid
Bayesian network simulates several Taylor series at the siane.

All input variables that have a nonlinear influence on thepattire represented both by a
discrete and a continuous variable. The discrete variahets a point,, closest to the current
input w. In first models an extra nodg, is used that calculates the quantization ergr=
u—u,. This model is used without modifications for the modelingalfbration in hydroforming.

In section “Simplification of linear approximation” it is etvn how this node is saved. This
simplified version is used for the model of saturation.

In Section 5.2 the approximation of a nonlinear function &yesal Taylor series is combined
with the modeling of dynamic systems. Additionally the désaf section 8 are applied to restrict
the run-time.

5.1 Prototypical modeling of nonlinear units

Linear Approximation
A differentiable functionf is approximated by a Taylor series

j(u) = f(ua) + f/(ua)(u - ua)7 (51)

97



98 CHAPTER 5. BNS FOR MODELING NONLINEAR SYSTEMS

at a pointu,. The functionf denotes the approximation ¢f f’ the first derivative and.,, an
arbitrary point.

To model the approximation of a functighwith several Taylor series the model depicted in
figure 5.1 is used. The mean HfU)’s distribution, representing(u),

asw) + Braneq = f(u) (5.2)
is equal to the approximation of the functignprovided that the mean
arwy = flua) (5.3)

and the weight
Brwy = — 1 (ua) (5.4)

is equal to the first derivative of at pointu,. The nodeE, calculates the difference between
the inputu and its closest point,. This is easily obtained by setting the mearfof

OzEQ = Uyg (55)
and the weightiz,, between nodé’ andEy,
Be, = —1 . (5.6)

It remains to show how to select the correct poimis Usually a link points from the cause to
the effect of an event, so that a libk — U, would be naturally. The introduction of such a link
contradicts the assumption that there are no continuoemn{saof discrete nodes. For exceptions
see [Mur99; LSKO1].

Our experiments have shown that triggeringlaf also works with a linkUy — U. To
understand how the continuous node triggers the discrete assume that is closest tou,.
Thus the amountu, — u| < |u; — u|,a # i. Therefore the probability distribution of nodéis
maximal if U4y = a which leads to an increased probabilitylof = a. The increased probability
for Uy = a is used to select the corresponding parameters for the epdesenting (u).

In order to obtain acceptable training results the follgytvvo conditions have to be met.

* The selected points;, us, - - - , u; (k equal to the number of states @f) should be near
the centers of the straight lines used to approximate thetitmf. This is a matter of a
good initialization.
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Figure 5.1: Linear approximation by multiple Taylor series

* The standard deviations associated with the differeninsegof U should be in the same
order of magnitude as the difference between two neighbpogats v, andv;. [f the
scattering of the data is different for different regiongtod functionf, the (co)variances
can be clamped or tied. At least the BN-toolbox, used for ttpeeements, offers these
features. For a discussion how the EM-algorithm is changeehtible clamped or tied
covariances see [Mur98a]. If the size of the regions difeagerely it is necessary to
divide some larger regions, even if they might be modeledrgylme.

A critical point in training are test-plans, if one state negents only one setting, and the
second state several settings. As an example imagine a widtiel threshold process, shown in
figure 5.2.

The first state represents an input 1.5, the second state all inputs between 2.5 and 5.5.
Assuming that each experiment is repeated 6 times, thenai@r the second state is estimated
at

Yo = 2—13 (6(2.5—4)> +6(3.5 —4)> +6(4.5 —4)> +6(5.5 — 4)*) = 1.304 . (5.7)
For the first state variance is zero. In our example= 0.0025 < =, is used to demonstrate
the effect of two heavily different covariances. A compani®f the two Gaussian distributions
p(ulay = 1.5,y = 0.0025) andp(u|ay = 4,2 = 1.304) is shown in figure 5.3.

It can be seen that close to= 1.5 the probability of state 1 is much larger than of state
2. Figure 5.4 (which shows the same two probability densitycfions) however, exhibits the
problem that the probability of state 2 is larger than fotestaif the input is smaller than 1.25.

Thus the model will fail to make predictions for values sreathan 1.25.
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Figure 5.2: Example for a threshold function

There are two possible solutions for the problems just dised. The first is to use an ad-
ditional state with a similar variance, so that state oneegponsible for small inputs, state 2
models inputs close to the threshold and state three is osédpluts beyond the threshold. An
example is the model for the calibration process, treategation 7.1.1.

The second solution is to tie the covariances for differégies, that is to change the maxi-
mization step of the EM algorithm, so that= ~, for different states # ;.

Simplification of linear approximation

In the last section the approximation of an arbitrary fumctly several Taylor series is discussed.
This pattern is successfully applied to model preforming ealibration, discussed in section

7.1.1. Figure 5.1 shows that an extra nddeg for the quantification of the error is used. To

simplify this model the approximation of a functigiat a pointu,

F) = flua) + f(ua)(u—ug) (5.8)
= f(ua) - f,(ua)ua + f,(ua)u (5.9)

is splitin a constant ternfi(u,) — f’(u,)u, and a second ternff (u,)u depending on:. Setting
the offset of the output nod&U) to

apo) = flua) = f'(ua)tta (5.10)
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and the weight to

Brwy = f'(ua) (5.11)
shows that a continuous node with a discrete parent is atd@pooximate a functiorf. The
used model is depicted in figure 5.5.

A precondition is that the stateg are triggered so that the probability of one state is usually
much higher than the probability of the remaining statess ihagain achieved by setting

ap(ug = a) = ug (5.12)

the mean for nodé& close to the selected operating poinis The number of states @f, is of
course equal to the number of operating points. The stardiavidtion, /7 should be selected
similar to the distance between two neighbored operatimgtgadJsually it is sufficient to select
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a suitable value as initialization to start the traininggass. During the training process the value
for ~y is improved by the EM algorithm.

Saturation

One of the nonlinearities discussed in section 3.2 is thea@on f,,, that is described by equa-
tion (3.48). This function can be modeled by three straigie#d. For the first one, a point
u; < usy has to be selected which models the regior ug,.. Thereforef,.(u1) = —y .
The derivative in that region vanishe& ((u,) = 0) as the output does not depend on the input.

To model the second region a point obeying—ug.; < us < ug,y IS Selected. The slope
froi(ug) = ij—:( is equal to the quotient of the maximal outpgjt,.. by the inputus,.. Provided
thatu, is in the center of the regiom, = 0, the function valug/,;(us) = 0.

Similar touy, a pointug with uz > g, is selected withfs.. (us) = v and fl, (us) = 0.
The consideration above results in the following means

OzU(Ud = ]_) = U (513)
OéU(Ud = 2) = U2 (514)
OéU(Ud = 3) = Us (515)

for the input nodd/. These settings, abbreviated by = {u; wus us}, represent the centers
of the piecewise approximation. The parameters of the dutpde are according to equation
(5.10)

) = {—Ymax 0 Ymax) - (5.16)

The weights of the output nod&U)

Bran = {0 1m0} (5.17)
Usat,
contain the derivatives at different pointg 1 < i < 3.

There are only two different parameters which determinestitaration curve, the minimal
and maximal outpug. , andug,. For the training of the model it is assumed that all states of
the input nod€/4 have the same probability. Additionally the saturation elachplemented in
Simulink has as single parameter the lower and upper lihetptaximal outpuy™”.  is therefore

max

equal toug,;. As a consequence the weight of the output node is clamped to

Brwy =101 0} . (5.18)
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As training input 600 examples are taken that are uniformdyributed between -12 and 12.
After the training the saturation is modeled with a maximabeof 0.10 and relative error of
2.27%. A comparison of the saturation curve with the préaficis given in figure 5.6.

Outputy™

-5 -4 -3 -2 -1 0 1 2 3 4 5
Inputu

Figure 5.6: Comparison of model and real signals for saturat

Hysteresis

The hysteresis curve depends not only on the inplut also on the sign of the first derivative.
The sign of the first derivative is calculated by

(5.19)

sign() = sign(ugy — uy) -

The difference betweemn  ; — u, is calculated by the Bayesian network depicted in figureg.7(

The problem is to detect the sign of the differenge, — u;, = Au. Adding a discrete parent
to node AU does not work. The usage of different offsets, is not suitable to distinguish
between different signs, because the mean depends on thletsvand the evidence of the nodes
U1 andU;.

The trick is to use a nod€y with a constant evidence > 0 and a discrete pareti;,,, of
nodeCy which switches between different weights@f (confer figure 5.7(b)).

Assume thaB¢,, (sign(u) = —1) = wg[—1 1]; i.e., the node’yy calculates:, — u,; given
thatsign(w) = —1 and the weightu; is set to one. The appropriate settinguof is discussed
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Figure 5.7: Parts of the hysteresis model

later. Forsign(u) = 1 the weights

Bey (sign(i)) = 1) = wpl1 — 1] (5.20)

are set the other way round. Given that the evidence for 6gdis always a positive constant
c the Bayesian network works as follows.df,; > u, the differenceu, . ; — u, is positive, the
difference—u,,; + w, is negative. As: is positive, it is more likely that;,, = 1.

Whenu, > w1, the difference—u;,; + u, is positive. Thus the likelihood of being
positive is increased by, = —1. Therefore the Bayesian network depicted in figure 5.7(b) is
able to approximate the sign function. To be sure that the-figction switches fast when the
relationship between,., andu, changes, the weights; of the linksU;, — Cy andU;; — Ch,
the variance of nodé€'y and the constanthave to be selected carefully. £ffu = u;,1 — u, the
two distributions forign(u) = +1 are

_ 2
p(Aulsign(u) =1) = ! exp _ e Auwy) (5.21)
21\ 27y
2
p(Aulsign(u) = —1) = ! exp — (e + Auwy) (5.22)
27/ 27y

To be sure that the probability(x;,, = 1) switches fast from O to 1 if the differeneg,; — u;
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changes its sign, the quotientAu|sign(u) = 1)/p(Aulsign(u) = —1) needs to be maximal.
This quotient is

2y
2A
= exp uwﬁc . (524)
Y

In order to maximize this quotient;; or ¢ have to take on large values, the variance has to be
very small. For our experiments= 0.2, wg = 4, andc = 10.

After the sign is detected, it is easy to expand figure 5.7¢bthat the hysteresis curve is
modeled. Only one output node has to be added. Additiorellpk betweern/,; and X, iS
added to decide whether the current input is below or beybadhreshold:o (confer equation
(3.58)). ThusXg,, has four states, two states are used to encode whether temtcinput
exceeds the thresholg,, two of them are used to represent the sigm ().

Figure 5.9 shows that the Bayesian network depicted in fi§uBas able to model the hys-
teresis curve. Note that figure 5.9 is based on a Bayesiarorietvith calculated weights.

Lsign

Figure 5.8: Bayesian model for hysteresis

The training of the Bayesian network is not successful, amgpte of a failed trial is shown
in figure 5.10.

It can be seen that the threshald is estimated incorrectly . The problem is that there is no
single parameter responsible for the encoding&f The threshold is encoded by the selection
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Inputu
Figure 5.9: Comparison of model and real signals for hystere
of the four different offsets
av,, = {ur ug uz ug} (5.25)

Assuming thatis < —ueg < u; = uy < ug < u, the threshold is determined by

B Tl (5.26)
2
and
o = 2 '5 Y (5.27)

As u, anduz are only determined by the mean of the training data beloya(he )the lower(upper)
thresholdug,and not on the hysteresis curve, the result of the traineedds heavily on the
selected training data.

5.2 Control of non-linear systems

In the last section the approach of piecewise linear appration of nonlinear functions is dis-
cussed. Good results are obtained if the curve to be modalete divided in several straight
lines which are selected according to the input

If the straight lines, approximating the curve, depend otlg on the input, but for instance
on a hidden state or on the sign of the first derivative of tipaiin, this approach is no longer
applicable. Therefore, a nonlinearity applied directlytte input is regarded in the next section.
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Figure 5.10: Failed trial to train the network of figure 5.8

5.2.1 Expansion of difference equation model

A frequently occurring nonlinearity is saturation. Two axales are an amplifier and a valve.
If the output of an amplifier has reached the supply voltagehér increasing the input has no
effect. When a valve is completely closed, a further reductf the flow rate is not possible.
Therefore a serial connection of saturation and a dynansiesyof second order is discussed in
this section as an example to analyze the usage of hybrichugri2ayesian networks.

As a starting point the difference equation model (conferagign (4.19)) is combined with
the saturation model (confer figure 5.5 for the used saturanodel). The resulting dynamic
Bayesian network is displayed in figure 5.11, the Simulinkdeion figure 5.12. The difference
equation model is used for first tests, because it provides stable results in the linear case.

In comparison to the saturation model two changes are madieated in figure 5.13.

1. The nodes in the layer, denoted witly have two states instead of three. In first trials it
is observed that a mean input is achieved when all threessh@ee equal probabilities,
instead of one state having probability 1. Thus one of theetistates is superfluous.

To save one state it is assumed that the nodes represendirapsierved input, denoted
by U., and the hidden output of the saturation unitare only connected by the discrete
nodel,. That is the link betweef/. andU,, is also saved, and that the hidden nade
is regarded as conditionally independent fréingiven Uy. To coupleU. and U, the
minimal and maximal output of the saturation element isgaesd as means

ay, = ay, = {0 Yt (5.28)



108 CHAPTER 5. BNS FOR MODELING NONLINEAR SYSTEMS
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Figure 5.11: Modeling a saturation at the input

to both nodes. To obtain a tight link, the variancéfgfis set to a low valuey, = 0.01.

Intermediate outputs between 0 agjtl are achieved by different probabilities fof’s
states. For examplé)(uq = 2) = 0.8 would result in an output close ©02-0+0.8-y! _if

all other influences are neglected. The reduction of the rumbstates has also a positive
influence on the runtime which is proportionalXe«x instead of3m=x.

2. Alink Uy — Uqy41 is added. In the control of linear systems any a-priori krealgle for
the input nodes is avoided, by setting the variapg¢éo a maximal value. If there were no
links Ug; — Uq.41, the probability distribution ot/; , would have a severe influence on
the calculation of the manipulated value. By adding a ik — Uq 41 this influence is
reduced, as the conditional probability of the stateS of, ; depends on the probability of
the previous time-slice. Therefore there are more timeeslused to estimate the desired
distribution.

In a first step a controller is used whose weights are caledlanalytically. The result of a
controller with 6 nodes used for the representation of th& pad 3 nodes for the future is
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Figure 5.12: Simulink model of test system
displayed in figure 5.14.

Table 5.1: Results of experiments with expansion of difieeeequation model
Experiment number 1

I4(z% = 0) 20.11
eoo(2? =0) -0.02
Overshoot 0.26
Iy(z7=1) 0.18
eoo(2? =1) -0.05
ts(2% =0,1%) 2.65
ts(2% = 0,3%) 0.85
to(2% =1,1%) 1.20
ts(z4 =1,3%) 0.3
Evaltime 32.11

At the beginning of the test shown in figure 5.%4<{( 2.9 s), the desired value is equal to
zero. The observed outpytafter convergence is 1.26, that is the steady state eregr for a
desired value ofv = 0is e,, = 1.26. The reason is that the distribution &f ; does not only
depend or/., which represents the required control signal, but alsoremipus probabilities
of Us,—1. During design, some constants, e.g. the means aind Uy, and the probability
distribution ofUy ;, are selected so that the controller shows the best perfam@farw = 10.

At t = 2.95s, the desired value is changedwo= 10. Figure 5.14 shows that the controller
operates as intended in this case. After a short time theedlegalue is reached nearly without
deviation (compare table 5.1). The maximal input of the palaited variable is approximately
8.45 which is lower than the maximal input used for the lindyamamic system with the same
dynamic. But it is also lower than the maximal output of theusation; i.e., the settling timg,
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Figure 5.13: Changes of links at the input

is longer than necessary. It could be shortened by a largat.in

The overshoot of the system is larger than for the linearesygtompare table 4.3, system
1). The reason are the link§, ;_; — U, which increase the sluggishness, but are necessary to
decrease the steady state error.

At ¢t = 13.75 s the disturbance? is changed to 1, once again the controller reacts as intended
i.e., after0.3 s the largest part of the disturbance is eliminated and treegtstate error is nearly
zero.

The training of the model is more complicated than in thedmease. In the linear case it
is assumed that? = 0 during training, thus no hidden nodes are left. In the na@dircase the
evidence of the nodd$, , is not given. The missing evidence for nodés leads to problems to
adapt the weight of the nodes representing the model ottpufTraining with a fixed variance
Y, = {0.01 0.01} fails, the controller shows no reaction when the desiredesad changed.

Figures 5.15(a) and 5.15(b) shows the result of two trialgdm the controller with the
variance of the hidden input nodg, = {16 16} set to 16. For both trials the same set of
parameters are used.

At the beginning the desired value is set to zero. In both égur large steady state error
is observed (compare figure 5.15(a) foxx 6s and figure 5.15(b) fot < 9s). Afterwards
the desired value is set to 10. In figure 5.15(a) the desirkdaeva reached with low deviation,
figure 5.15(b) shows a complete failure of training. A conmgaar of these two figures shows
that the training of the difference equation model is uristabhe most probable reason is that
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Figure 5.14: Reference and disturbance reaction of sainratodel

the intended relation betweéh: andU,, is not learnt correctly despite a-priori knowledge about
saturation.

The next section shows that the problems discussed in thi®oseare overcome with an
extension of the state-space model.

5.2.2 State-space model

The model introduced in the last section shows unsatigfadtaining results. The problem
consists of learning the relationship between the inpuandw;,. The latter is the estimated
output after saturation has taken place. Additionally,gegormance depends on the selected
desired valuev.

In this section it is tested how this problem is overcome waigtate-space model with three
different operating points. The operating points are &rggl by the input.. As in the piecewise
approximation, discussed at the beginning of this chapifferent inputsu result in different
probabilities for the states;. The states ot/4 switch between different means and weights of
the state nodes. Switching between different weights mésatsthe input matrix is changed
depending on the input, whereas the transfer matrix is rexigéd.

The first operating point represents the lower saturatidme eight betweet/; and X ¢ in
that case is 0, the mean is equal to the product of the inpeibvdgy and the lower saturation
level. In our experiments the lower saturation was set to,zeot to—y;", . as indicated by
equation (3.48), so that the mean is also zero in that case.

The second point represents the usual operation mode, e @& ° is zero as in the linear
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Figure 5.15: Signals of trained difference equation model

case, the weight is equal tg.
The third state ot/ represents the upper saturation level. As in the lower aaturthe input
has no effect on the state; i.e. the weight betwégand X ® is zero. The mean results from the

productbgyy,”,. Of the input vectoibgy and the upper output”. . This discussion results in
the means of the input nodé

ay = {u1 uz us} (5.29)

where the operating points are sorted according to unequati < 0 < uy < ug; < uz. The
means and weights of the state nodes are

axs = {0 0 bBNngax} (530)
Bx: = {0 bpy 0} . (5.31)

The remaining parameters of the disturbance layer, desigeth ¢, and the output layer,
with the nodes for the observed outpuand the desired value, remain unchanged.

For the trainingy;; is clamped,; i.e., the intended operating points are pressgleso that only
the dynamic of the system has to be learnt. After trainindgp Wi data sets and 3*5 iterations the
results listed in table 5.2 are obtained.

In contrast to the experiments discussed in chapter 4, thbauof nodes for the represen-
tation of the past is reduced to 5, the nodes used for theseptation of the future are restricted
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Table 5.2: Results of experiments with state space

Experiment number 1 2 3 mean
I4(z% = 0) 21.6964 20.7516 21.3030 21.2504
eoo(2% =0) 0.0691 -0.0426 0.0449 0.0522
Overshoot 0.0894 0.0013 0.1510 0.0806
Iy(z7=1) 0.1128 0.1105 0.1105 0.1113
eoo(z4 =1) 0.0973  -0.0127 0.0843 0.0647
ts(z4 =0,1%) 1.3000 1.0500 1.2500 1.2000
ts(2?1=0,3%) 0.7000 0.7000 0.7000 0.7000
ts(2%=1,1%) 3.2500 0.3000 0.7000 1.4167
ts(z4 =1,3%) 0.2000 0.2000 0.2000  0.2000
Traintime 32827 29251 29345 30474
Evaltime 37 38 45 40

to 2. According to the discussion in chapter 8, this has ordlight impact on the result. But
the reader should keep in mind that the experiments in ch8mee executed with a difference
equation model.

Table 5.2 shows that good results are obtained in all casesve@gence is achieved in all
experiments, and the steady state eerglis below 1% of the desired value.

The squared error is larger than the squared error of systdmtlhas the same dynamic
as the test-system in this section, but no saturation atnjinat i(For a description of system 1
see table 4.1, for the results obtained with a linear siaéees system see table 4.4). The larger
squared error is due to the the connection of the discrete mqzled/, ; which is again necessary
to reduce the influence of the a-priori knowledge, but cugsitiput peak (confer figure 5.17).
The settling time has increased, particularly for the egfee reaction, which is partially due to
saturation. The input exceeds the upper threshold for nharre half a second.

For the disturbance reaction, neither the lower nor the upipeshold are reached. Thus,
the longer settling time indicated by table 5.2 in comparigntable 4.4 is due to the Bayesian
controller. The main problem is the run-time. The evaluatime of 40 s exceeds the threshold
for real-time operation. One reason for the large run-tighat the experiments in this section
are done with the inference algorithm introduced by [LJ98]akl is slower than the older one
[Lau92]. For a comparison of runtime see chapter 8. But tlegeiss essential as the former
inference algorithms lacks numerical stability.

The second reason is that the run-time increases expolhewiid the number of time-slices
if exact inference is required.
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Chapter 6
Modeled manufacturing processes

The experiments in chapters 4 and 5 are done with data obdtaynsimulations with Simulink.
The advantages of simulations are that a large amount ofcaatdoe collected in a controlled
environment. This is of importance particularly to test éipproach under circumstances which
are rarely observed in reality.

In this chapter modeling with Bayesian networks is appliegtocess data, collected by
cooperating institutes within the frame of SFB 396 (Collattive Research Center, number 396)
“Robust shortened process sequences for lightweight glaeest’.

The first process, hydroforming, is divided into the stegggnming, hydrocalibration, weld-
ing and trimming. The second modeled process is injectionldiag which consists of the steps
preheating, handling, and injection of the plastic.

6.1 Hydroforming

6.1.1 Preforming and calibration
Preforming

During hydroforming tubes or blanks are formed by high in&¢pressure. At the chair of man-
ufacturing technology two blanks are formed at the same.time first step, both blanks are
pressed on top of each other at the flange by different clagripirtes applied by a hydroform
press (see table 6.1 for a list of the parameters, measurgajgueforming). During the hydro-
forming process, fluid is pressed between the two blanks. iesuat, the pressure between the
blanks increases and the blanks are formed into a tool. &gl and 6.2 show the dependency
of the pressure on the volume of the hydroforming fluid betwtbe blanks. Both figures show

115
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Figure 6.1: Preforming with a force of 200 kNFigure 6.2: Preforming with a force of 300 kN

Table 6.1: Parameters for preforming
Variable Min  Max  Unit Remarks

Force 200 500 kN Increased in steps of 100 kN.
Volume 0.1 7.01 dl \Volumeisincreased, until first leaks occur.
Pressure 1.04 137.35bar

the results of three experiments with equal clamping for@eésh increasing pressure more and
more leaks occur, resulting in a smaller slope of the pressiihe curve progression depends
on the clamping force. Small clamping forces lead to a béiwer of material into the die, but
the process is stopped at a lower pressure due to occurakg.l&hen less material is drawn
into the form, this might lead to failures during calibratjcaused by lower tension. There are
two possible steps after preforming. The first possibiltyhat preforming is directly followed
by hydrocalibration. That means that clamping forces acesimsed to a maximal value, so that
the leaks are sealed. Afterwards, more hydroforming flupréssed between the blanks to form
the edges. The second possibility is that a welding proeéestplace to seal the leaks observed

at the end of preforming. In the next paragraph calibratsodiscussed. The welding process is
discussed later in section 6.1.3.
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Table 6.2: Parameters for calibration
Variable Min Max Unit Remarks

Force 200 500 kN During calibration the force is increased to a maximum.
But the force used during preforming has an influence on
the calibration process, so the preforming forces are used
as an additional parameter for calibration.

Volume 5.33 1212 dlI Volume isincreased, until the blanks burst. After bursting
the pressure drops nearly to zero.

Pressure 1.212 203.38bar

Calibration

The data to model hydrocalibration (confer table 6.2) atlected at an early phase of the “Col-
laborative Research Center”. That means calibrationvidldirectly after preforming. In the
current version calibration is followed by laser beam waddi

No more fluid is pressed between the blanks after preformgrfgiished. When the press
is prepared to finish hydrocalibration in one step, the pnessirops nearly to zero, but the
hydroforming fluid remains between the blanks. Thus theaivblume for hydrocalibration is
not zero, but equal to the volume at the end of preformingf@rdigures 6.3 and 6.4). A steep
increase of pressure is observed first, until the pressuine @&nd of preforming is reached. Then
the slope changes, increasing the volume has a smallet eff¢ice pressure. The most important
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Figure 6.5: Picture of the hydroforming tool, source LFT

point, which is of course avoided in production, is the bagsof the blanks. The bursting point
in figures 6.3 and 6.4 is situated betweén= 10 dl andV = 11 dl. Our data are collected
during material tests, so that this effect is included indata. That means that the function to be
modeled is not only non-linear, but has even a non-contispaint. The exact prediction of the
bursting-point would be helpful to increase the volume wigrtalibration as much as possible
without risking to loose the component. A comparison betwikgure 6.3 and 6.4 shows that
the clamping force has an influence on the curve. Thus differ®dels are trained for different
clamping forces used during preforming.

Modeling only one global clamping force is a simplificatiafaur different clamping forces
effect at different points. It is the aim that the clampingcs at the flange are equal, so that the
flow of material is independent of the position. This poindiscussed in the next section.

6.1.2 Modeling the forces of the press

Figure 6.5 shows the construction of the hydroforming t@dlthe top of the tool the forces of
four different cylinders have an effect on the plate in tha.radhe force of each of these cylinders
is controlled individually. The cylinders are situateda¢ rear, left and right hand side, and at
the front at the left and right hand side. The forces at thendgks are therefore denoted by
F,, F,., Fy, andF;.. From the plate on the top the forces act on four differed&@lmounted
on three plates. Via twelve pillars the original forces efffine blank holder. The positions of
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Table 6.3: Parameters to model the forces
Variable Min  Max Unit Remarks

Forces at cylinder 50 400 kN There are four different cylinders which

Fa, F,., Fy, Fy, provide the necessary forces to press the
blanks on each other. Two of them are
placed at the rear, left and right. The
other two are placed at the front.

Forces at the blank holder,16.9 292.30 kN It is usually not possible to calculate the

Fp, Fo,-- -, Fum standard deviation, as the experiments
are not repeated in most of the cases. The
only exception is given in table 6.4. The
six places of measurement are given in
figure 6.5.

the twelve pillars A - N is described at the right hand side gifife 6.5. It is the aim to get equal
forcesFy, F¢, - - - , F\ at positions A - M to guarantee an optimal flow of material. A/Bsian
controller requires therefore knowledge about the deparydieetween the forces adjusted at the
top of the hydroforming press and the forces measured atieigns A, C, E, H, K, and M.

For the exploration of the dependency, 69 tests with 37 rdiffesettings are executed at the
chair of manufacturing technology. One experimel (= F., = Fy = Fr = 225 kN) is
repeated six times and is used to examine the dispersiore@periments. Table 6.3 gives a
coarse overview about the test data used for examinatible, 84 shows the dispersion of one
test.

For most of the data the results are reproducible with higlii@cy. A numerical calculation
makes no sense in most of the cases, as usually the expesiarerdnly repeated twice.

An analytical model, a neural network and a Bayesian netwogkrained using the 69 data
sets . Now predictions are figured out for 14, yet un-presksiettings and compared to reality.
The results are discussed in section 7.1.2 (compare als&G[\WH).

6.1.3 Laser beam welding

After preforming and cutting, welding takes place. Two tyé joints are examined, the lap
seam joint and the lap edge joint. Several adjustments qfdh@meters in tables 6.5 and 6.6 are
tested to get an impression of optimal process parameters.

The laser beam is driven with a velocityaround the component. At the end a small part is
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Table 6.4: Mean and Dispersion for the experiment With= F,, = Fy = F}, = 225 kN
Variable/Position Standard deviation Mean

Fy 2.7kN 155.9kN
Fe 11.4kN 141.1kN
Iy 0.4kN 124.0kN
Fy 57kN 171.3kN
Fx 3.6kN 101.9kN
2y 0.7kN 150.3kN

Table 6.5: Continuous Parameters for laser-beam welding
Variable Min Max Unit Standard deviation Remarks

Defocussing -6 6 mim — Tested in steps of 2mm, when the
laser is out of focus for less then
-3 mm, the quality of the joint is

decreasing.
Offset 0 6 mm —
Velocity 2 7  m/min —
Tensileforce 0 5370 N 1460.1 Output variable, representing the

quality of the weld.

welded a second time to be sure that the component is tight\aélding.

During the welding process the laser might be out of focudyath thez or z-axis. This
is described by the offset or defocussing of the laser bea figure 6.6). At the edges of
the component it is difficult to guarantee that the angle betwthez-axis and the laser beam
(lap edge joint) i9)° (For the lap seam joint the angle between tkexis and the laser beam is
regarded). The tensile force is the measured output of theeps and should be maximized.

When looking at the data, three parts can be distinguishethd main part the number of
joints is kept constant, defocussing and the offset ar@setrd. In this part of the data the setting
angle, the joint type and the velocity are changed. Thet®siithese experiments are shown in
table 6.7 and figure 6.7. The result is that a velocity of apipnately 4m/min is nearly optimal
for the lap edge joint.

In the second part the influence of the velocity and the nurobg@ints on the quality of
the joint is tested. The rest of the parameters is not changealle 6.8 shows the mean of 6
experiments per line. It indicates that a second joint tesala large difference of the tensile
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Figure 6.9: Component produced by injection moulding

force for a velocity of 4m /min.

The third part explores the influence of the offset and defsitly. Figure 6.8 indicates that
there are two thresholds for the offset and defocussinghd$e thresholds are exceeded, the
quality of the weld decreases. According to figure 6.8 theghold for the offset is somewhere
between 0.3 and 0.4m, the threshold for the admitted defocussing between -4 2ndn.

6.2 Injection moulding

At the experiments, carried out at the Institute of Polymechhology, composite components,
consisting of a blank and plastic are insert moulded. Theltiag component that is depicted in
figure 6.9 has the form of a T.

The plastic is injection-moulded around a blank, having@ngetry of 249.81m x 73.7mm
x 1.0mm [EZ98]. At the beginning of the production process the céghhlank is preheated.
Preheating is done first by an infrared heater, to shortepitheess cycle, and afterwards by a
convection oven. After preheating the blank is carried engtically into the cavity. There is no

Table 6.6: Discrete Parameters for laser-beam welding

Variable Possible Values Remarks
Type of joint {Lap edge joint, lap seam joiht
Number of weldings {12} The effect on the force is only tested

for different velocities.
Setting angle {-30° 0° +30°}
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Table 6.7: Force depending on type of weld, angle and veglocit

Type of weld  Angle Velocityin/min] Tensile forceF' [N] o

Lap edge joint  0° 2 4378 180
Lap edge joint  0° 3 4418 185
Lap edge joint  0° 4 4436 111
Lap edge joint  0° 5 4258 156
Lap edge joint —30° 2 4162 249
Lap edge joint —30° 4 4266 280
Lap edge joint —30° 5 4213 192
Lap edge joint +30° 2 3760 466
Lap edge joint +30° 4 4361 168
Lap edge joint +30° 5 4182 95
Lap seam joint  0° 4 3905 180
Lap seam joint  0° 5 3648 185
Lap seam joint  0° 6 4689 111
Lap seam joint  0° 7 4258 156

Table 6.8: Influence of the number of joints
Velocity Tensile force for one joint] o Tensile force for two jointsN] o

3 4380 104 4451 116
4 4438 120 4657 243
5 4362 135 4379 234

control whether the blank has reached the desired prelge@tinperature;,. During transport
the blank cools off. This cooling process is not modeleds #ssumed that this factor is constant
due to the automatic transport.

Also the cavity is preheated, its temperature is denoted.byl'he melted plastic, whose
temperature is denoted by, is injected by high pressure and a constant velacity 10 mm/s
into the cavity. The curve of the pressure is depicted in &guf0. After injection the pressure
is kept constant for a short time to reduce the warpage. Tesspre is called holding pressure
P,. Note that an index “h” is used to distinguish the holdingssteeP, from the probabilityP.

A list of the input parameters is given in table 6.9.

It is the aim of the production process that the resulting posite has a minimal warpage
and that the take-off tensiof, to separate the plastic from the blank, is maximal. To test t
impact of the input parameters on the quality parametestediin table 6.10, each input pa-
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Figure 6.10: Pressure used for injection

rameter is tested at five different levels. As this would lesu5* experiments, a statistical
test plan, discussed in [EZ98], is employed. 2hsettings (outer experiments) all combina-
tions of 7, € {80, 260}°C,r, € {260, 280}°C, 7. € {80, 120}°C, and P, € {30, 70}bar
are tested. The next 16 experiment (inner experiments)aareed out with all combinations of
T, € {125, 215}°C, 7, € {265, 275}°C, 7. € {90, 110}°C, and B, € {40, 60}bar. As last ex-
periment the result for the central point= 175°C, ,,, = 270°C, 7. = 100°C, and P, = 50 bar
is measured. According to the results in [EZ98] the prehgagmperature and the holding pres-
sure have a large impact on the warpage. The take-off terfsimmostly influenced by the
preheating temperaturg, the melt temperature, and the holding pressur@,. These results
coincide with the first Bayesian models, discussed in thertey project part C1 [KN98] for
the years 96 - 98. Beside the input values, additional paesiare measured. Of course these
values are strongly correlated to the input values listetdlihe 6.9. So all of them have an in-
fluence on the quality parameters. A selection, accordirtgg@orrelation between the selected
parameter and the take-off tension, is made to reduce thé&wuoh models to be analyzed. The
selected values, together with a short explanation, aellis table 6.11.

In the first period of the Collaborative Research Center tmdyinput values are used in the
model. In section 7.2 it is discussed whether the additioredsurements listed in table 6.11 are
suited to improve the prediction of the take-off tension.
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Table 6.9: Input parameters for injection moulding
Variable Min Max Unit Remarks

Preheating temperaturg 80 260 °C  Temperature of the metal. During han-
dling the metal is moved from preheat-
ing to the tool, and thus cooling takes
place.  Five different settings, &
{80, 125,170, 215,260} are tested.

Melt temperature, 260 280 °C Five different settings are tested
for the temperature of plastic
m € {260, 265,270, 275,280}.

Temperature of cavity. 80 120 °C Five different settings 7. €
{80, 90, 100, 110, 120}.

Holding pressure?;, 30 70  bar PressureP, € {30,40,50,60,70} which
is used for the injection of the plastic.

Velocity v 10 10 mm/s The velocity is kept constant for all exper-
iments.

Table 6.10: Quality parameters for injection moulding

Variable Min  Max Unit Remarks
Take-off tension” 3130 5920 N  Force needed to divide the metal from the plastic.
Warpage -0.04 0.68 mm Warpage of the product.

Table 6.11: Additional measurements for injection moujdin

Variable Min Max Unit Remarks

CushionC' 0.4 19.1 mm Length proportional to the amount
of plastic, which is not pressed in
the tool.

Plasticizing stroke, 674 71.0 mm

Maximal cavity temperature. ,,., ~ 88 132 °C Maximal temperature of the cav-
ity.

Work for injectionVi; 1960 3380 Nm Energy needed for filling the form.
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Chapter 7
Process models

This chapter discusses the developed models for the mdatifagprocesses, discussed in chap-
ter 6. Most of the models use both discrete and continuoussitmdimodel nonlinearities. The
applied technique is discussed in section 5.1. Only theiloigion of forces is modeled by a pure
linear model.

To judge the quality of the developed model the relativererro

_ abs(yp - Z/)
ey = T(y) , (7.0)

is used, i.e. the deviation of the predicted vajyérom the actual valug is divided by the actual
valuey. Equation (7.1) is only applied for continuous random Jalgay.

For discrete random variables, either the percentage alassfications is given or contin-
uous values are assigned to each discrete value. In thedate equation (7.1) is used again.
The selected possibility is listed together with the modfgbossible, the obtained relative error
e; Is compared to the dispersion of the data to estimate wh#tkeezrror is due to scattering in
the data or caused by the model.

To assess a model, it is also necessary to test its abilityakenpredictions for yet un-
presented examples. Thus, the model is usually trained%0% of the data, the relative error
e, is calculated based on the predictions for the remaining &0%e data. This procedure is
employed to judge the models for preforming, calibratiord &or the distribution of forces.

The data of the welding process can be divided into 48 bloaksaqgual input data within the
block. Here, the relative error is measured by training witlblocks and figuring out predictions
for the remaining block. Using this mechanism, it is guagadtthat the Bayesian network has
never seen the example before.

127
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Figure 7.1: Model for preforming

Models are developed for two manufacturing processes.t, Fiyglroforming is modeled,
containing the subprocesses preforming, calibration aglding. The second process is injection
moulding.

7.1 Hydroforming

7.1.1 Preforming and calibration
Preforming

In preforming there are two different input variables, tbwnel” of the hydroforming medium,
pressed between the blanks and the clamping fofGassed to press together the two blanks.
The output variable is the inner pressutg,.

Having a look at figure 6.1 and 6.2 indicates that the curvebeamodeled by two straight
lines for each clamping force. Hence, linear approximatasdiscussed in section 5.1, is appli-
cable. Thus the pressure is approximated by

Pua(V) = Paa(Vi) + Pl (Vi) (V = Vi) (7.2)
wherek is the configuration used for the approximation. The valBgs(V;) and P; (V%)
correspond to parameters of the output node. Thus the peelsas the discrete nodg and F’
as parents. The forcE has four different states. The node representing the voldnias two
states, used to distinguish the two lines before and aféant¢hurrence of leaks. A comparison of
model 7.1 with figure 5.1 shows that the principle of linego@ximation is used nearly without
any changes. To improve the training results, the weightterlink V' — e, is fixed to -1.
Additionally, some examples are removed from the trainieiy ®© ensure that both lines have
approximately the same number of examples in the data set.fdllowing initializations are
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Table 7.1: Accuracy obtained with preforming model
Variable F \% P

Relative Error 6.9% 4.5% 2.3%

14 1
12l 0.9
0.8
nl
E. %‘0.7
;;0-8’ é,o.e
205 205
& E o
0.4r
0.31
0.2
0.21
% 1 2 3 2 5 6 7 % 1 2 3 2 5 6
Volume [dlI] Volume [dl]
Figure 7.2: Preforming witlt" = 200 kN Figure 7.3: Preforming witlt" = 300 kN
used:
ap,. = {0.40.450.50.50.920.86 1 1.14} (7.3)
Yp,. = {0.10.10.10.10.10.10.10.1} (7.4)
ae, = {22225555} . (7.5)

The meansyp,  of the nodeP,,, are chosen approximately equal to the presstg V) at the
pointsV;. The pointsl, are defined byv., anday = [2 5]. The selections are obtained directly
from figures 6.1 and 6.2.

After training with the EM-algorithm (approximately 20 itgions), cross validation is exe-
cuted with the results specified in table 7.1.

For evaluation the clamping forcds = 200 kN ---500 kN are assigned to the different
states off".

Assuming that there is an equal number of examples for athgiag forces, the mean of
the forces is 350kN. A relative error of 6.9% correspondsteror of 24.15 kN. Moreover the
volume and the pressure are modeled with high accuracyrdsgu?2 to 7.5 depict the prediction
of the pressure for different clamping forcés = 200 kN ---500 kN. There is almost no
difference between the predictions, indicated by dotteeldliand the three actual data sets (solid
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Figure 7.4: Preforming witl# = 400 kN Figure 7.5: Preforming witl#” = 500 kN

lines). The points are closer for high volumes. This is cdusethe fact that not all points are
used for training to guarantee a similar number of data pdiefore and after the occurrence
of first leaks. Similar results are obtained with variatios@proximation, a method which uses
continuous nodes as parents of a binary, discrete node.birfasy node is used to distinguish
between the two lines, before and after occurring of leakseéch clamping force. This model
is discussed in [DDNOOb], but has the drawback of slowening.

Calibration

Directly after preforming the calibration takes placeFigures 6.3 and 6.4, which show the
relationship between the volume and the pressure, illigstiat a nonlinear curve has to be
modeled. Additionally, a non-continuous point, causedumgting, has to be modeled (Compare
figure 6.3 at” = 10.5 dl to figure 6.4,V = 10.2 dl).

As in preforming, the technique of linear approximationssd. In comparison to preforming
the clamping forces are fixed, so thais no longer used as input node. But different models are
used for different clamping forces, as the result of catibradepends on the forces used during
preforming.

As a result of this consideration, the principle model of feg6.1 can be used without any
changes. Care should be taken when selecting the numbeatet or nodd/; (see figure
7.6). The non-continuous point requires a small covariamoeensure that the pressure for high
volumes is also predicted correctly, the region after lngss modeled by two different states.

1The data to be modeled are gathered in the second phase gfetialgesearch center 396. In the meantime
the preforming process is followed by the welding procesdib€ation is executed after welding.
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Figure 7.6: Model of the calibration process

One is responsible for the abrupt change, when bursting falleee, and one is used to keep the
predictions low for high volumes.

A very important point, when using a linear approximati@the correct initialization of the
model. For example, the experiments discussed later oraaiied out with 6 different states for
nodeV; and the following initializations fo#" = 200 kN (for each force a model with different
initializations is trained).

ay = {62401 65+0.1 9.0£0.1 10.0£0.1 11.0£0.1 11.5+0.1} (7.6)
vw = {0410 0+10 0410 0+10 0+10 0410} (7.7)
ap, = {2004+£2 100+5 150+£5 170£5 10£1 10+ 1} . (7.8)

ihu

The notatior6.2 + 0.1 means that the parameter is initialized with 6.2 plus a ndymastributed
(mean set to zero, standard deviation to one) random varmabltiplied by 0.1.

To test the model, the data, discussed in subsection 6sldlyided in a training set, con-
taining 90% of the data, and a validation set with 10% of thea.dAfterwards predictions are
calculated for the validation set. The results plus thedsieshdeviation are itemized in table 7.2.
The first impression is that the prediction of the pressuiaascurate, which is misleading in
most of the cases. As figures 7.7 till 7.10 indicate; the didites, representing the prediction of
the Bayesian network, is close to the original data, degibtea solid line.

The high error is caused by predictions close to the burgtoigt. Here, an accurate predic-
tion is nearly impossible due to scattering in the data.
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Table 7.2: Relative error plus standard deviation for preain of the volume and the pressure
ForceF 200 kN 300 kN 400 kN 500 kN

V 543+ 6.80% 4.65+ 9.43% 4.83f 8.41% 3.02+ 5.15%
Py 53.38 £ 136.66% 38.97+ 96.47 % 31.45+ 86.22% 36.62+ 95.16 %

Pressure [bar]
Pressure [bar]

9 11 12 5 6 7 8 9 10 11 12 13
Volume [dI] Volume [dI]

Figure 7.7: Prediction of the calibration preg-igure 7.8: Prediction of the calibration pres-
sure,F' = 200 kN sure,F’ = 300 kN
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Figure 7.9: Prediction of the calibration preg-igure 7.10: Prediction of the calibration pres-
sure,F' = 400 kN sure,F’ = 500 kN
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Table 7.3: Control points, forces given in kN
Number Fj F4 F., Fi F\ FC Fr Fy Fx Fy

1 50 50 50 50 41 43 34 49 21 34

2 94 113 94 87 63 67 52 76 41 61

3 100 100 100 100 66 65 52 72 36 59
4 150 150 150 150 108 102 83 109 64 96
5 73 241 200 50 87 75 61 103 69 99
6
7
8
9

200 200 200 200 139 132 108 143 87 126
260 262 139 193 129 150 126 173 106 133
250 250 250 250 179 169 135 173 112 161
300 300 300 300 216 206 165 211 139 195
10 335 300 300 150 171 180 150 213 144 182
11 350 350 350 350 249 237 191 242 163 224
12 365 319 227 358 209 226 184 236 154 195
13 392 396 305 396 237 250 201 258 173 223
14 400 400 400 400 280 264 210 266 183 253

High differences between the actual values and the preditaike place for very small vol-
umes. In all cases, the predicted values are too high (cantparsolid and the dotted lines in
figures 7.7 to 7.10). The reason might be a low number of dateén&t section of the curve. A
changed initialization is not expected to lead to an impnoeet, since the selected values are at
the lower end.

In the next section the distribution of the forces occurrimghe press are modeled. This
process is of great importance for control.

7.1.2 Modeling the forces of the press

An important point in hydroforming, having a major influermethe result, are the forces found
at the load cells. It is the aim to have similar or equal foraeall points. This results in an
equal movement of the blank in the form. Then the thickneskeblanks remains more or less
equal which helps to avoid bursting during calibration. Tekationship between the forces at
the cylinderFy, F,., Fy, F;. and at the load cellg, - - - F\y (compare figure 6.5) is modeled to
support the control. In a first step 69 experiments are erdciat gather training data for the
Bayesian network. Afterwards, the model is used to makeigtieds for 14 yet un-presented
points listed in table 7.3. The results are compared withtyea

Giventhe forces at the load cel - - - Fy;, predictions for the inputsy,, F}., Iy, F, are also
calculated. For further judgment cross-validation is aupl
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Figure 7.11: Bayesian network for modeling the forces ofrty@roforming press

The used model is depicted in figure 7.11. Each cylinder féiger;,, Iy, Fi,. IS connected
with each output forcd, - - - F;. All nodes are continuous ones, that is the model is purely
linear with no hidden nodes. Thus the initialization is uportant, the EM-algorithm used to
train the 44 parameters (4 means and dispersions for themoples 6 x 4 weights, 6 means and
dispersions for the output nodes) converges immediatélgt i the EM algorithm calculates the
correct parameters in the first iteration. the second itera$ used to calculate the log-likelihood
of the model, the third iteration detects convergence.

To test the model, predictions for 14 control points are madhe relative error of the predic-
tions is listed in table 7.4 in the colum@g - - - F;. The result for the best and the worst position
is depicted in figures 7.12 and 7.13.
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Figure 7.12: Prediction of the used force at tiégure 7.13: Prediction of the used force at the
cylinder at the front, left hand side (best resultylinder at the rear, left hand side (worst result)

The bar at the left hand side represents the prediction oB#yesian network, the bar at
the right hand side the reality. The same experiments aceexiscuted with neural networks
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Table 7.4: Relative error for control experiment
Fy Fa Fir F, Fn Fc  Fg Fa  Fx  Fu

5.6% 16.8% 9.7% 109% 4.7% 58% 4.9% 9.6% 5.0% 5.9%

and regression polynomials. As discussed in [WBS all three techniques are well suited for
prediction of the forceg’y - - - F.

In contrast to regression polynomials and neural netwéyk3ayesian networks are also
able to predict a required input to get a desired output. Ehpossible as Bayesian networks
model a distribution of all variables. The model itself does distinguish between in and output
variables, even if in most of the cases the links are direfrtea the input to the output. To
examine, whether the trained model could also act as a dlamtithe six output forces measured
for the points listed in table 7.3 are entered as evidencepagdictions for the forces at the
cylinders F}y, F;,, Iy, Fy, are calculated. The relative error of the prediction iselisin table
7.4. In comparison to the prediction of the forces at the ket £y - - - Fy, the results are less
accurate. A possible reason is that there might be no unigqué which leads to the desired
output. It is unlikely that the model is inadequate, as thigpwiuforces are predicted with high
accuracy. To increase the quality of control additionalestbr an occurring error might be
used, as done in the difference equation model in section #h@ results forF, and Fy are
depicted in figures 7.14 and 7.15. The prediction of the Bayasetwork is at the left hand side,
the observations at the right.
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Figure 7.14: Prediction for force at load cell Arigure 7.15: Prediction for force at load cell H

°The experiments concerning neural networks are done widedférward net, trained with backpropagation.
Other topologies, e.g. Boltzmann machines or Hopfield reetdso able to act as associative memory.
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Figure 7.16: Results of cross validation

Table 7.5: Standard deviation of relative error
o(Fy) o(Fn) o(Fy) o(Fy) o(Fa) o(Fc) o(Fg) o(Fu) o(Fk) o(Fu)

11.3% 145% 11.0% 123% 3.0% 51% 29% 2.7% 32% 3.1%

For further validation of the model, cross-validation igdsThat is the union of the former
training and control-data is split arbitrarily in a traigirset, containing 90% of the data, and
a validation set. This procedure is repeated 10 times withtrarily generated training and
validation sets. The relative error of the results is digpthin figure 7.16, the standard deviation
of the relative error is given in table 7.5.

A comparison with table 6.4, indicating the standard dewmbf six measurements for the
forcesF, = Fy = F,, = F;, = 225 kN, shows a strong correlation between the relative error
and the reproducibility of the experiments. For example Jdbst results are obtained B, F s,
and Fy; with an error of approximately between 1.8 and 2.5%. Thedstethdeviation of the
experiments is 0.3 and 1.7% of the used forces.

Worst results are observed whep is predicted. The relative error in this cases is more than
6%. At this point the error seems to be caused by the low reibdity. The standard deviation
at pointC is approximately 8% of the used forces.

The discussion shows that a linear model is suited to modefdices of the press. For
control without feedback an accuracy of 12% can be expetitecerror can be further reduced
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Figure 7.17: Example for Bayesian network with untraingiédeameters (left hand side) and
model based on Bayesian regression

when the deviation between current and desired forces tfoséurther corrections.

In the next subsection a model for the welding process isids#d. The main problems to be
solved are occurring nonlinearities and the fact that riataaifigurations for the discrete nodes
are observed.

7.1.3 Laser beam welding

The process of laser beam welding takes place directly piftforming. One of its effects is that
the leaks, occurring at the end of preforming, are sealethatccalibration can be started. The
parameters are discussed in section 6.1.3, a good overvigiwan by figure 6.6.

When looking at the data three parts can be distinguishetheilmain part the number of
joints is kept constant, defocussing and the joint-offsetset to zero. In this part of the data
the angle, the joint type (Either lap edge joint or lap seamtjpand the velocity are changed.
Additionally, some of the blanks are contaminated by hyolmwing medium, and some are not.

In the second part the influence of the velocity and the nurobj@ints on the quality of the
joint is tested. The rest of the parameters is not changed.

In the third part the influence of defocussing and offsetssete.

It is important to map the different parts of the data alsdh®model. If that is not done,
this might lead to un-trainable parts of the Bayesian ndtaevhich can easily be identified.
Imagine, for example, that the influence of three binary patarsX; - - - X3 on a continuous
parametel” or on a binary parameteX, is tested. The idea of the test is to keep two parameters
constant, e.g. fix their value to 1, and change the remairangpeter. This would result in a test
similar to table 7.6.

Even if all three parameterX; - - - X3 have an crucial impact ol, a model as shown on
the left hand side of figure 7.17 contains un-trainable patars. The reason is that nodehas
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Table 7.6: Example for training data
X1 Xy X3 Y

1 1 1

1 1 1
0 1 1 Yn+1

Yan

0 1 1

1 0 1 yonn
1 0 1 Ysn
1 1 0

Y3n+1

1 1 0 ym

three discrete parents. Thus, it has 8 different paramfgtetise mean and covariance, one set of
parameters for each possible configuration. Since only Revhtare present in the training set,
the parameter belonging to the remaining 4 configuratiotisr&main more or less untrained.
Thus the model will show an arbitrary response when one ofithpresented configurations is
tested.

The model on the right hand side avoids this disadvantage. efflect of each variable is
trained independently. The price is that the model is untblearn interactions between two or
more variables. Similar effects occur when the influence diserete variable has to be learnt.
In this case a table with the conditional probabilitigs:4|z1, 2, x3) is assigned to the nodg,.
Once again the entries for unseen configuration cannot inetra

It should be mentioned, that the example presented abowvet isathological. In product
engineering a common problem is to find out the influence oésdvactors on the quality
of the product. Particularly, if many factors have to beddstt is too expensive to test all
configurations. In many cases it is reasonable to assummtaedctions between three and more
variables have no significant influence on the result (seednttions to quality management,
e.g. [Pfe93; Mar94] ). This leads to the idea of test plangpBage that two settings per parameter
are sufficient for the test plan and that the engineer asstiméshe combination ok - - - X3
has no effect on the result. In this case it is possible to detth parameterX, equal to the
product- of X, X, X5.

The product: is defined as a commutative and associative operation with + = +,
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Table 7.7: Example for a test plan
X1 Xy X3 Xyu=X1 X5 X5 Y

+ o+ O+ + U1
+ o+ o+ + Un
- + + - Yn+1
- + + - Yon
+ -+ - Yan+1
+ - + Ysn
- - 7 + Ysnt1
- - + + Yan
+ ot - - Yan+1
+ - — = —,and— - — = 4. This results in the test plan outlined in table 7.7 where the

effects of X, and X; - X, - X3 cannot be distinguished. This example should reveal twamai
points. First, that missing configuration might result fravall defined test plans, and second
that according to the test plan the effect of special intevas cannot be identified and therefore
it is not worthwhile modeling them.

In the process of laser beam welding it is therefore necgseanodel the influence of the
three data parts independently. In the first part the inflaefdhe velocity, the angle and the
type of joint on the force is modeled. An F-test [Rin97] shdhet the combination of the angle
and the type of joint is significant. Thus it is necessary tmbme the influence even if not all
configurations are tested. To avoid the problem of un-tidaparameters the deterministic node
H, (confer figure 7.18), which has four different states, isadticed. Its conditional probabilities
are defined according to table 7.8 and are not changed duaimgng. The idea is that each of
the four observed configurations is mapped to an own statf oThe two unobserved states, a
setting angle of plus and minus3@gether with the lap edge joint, are mapped with a prokigbili
of 0.48 to the observation made for plus/minu$ 86 the lap seam edge and with a probability
of 0.48 to the observations made for an angle of O togethértivé lap edge joint. Itis not proven
that this mapping is correct, but the results are in a reddemader of magnitude, that is a tensile
force of approximately 4000 is predicted. The influence of the velocity is not linear, gsife
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Table 7.8: Probability of nodél,

Angle Type of joint Statgd, Probability
0 Lap edge joint 1 0.97
-30°  Lap edge joint 1 0.01
+30° Lap edge joint 1 0.01
0 Lap seam joint 1 0.01
-30°  Lap seam joint 1 0.01
+30° Lap seam joint 1 0.01
0 Lap edge joint 2 0.01
-30°  Lap edge joint 2 0.97
+30° Lap edge joint 2 0.01
0 Lap seam joint 2 0.01
-30°  Lap seam joint 2 0.48
+30° Lap seamjoint 2 0.01
0 Lap edge joint 3 0.01
-30°  Lap edge joint 3 0.01
+30° Lap edge joint 3 0.97
0 Lap seam joint 3 0.01
-30°  Lap seam joint 3 0.01
+30° Lap seamjoint 3 0.48
0 Lap edge joint 4 0.97
-30°  Lap edge joint 4 0.01
+30° Lap edge joint 4 0.01
0 Lap seam joint 4 0.01
-30° Lap seam joint 4 0.48
+30° Lap seam joint 4 0.48




7.1. HYDROFORMING 141

6.7 shows. There is a maximum of the for€eif the velocityv is approximately 4n/min. For
high velocities the weld penetration is too low, which résuh a lower tensile-strength. If the
velocity is too small the weld penetration for the lap edgatjgets too high. That means that
also in this case a low tensile-strength is obtained. Folecitg of approximately 4n/min an
optimal value is reached. Hence a simple connection betaemuev to F;; is not sufficient.
Thus an additional node fa¥ is used, so that a polynomial is used for modeling the reiatiip
betweerv andF'.

The relationship between the number of joints and the tefsite is tested only for the lap
edge joint for a constant angle of 0. The results are showatie 6.8.

As there is again a maximum of the tensile-strength for acigl@f about 4m/min, the
applied modeling technique is the same as for the influen¢beoéingle and the type of joint.
Node H; is used to calculate the difference between one and twasjoliite difference is added
to Fy; and assigned to nod€;,. Assignment means that the initialization of the paransedér
nodeH, and Fy, is done, so that'y, ~ H; + Fy,. For example the initial weight vector for
Fys is equal to[1 1].

The third part models the influence of the offset and defangssRegarding figure 6.8, it
turns out that this influence can be modeled more or less asaaybprocess. The idea is to
compare both offset and defocussing with a threshold. Ifrthat value, e.g. the offset, exceeds
the threshold the quality of the joint decreases dram#gicatcording to figure 6.8 the threshold
for the offset is somewhere between 0.3 andifhib, the threshold for the admitted defocussing
between -4 and -z2am. The threshold is controlled by the two binary discrete sagéf setq
andde focussingq. The binary, discrete nodd; combines the two values. If one threshold is
exceeded, the welding might fail. This combination is s&di deterministically to avoid wrong
predictions if both thresholds are exceeded.

It was mentioned that some of the parameters of the intratione®lel are not trained. There
are two reasons. First, the parameters of the input nodesoateained at all. The main reason
is that the test data are not uniformly distributed. Thusaming of the input nodes would lead
to predictions being equal to the value mostly seen dureagittg. Thus the prediction of values
for the input nodes would strongly depend on the selecteditigaexamples of the test plan.
Sometimes the parameters of hidden nodes are also clampetigve a special behavior of the
model. This helps to reduce the overall number of parameté4t In the following, the results
of the model are discussed.

The process of laser-beam welding is tested with 48 diftecenfigurations, whereas the
tests for each configuration are repeated six times. Tolteshbdel, training took place with 47
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Table 7.9: Relative error
Offset Defocussing Nb. of joints Velocity Angle Joint type enBile strength

66.4% 84.6% 38.7% 22.1% 50.4%  15.5% 17.04%

configurations. Predictions are figured out for the rema@ionfiguration.

Table 7.9 shows the relative error, but the results are somastmisleading. To avoid division
by zero only cases with a current value not equal to zero ataded.

Prediction of the tensile strengthThe classification into good and defective joints using
defocussing and offset works as intended. Only for two canéiions (Offset = O respectively
0.3mm, defocussing = -2nm) strong deviations are observable. The prediction of theile
strengthF" is 2985N (3007N) instead ofF" = 4876 N (4384 N). The main reason is the lack
of data. To test the ability to make predictions for unknowtedthe tested data sets are not used
for training. As there are only three blocks with defocugsin-2 mm, two of them are used for
training. One of them leads to a proper joint, the other fdilsis leads to a too low prediction.

The correct classification of the joint does not mean thatxatteprediction of the force
is possible. The first reason is the great dispersior=( 506 N) of the data used to test the
influence of the defocussing and the offset. Together wighmtlean force of 2710 this results
in an unavoidable error of approximately 18%. Another sewferror is that the failure of the
joint is modeled as a binary event.

Data to explore the influence of the angle, the velocity, &sediumber of joints are modeled
with greater accuracy. First there is less dispersion irddta ¢ = 144 N), which results in a
lower unavoidable error of 3.39% (in relation to a mean fafte- 4247 N for good joints). In
a comparative model, where defocussing and offset aregdistted, the force is modeled with a
relative error of 5.37%.

Prediction of the offsetTable 7.9 shows a relative error of 66.4% when predictingffset.

It should be noticed that all cases with an offset afifh are not part of this calculation to avoid
division by zero. In 31 of 48 blocks the tensile strength iplesed for both defocussing and
offset = Omm. The predicted offset for these cases is i34. If a Bayesian network would be
used to control laser beam welding this would not lead to asdeing quality.

Since an offset of less than On3m does not lead to a decreased quality and an offset larger
than 0.6mm results in a faulty joint (Its not possible to make a statetrfi@rthe interval between
0.3 and 0.6nm as the offset was only tested for 0, 0.3 and @), the offset can be divided
into equivalence classes. The first class includes all gdbedwveen 0.0 and 0:8m, the second
one all values larger than Otm. Using these equivalence classes there are only two wrashg an
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Table 7.10: Misclassifications, number of joints
Velocity Misclassifications Number of examples Remarks

2 3 6 No data for different angles
3 7 20
4 2 9
5 3 9
6 0 2 No data for different angles
7 1 2 No data for different angles

one questionable prediction. The first wrong prediction &lmfor an offset of 0.6hm and a
defocussing of -4nm. As the defocussing is a sufficient reason for a defectivé jthe model
has no possibility to distinguish between different offsé@the second failure occurs for an offset
of 0.6 mm and a defocussing of -=2m. In this case a value of 0:2m is predicted which would
lead to a joint in best order. The problem might be caused bgx#apolation, as an offset of
0.6 mm is an extremal value and all other examples with a defocgsdir2 mm lead to a proper
joint. For a offset of 0.6nm and a defocussing of 4:2m an offset of 0.39nm is predicted.
There is no mean to decide whether the predicted value i®indlrect equivalence class.

Prediction of defocussingFor the discussion of the result it makes sense to distihdags
tween two equivalence classes again. The first class cerndaifiective joints with defocussing
of less than -4nm. The second equivalence class contains examples with awudeiog larger
than -2mm. According to these equivalence classes, there is oneasssfitation for an offset
of 0.6 mm and defocussing of -qam. As the given offset is sufficient to explain the defective
joint the model has no means to distinguish the two diffeegptivalence classes.

A questionable prediction is made for a defocussing ofn# and an offset of 0.3nm. In
this case a defocussing of -2.72m is predicted. This might be a wrong prediction (it is not
possible to determine the exact position of the thresholi)sed by a high force for a defective
joint.

Number of joints As already seen in table 6.8, the difference between thes$diar one or
two joints is smaller thaf.50 for v = 3 or v = 5m/min. Thus, for these velocities it is nearly
impossible to distinguish between different number of f®inThe results are itemized in table
7.10 which shows the number of misclassification for diffeneelocities.

Prediction of the velocity For the node, representing the velocity, only the mean isdch
The variance is fixed to ten which is approximately three simithe estimation. So the disper-
sion is large enough to guarantee prediction in the testegerand to avoid a strong influence of
the examples on the prediction.
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Table 7.11: Classifications of angle

Predicted angle
0 -3¢ 3O

0 20 8 8
Correct Angle -30 O 4 2
+300 O 1 5

D

Figure 7.18: Model of laser beam welding

For the tested 48 blocks there are 8 cases with a predictionlarger than In/min. Two
of them are cases with a defective joint where the velociy/r@minfluence on the force. Three
wrong predictions are made for lap seam joints which showsrg anregular dependency be-
tween velocity and force. For the remaining three cases ¢h@tion is less than twe /min,
but there is no apparent reason for the deviation in these ttases.

Prediction of the angleFor the angle misclassifications can be observed in 19 of @bl
In most of the cases an angle of 238 cases) or 30(8 cases) is predicted instead of an angle
of 0°. In four of these 16 misclassifications, predictions are@fada deficient joint, so that the
angle has no influence on the joint. In four other cases, glieds are made for a velocity of 6
or 7m/min, so that a lack of data might be the cause of the error. A campherview is given
in table 7.11
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7.2 Injection moulding

In chapter 6.2 the executed test-plan is shortly discud3ad.to this test-plan only 34 configu-
ration (15 inner experiments, 16 outer experiments, ongaguoint and two possible operating
points) are tested. Usually each setting is repeated 6 {ffoesome configurations outliers are
removed, so that only four or five data sets are availablegxiperiments for the operating points
are repeated 60 times. The standard deviation of the tdkerdfion is depicted in figure 7.19,
points 1-15 are taken from the inner experiments, 16 — 31 @tected executing the outer ex-
periments. The standard deviation of the operating posrgs/en by bars 32 and 33, bar number
34 represents the standard deviation of the central poimt. miean of the standard deviation is
223.2 N. In the calculation of the mean standard deviatlmayalues in figure 7.19 are weighted
according to the number of experiments.

From5* = 625 possible configurations only 34 are observed. A comparistmavfraction
of the test-plan for two arbitrary variables shows that deem subset of two variables (compare
table 7.12) only 11 (2 combinations for the operating poasd to be added) from 25 configura-
tions are observed. Thus the suggestion of subsection t6.t@mbine only variables if all of
their configurations are observed is not applicable.

For most of the presented models in this subsection it cape@xpected that correct pre-
dictions are made for yet un-presented combinations (coaRNO1]). The model evaluation
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Table 7.12: Fraction of executed test plan
Var; Var, F

N

WoOoakrkFErMA,BEBDNDN
WOk, Ok, AN

\\//
5

Figure 7.20: Discrete model of injection moulding

discussed in this section is therefore done on the trais@igin section 7.2.2 a new test plan is
suggested. This test-plan restricts the number of diftesettings for each variable to three to
reduce the number of experiments. The second principleuseadully factorized test plans for a

subset of the variables and to keep the rest of the variabldsamged.

7.2.1 Results

In a first experiment a model with only discrete input nodesx(pare figure 7.20) is used. The
results of the experiments with this model are listed ingahll3 (compare also [EADD3]).
The temperature of the plastic is predicted with an relagirrer of 0.85%. In comparison to
the mean melt temperature 269.16°C, this corresponds to an average deviatiod.8fC, 46%
of the difference between two neighbored settings. The mnelative error of the preheating
temperature is 11.82%, which meafs € 171.04°C) an average error of approximately.2°C.
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Table 7.13: Relative error of different models for injectimoulding

Model T Tp Te B, F Var; Var,
Model figure 7.20 0.85% 11.82% 8.73% 12.27% 4.22%

Linear model 2.31% 42.18% 14.93% 32.59% 10.25%

Hybrid model figure 7.21 1.92% 40.46% 12.44% 28.45% 6.94%

Work for injection 0.50% 13.57% 6.41% 7.63% 4.20% 6.79%
Cushion 0.84% 11.92% 8.65% 11.82% 4.25% 57.49%
Cushion and plasticizing 0.88% 11.85% 8.62% 12.00% 4.12%.048% 0.18%
Max cavity temperature  0.87% 12.49% 12.83% 4.04% 9.43%

This is approximately 45% of the difference between two heayed settings. The relative error
of the cavity temperature is 8.73%, comparable to apprataind.9°C (7. = 102.15°C). This
error is equal to 89% of the difference between two neighlbsedtings. This result indicates
that the temperature of the cavity has only a minor influencthe tensile strength’ (compare
[ZE98]). The error for the prediction of the holding pressis 12.27% or approximately 5.95
bar. This error is equal to 59% of the difference between tghimred settings for the holding
pressure. Thatis all the input variables are predicted antaccuracy smaller than the difference
between two neighbored settings.

The relative error when predicting the tensile strength22%. In comparison to the mean
force ' = 3846 N, this error is approximately 162.3 N, which is smaller thia@ tean standard
deviation within the data blocks.

A comparison of the discrete model to the linear model (skke ta.13), shows that a linear
model is not adequate for the manufacturing process. Tlsenda that a manufacturing process,
considered non-linear by the engineers, cannot be modglaghbre linear model.

Also the hybrid model, depicted in figure 7.21, shows worselts than the discrete model.
Thus the discrete model is used as base for the expansionnhiemee the prediction of the

Tnld 4’@ Tpd 4’@ Phd 4’

Figure 7.21: Hybrid model of injection moulding
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tensile strength by additional measurements severalblagare available. To keep the number
of models to be tested small, a first selection is made, aowptd the correlation between the
tensile strength and the measurements (see table 6.1 kfeelécted variables). In a first attempt
the maximal cavity temperature is added. The used modesadied in figure 7.22, the error
is reduced by 0.18%. amount of additional information iatigely small. This is only a slight

Tm Tp Ph Te

Figure 7.22: Model including the influence of the feed terapae

reduction, but the reader should keep in mind that the diser®del already uses all available
input variables, so that the amount of additional informais relatively small. Additionally the

error produced by the discrete model is smaller than thelatardeviation, so that a great part of
the error is due to scattering. The problem is that no priegtistfor un-presented data are made
for validation, so that there is a large risk that over-adaph to the training data has happened.

When exact prediction of the input variables is required work needed for injection should
be added (see figure 7.23). The model including the cushitess for the prediction of the
preheating temperature, the model is similar to the one fsestiding the injection work, only
the injection work is replaced by the cushion. The resultgbie 7.13 show that all variables
might be used to improve predictions, but the differencéhtodiscrete model is small in most
of the cases. The main problem is that due to the test plarge [sart of the parameters are
untrained. The hybrid model and the linear model might avbid problem. But these two
models provide the worst results; it is not tested whethesetiwo models provide similar results
when tested with cross validation.
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Tm Tp

Figure 7.23: Model including the influence of the feed terapae

7.2.2 Test plan for injection moulding

The last section has revealed that the suggested modelsolagktness. A fully factorized test
plan would solve the problem, but this would severely insegthe costs. To keep the experimen-
tal costs low, it is suggested to pick three variables andweea fully factorized test plan for
those three variables. The rest of the variables is kepttanhsFor an example see table 7.14.
Value 2, used in this table, should be close to the operating.pTesting only three settings for

Table 7.14: Fraction of executed test plan

o Tm B v 7 F

1 1 1 2 2
1 1 2 2 2
1 1 3 2 2
1 2 1 2 2

each variable is forced by cost-pressure. On the one hakohgimore than three variables for a
test plan is very expensive. On the other hand it makes semg@overy rare cases as the com-
bined influence of more than three variables can be negléctemst of the cases. Neglecting
some of the possible combinations of three variables cauttiér reduce the cost. This type of
tests is closely related to the Bayesian network, so thaeftglan results also in valuable hints
for the structure to be used.
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Chapter 8
Real-time

A controller has to react in real-time. That is the respoige ts limited by the sampling period

AT. Particularly for nonlinear models as discussed in chdpteal-time requirement is hard to
meet. In this chapter the reduction of time-slices is disedsvhich is one important step toward
real-time. But further steps are necessary, e.g. the usaggpooximate inference.

The run-time used for inference in a Bayesian network dependhe number of nodesy
of the Bayesian network. For a dynamic Bayesian networkntimber of nodes  is a multiple
of the number of time-slices, .., and hence it is desirable to reduce the number of timesslice

The experiments, discussed in the previous chapters, @@ ped with 10 time-slices for
the representation of the past and 15 time-slices for ptes®h future. The large number of
time-slices has an effect on the run-time as well as on the tised for training. In particular for
hybrid, dynamic Bayesian networks the time needed for erfee

Ting & nfme (8.1)

depends on the number of statgger time-slice and on the number of time-sli¢gs,. Even if

a reduction of the number of stateshas a large effect on the run-time, this parameter is more
or less dependent on the model and on the required accuraogeHhere seems to be no general
way to speed up the controller by reducing the number of stateThis remark does not mean
that a reduction ofi; makes no sense in special cases, for an example see segtidte8ucing

the number of time-slices, .. IS much more promising. In the next two sections it is shovat th
the number of time-slices, needed for the representatidheopast and future, can be severely
reduced.

Another promising approach would be the usage of approximst as discussed e.g. in

151
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[BK98a]. It is not discussed in this thesis.

8.1 Number of time-slices

8.1.1 Dependency on the number of nodes used for the future

The number of time-slices is an important influencing fadorthe run-time of the inference
algorithm. The nodes, representing the future, have two hasks.

First, the estimated inputsg, ; are part of the calculation of the new input.,, as described
by equation (4.11). Sometimes it makes sense to use moretignput., . ; for the calculation
of the input to damp the control input,.,,. Signals as displayed in figure 4.10(a) usually make
no sense. The reason is that the actuator is not able to fellaiv high frequencies. A suitable
number of estimated input signals is application dependdrd reader should keep in mind that
there might be other methods to damp,, than the usage of additional signals for the calculation
Of Upew-

The second function of the future nodes is the storage of éiseetl valuew. It has to be
tested whether a reduction of the number of time-slices heegative influence on the results.
Therefore the same experiments as in chapter 4 are exedutedanly difference is the number
of nodesn,:.. Used for the representation of the future. No further redads possible at the
limit n¢.1ue = 2. NO evidence is given for the first time-slice of the futurejtas determined by
the past (things might be different for jump Markov systeni$je second time-slice of the future
is needed to store the desired valueThus it is not possible to use less than two time-slices for
the future.

The number of time-slices for the past is fixed to 10, the nunobestimated signals,;
for the calculation ot is fixed to four. It is therefore possible to compare the rtsswith the
results of chapter 4.

Additionally, to the criteria discussed in chapter 4, thmedifor the training and the time for
one inference step is listed. In our experiments the trgirsrexecuted with 40 examples and 5
iterations of the EM-algorithm. The measurement of theweatadn-time includes the following
steps:

1. Entering all observations for in- and output to a dynamaydsian network with,,s; +
nature NOAES. This net contains no information about the desirkavand is used for the
estimation of the disturbance.

2. Estimation of the disturbance.



8.1. NUMBER OF TIME-SLICES 153

3. Entering the last,,s; observations as the observed past and the desired value ab-th
served value in the future. To make the estimation of ingyniais more robust the estima-
tion of the disturbance, obtained at step one, is used as@uievidence.

4. Estimation of signals, ; for the calculation Ofi,., .

The evaluation-time thus contains all measurements nagefs the calculation of the new
signal. The measurings are done on a PC triggered with 2.4 GHz

The results for system 2 (see table 4.1 for a definition of #s&-$ystems and table 4.2 for
an explanation of the criteria used to evaluate the systarad)sted in table 8.1. For the experi-
ments, described by the last two columns, the number of Egisad for the calculation of;,.,
is reduced to two respectively one. They only show that therotler works as intended for a
low number of time-slices, e.g. the differences in the sedarror sum are caused by the low
number of signals,; used for the calculation af .., .

Table 8.1: Results of experiments with difference equatsystem 2), 10 nodes used for the past

Number of future nodes 13 11 9 7 5 3 2

I4(z% = 0) 9.6685 9.6741 9.6785 9.6815 9.6800 8.5862 4.9942
oo (22 =0) 0.0205 0.0172 0.0139 0.0106 0.0071 0.0033 0.0083
Overshoot 0.5405 0.5442 0.5482 0.5525 0.5584 0.1300 0.1203
Iy(z% =1) 0.1500 0.1500 0.1497 0.1493 0.1493 0.1404 0.1032
eoo(2z=1) 0.0244 0.0212 0.0173 0.0130 0.0095 0.0110 0.0170
ts(2z%=0,1%)[s] 0.4500 0.4500 0.4500 0.4500 0.4500 0.3500 0.1500
ts(z%=0,3%)[s] 0.4000 0.4000 0.4000 0.4000 0.4000 0.2000 0.0500
ts(z%=1,1%)[s] 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.1500
to(2% =1,3%)[s] 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.1500
Traintime [s] 279.6955 254.1279 230.0103 207.1388 181N94%55.0763 143.4986
Evaltime [s] 0.6007 0.5503 0.4942 0.4428 0.3889 0.3332 7130

The effect ofng.ue ON the run-time and training-time is depicted in figures &d &8.2. As
the experiments are done for networks without discrete s\oal@ly a linear effect is observed.
For hybrid dynamic Bayesian networks with discrete nodesger effect is expected.

The effect on the accuracy of the controller is depicted iorkg 8.3 and 8.4. The results
for nicure < 4 are omitted as the number of nodes that are used for the aatoulof v, IS
decreased in comparison to the other examples. Figure 8vasshe effect on the squared error
sum. At a first glance, the reduction of ... Seems to have a negative effect, but the effect is
only visible at the second position after decimal point.

Figure 8.4 depicts the effect of reducimg,... on the steady state errer,. Decreasing
natare NAS a positive effect on the steady state error. A furthematoh until ng,.. = 3 has
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Table 8.2: Dependency of the accuracy on the number of nakfar the future

Number of future nodes 13 11 9 7 5 3 2

I4(z% = 0) 9.8833 9.8842 9.8838 9.8843 9.8829 8.9384 4.9675
eoo(2? =0) 0.0007 0.0010 0.0009 0.0005 0.0000 0.0007 0.0011
Overshoot 1.1388 1.1403 1.1402 1.1406 1.1403 0.2144 0.0040
Iy(z7=1) 0.1575 0.1583 0.1578 0.1556 0.1522 0.1511 0.1133
eoo(2? =1) 0.0199 0.0215 0.0190 0.0111 0.0028 0.0110 0.0185
to(z%=0,1%)[s] 0.6500 0.6500 0.6500 0.6500 0.6500 0.4000 0.0500
ts(2% =0,3%)[s] 0.4500 0.4500 0.4500 0.4500 0.4500 0.2000 0.0500
te(2% =1,1%)[s] 0.5500 0.5500 0.5500 0.8500 0.8500 0.7500 0.6500
ts(z?=1,3%)[s] 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.1500
Traintime [s] 280.9525 255.7706 239.2738 281.2450 20900%57.5998 158.9270
Evaltime [s] 0.6029 0.5502 0.5092 0.9710 0.5654 0.3379 1733

the same effect. Setting.... t0 the theoretical limiti,:.e = 2 Makes no sense, the steady
state error increases tQ, = 0.0083. Whenn:... IS set to two, there is only one node left for
encoding the desired value. As a result the information trhghmissing that the desired value
has to be kept constant.

Similar results are obtained for the experiments with sys® listed in table 8.2. Also
for system 3 a reduction of the number of nodes has nearly padhon the accuracy. As a
consequence of the discussion in this sectign,. is set to five, the number of signals for the
calculation ofu,., is fixed to four. This setting enables a comparison betweemnegsults in this
and the following section, and chapter 4.

8.1.2 Dependency on the number of nodes used for the past

The firstn,,s; time-slices are used for the estimation of the past and tteirtiance. Before

the experiments are discussed, the lower limit for a SIS€esy from the theoretical point of
view is deduced. For the state space model, a dynamic Bayestaork to model a third order
system is depicted in figure 8.5. Note that the number of states is equal to the order of
the system. The structure is based on the assumption thabtheal form, described in section
3.1.1, is used. The reason is that normal forms are esdgifitiagood training results.

Provided that the in- and outputs are known for all timeedicthe third stateX;, can be
estimated at timébased on the measurement of the oudjtit For time-slice + 1 the first and
the third stateX7,,, and X3, ,, are assessable accurately. For the estimation of the detate
X311 information about the first stat¥;, is missing. Att + 2 enough information is available
for the estimation of all states.

For higher order systems similar considerations lead todhelt that at the first time-slice
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Figure 8.5: State space model of third order

only the last state can be estimated, for the second tirne-8ie first and the last one. For the
estimation of all states of a systemroth ordern time-slices are needed.

If the structure of the DBN is based on the difference equasipproach, the same result
is obtained. To figure out the minimal number of time-slicgaation (3.34) is helpful. It is
necessary to have access to all signals - - - u;—, andy;”, - - - y;",, to make a prediction for
Y,". Thatis also for the difference equatioime-slices are necessary to make exact predictions
for a system of:-th order.

The results of the experiments with system 2 are itemizedbfet8.3. The first line shows
that reducingq,.s; has nearly no effect on the squared error sum. The relatphsitween the
number of time-slices for the past and the squared error & = 0) is displayed in figure
8.6. But a reduction also has drawbacks. The steady statecgrfz? = 0) raises from 0.0071
to 0.0105 forn,... = 3. If the steady state-error,.(z¢ = 1) for the disturbance reaction is
observed, it gets obvious that the controller is not workpngperly forn,.s. = 3. The steady
state error fon,,s = 3 raises to 0.0347. This value is 3 to 18 times larger than #wdststate
error for more time-slices. The results obtained for sysBefisted in table 8.4, agree with the
results for system 2.

Reducing the number of nodes leads to nearly no changes sgtleed error sum, but to a

larger steady state error. However, a reductionjQ, = 4 seems possible, particularly when
the run-time is taken into account The results discussedrsaré obtained with the inference
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Table 8.3: Dependency of the results on the number of nodsssfas the past, system 2

Number of past nodes 10 8 6 5 4 3

I4(z% = 0) 9.6800 9.6832 9.6836 9.6842 9.6861 9.7001
eoo(24 =0) 0.0071 0.0075 0.0080 0.0079 0.0084 0.0105
Overshoot 0.5584 0.5578 0.5574 0.5567 0.5566 0.5523
Iy(z7 =1) 0.1493 0.1444 0.1426 0.1432 0.1380 0.1217
eoo(z4=1) 0.0095 0.0045 0.0022 0.0019 0.0079 0.0347
ts(z4 =0,1%)[s] 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500
ts(2% = 0,3%)[s] 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000
ts(2% =1,1%)[s] 0.3000 0.3000 0.5500 0.5500 0.5500 0.5500
ts(z4 =1,3%)[s] 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500
Traintime [s] 181.9450 157.2597 132.0516 119.3287 106.6294.1040
Evaltime [s] 0.3889 0.3359 0.2846 0.2557 0.2291 0.2021

Table 8.4: Dependency of the results on the number of nodekfosthe past, system 3

Number of past nodes 10 8 6 5 4 3

I4(z% = 0) 9.8853 9.8815 9.8792 9.8813 9.8824 9.8796
eoo(2% = 0) 0.0005 0.0007 0.0024 0.0016 0.0013 0.0032
Overshoot 1.1435 1.1401 1.1424 1.1439 1.1439 1.1439
Iy(z7 =1) 0.1556 0.1445 0.1373 0.1465 0.1481 0.1301
eoo(21=1) 0.0111 0.0052 0.0286 0.0203 0.0163 0.0410
ts(2% = 0,1%)[s] 0.6500 0.6500 0.6500 0.6500 0.6500 0.6500
ts(z4 =0,3%)[s] 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500
ts(z4 =1,1%)[s] 0.8500 0.8000 0.6000 0.6000 0.6000 0.6000
ts(z4 =1,3%)[s] 0.2500 0.2500 0.2500 0.5000 0.5000 0.5000
Traintime [s] 282.0064 162.3054 136.7756 123.4775 1120908.5522
Evaltime [s] 0.5778 0.3556 0.2992 0.2703 0.2433 0.2142

algorithm discussed in section 2.3.2. The drawback of tigisrahm are numerical instabilities

[LJ99]. Itis not possible to use this algorithm for dynamigysian networks with both discrete
and continuous nodes. For networks with more than 5 tineeskhe result of inference is Not a
Number (NaN). As a consequence the stable algorithm, dsecuis [LJ99], is examined in the

next section.

8.2 Stable Inference algorithm

The stable inference algorithm avoids switching betweenntioment and canonical character-
istic so that the matrix inversion in this step is avoided. d&idnally the representation of a

potential is changed. In the stable algorithm the contisumades are divided in head and talil
nodes, the potential represents a distribution of the hedeésgiven the tail nodes, so that the
dimension of the covariance matrix gets smaller.
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In this section the measurements for system 2, with, = 6 andny,..e = 5 IS repeated with

the new inference algorithm to get an impression whethenging the inference algorithm has
an impact on the run-time. A comparison between table 8.5ané 8.3 shows that the usage

of the stable inference algorithm has nearly no impact omjtiaity of the controller defined by

the squared error sum, overshoot and steady state erra.cdimcides with the expectation as
the used inference algorithm should have no impact on thealeéd distribution. Comparing

Table 8.5: Runtime of the stable inference algorithm

Experiment number 1 2 3 4 5 6 7 8 9 10 Mean
I4(z% = 0) 968 968 968 968 968 9.68 9.68 9.68 9.69 9.68 9.68
oo (22 =0) -0.01 -0.01 -0.01 -0.00 -0.010 -0.01 -0.01 -0.01 -0.01 -0.01010
Overshoot 056 056 056 056 056 056 056 056 056 0.5656 0.
Id(zd =1) 0.14 0.15 0.14 0.14 014 0.14 014 014 0.14 0.14 0.14
eoo(2? =1) 0.00 0.00 0.00 0.00 000 0.00 0.00 000 0.00 0.00 0.00
ts(2%=0,1%) [s] 045 045 045 045 045 045 045 045 045 045 045
ts(z4 =0,3%) [s] 040 040 040 040 040 040 040 040 040 040 o040
te(2% =1,1%) [s] 055 055 055 055 055 055 055 055 055 055 0.55
ts(2% =1,3%) [s] 025 025 025 025 025 025 025 025 025 025 0.25
Traintime [s] 726 736 754 699 698 698 697 697 700 696 710
Evaltime [s] 413 413 389 389 390 390 389 389 393 38994

the time used for the training of the Bayesian network andtithe for evaluation shows that
the (current) implementation of the inference algorithraatided in [LJ99] is approximately 14
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Figure 8.7: Steady state error depending on the number @&siod the past

times slower (comparison of the evaluation time) than thplé@mentation of the former algo-
rithm [Lau92]. Therefore, it is advantageous to use the &rmersion as long as no warnings (a

warning is given e.g. when the matrix to be inverted is badiyditioned) are displayed during
runtime.



Chapter 9

Outlook and Summary

9.1 Outlook

The thesis is divided into two main parts. The first part death the application of Bayesian
networks as a controller. In chapter 4 and section 5.2 pditions and suitable models are
discussed that enable a dynamic Bayesian network to actréiolter. Chapter 8 examines the
run-time and simple means for its reduction.

The second part addresses modeling of manufacturing mesdike hydroforming and in-
jection moulding. In both areas large progress is achieyettthere are still a lot of possibilities
for further optimization. Section 9.1.1 analyzes methadsiprove the Bayesian controller. An
additional subject is the usage of alternative approaahegtend the possibilities of stochastic
control.

9.1.1 Usage of Bayesian networks as a controller

In this section three different aspects are discussedt, His Bayesian controller is regarded
from the practical point of view. Problems which might ocdue to differences between simu-
lation and possible application are covered. The secoraypaph deals with possible extensions
of the system so that as many systems as possible can bellszhtFanally, alternative stochastic
approaches are discussed.

Practical application The Bayesian controller is examined with simulated dynasystems
of second and third order. Againing signalsthe impulse-, step-, and sine-responses (different
frequencies are used) are applied. Using a broad rangeqpfdneies simplifies the adaptation of
the parameters. But signals collected during practicalleynpent of the system have a different

161
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characteristic. Usually a controller keeps the output tamts Provided that no disturbance
occurs, the input signal is also constant. It is not possiblkearn the dynamic of the system
using constant signals. As long as only constant in- andubgignals are collected, a dynamic
system can be characterized by its gain. Possible solutmgist be to store signals which are
gathered during the occurrence of a disturbance or whenaine¢ig started up.

A second point to be discussed is the robustness of thergapriocess facing differences
between thestructure of the Bayesian netwodnd the plant to be modeled. To explore the
feasibility of Bayesian control, it was assumed that thesof the system and, as a result, the
structure of the dynamic Bayesian network is known. Stmgctaeans either the number of state
nodes or the order of the applied Markov model. To deternheeorder of the system several
points of view are important. Control theory offers diffetanethods to estimate the order of
the system (see [Unb0Q0], chapter 4.3). Some of them areeappéfore system identification
takes place. Additionally it might make sense to simplifg thodel, for example to use a model
of smaller order than the plant (see [Unb97a], chapter 9dfgularly used simplifications). The
smaller number of state nodes results in less nodes. Thergtining and evaluation time is
shortened. Assuming the equality of some time constantaaghar possibility to reduce the
search-space and simplify system identification.

The application of structure learning algorithms comg@iseme open questions. It is not
known how the special requirements of the manufacturingadom@re taken into account. Partic-
ularly adding additional hidden nodes or learning a hybray@&sian network can be considered
as a complex problem.

Before the EM-algorithm is applied, a suitatdampling ratehas to be set. In this thesis
the sampling rate is deduced from the natural angular fregyuef the system and the sampling
theorem. But this is no final solution as the formula giventfa calculation of the natural an-
gular frequency requires the knowledge of the time-constahthe system and is restricted to
systems of second order. Both conditions are usually not fetinimization of the sampling
period does not solve the problem as it complicates the my&tentification and shortens the
maximal inference time (The reader should keep in mind thatrder to meet real-time require-
ments, AT is the maximal inference time). Unbehauen suggests (cdfér00], section 4.4.2)
to approximate the transition function by theoretical ¢édesations or deterministic test-signals
to figure outTgs, the time when the output has reached 63% of its maximal valusampling
period betweem\T' = 1/6 Tg3 and AT = 1/10 Ti3 is proposed.

At last therun-timehas to be discussed. In chapter 8 it is shown that run-timéeaaduced
by decreasing the number of time-slices. For hybrid Bayes&tworks the number of mixture
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components is proportional tg===. That is the reduction of the number of time-slices is an
effective means to reduce run-time. But as time-measuremerchapter 5 show, solely cut-
ting down the number of time-slices is not sufficient. Forcdie dynamic Bayesian networks a
possible approach is discussed in [BK98a; BK98b]. A moremsing approach might be mo-
ment matching. The idea is to reduce the number of compobgrapproximating a mixture of
Gaussians by a mixture of Gaussians with a lower number ofur@xcomponents. This seems
to be promising particularly for the state-space modebuhiiced in section 5.2. In the dynamic
Bayesian model depicted in figure 5.16 the discrete nodessept different operating points.
Usually one state is much more probable than the remainatgsst When the system changes
from one operating point to the next only two states are mkedythan the others. Thusiitis ex-
pected that the reduction of mixture components resultgiard low error. A similar principle is
applied in the modeling of possible failures within a syst&rb tubes [KLOO]. The main idea is
that the states representing none or only one error are mobalple than the states representing
the occurrence of multiple errors at the same time. That s\dat the idea that some states are
unlikely is used to reduce the number of mixture components.

Four different problems

» Usage of real training signals.

« |dentification of the structure of the system.
* |dentification of the sampling rate

* Real-time inference

are discussed which might cause problems when transfetiiemdgheoretical approach in this
thesis to a practical application. For all of them possilpleraaches to solve them are discussed,
therefore it is worthwhile to continue research in the donwdiBayesian control.

Improvements of the systemAs test systems only SISO systems were employed. But in
reality also a lot of MIMO systems have to be controlled. Sz8ch02] discusses as example
a helicopter, a hydraulic cascade, a distillation colunmg a steam generator. ThatNHMO
systemsare an important extension. At least the state-space agipisalso used for MIMO
systems, but in reality some problems can occur. One pesstlrce of problems is the infer-
ence algorithm. Using the inference algorithm introduceflLau92] might result in numerical
problems. The matri¥< occurring in the canonical characteristics is initialized that it has
rank one (“Note tha® has rank one and is therefore typically not positive defifite192]").

But when the canonical characteristics is transformed tmerd characteristics an inversion of
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K is required. Furthermore the calculation of marginal pt#sis only guaranteed to be finite
if the according sub-matrix oK is positive definite. Thus numerical problems are expected.
The implementation of the recent inference algorithm [JJ83he BN-toolbox is slower than
the implementation of the former one. Thus it is advisablade the former algorithm as long
as it provides numerical stable results. The second prolsi¢ne training process. For the state-
space model some weights are clamped; i.e, they are excfuoiadiraining. As a result the
search-space is narrowed which leads to a faster and mdie staining. For MIMO systems
the normal form which is used to restrict the search-spanencalonger be used. Thus it has
to be checked whether the normal forms available for MIMQeays [Sch02] can be used in a
similar way.

The application of normal forms is one way of introducingraep knowledge into the model.
A second source of information is an analytical descriptibthe plant. But usually a complete
analytical description of the system to be controlled isgie¢n. Therefore an automatic way to
include partial or qualitative [Kui94] knowledge about #ystem is needed. Possible approaches
are:

Imprecise or incomplete knowledge might be used for a betitalization and a refined
training process. For example the weight of a Iijk— Z might be known exactly. But
in the current implementation of the BN-toolbox it is onlygsible to clamp a complete
weight-vector of a node. That is the weights of all link¥ — Z must be known.

» Fixing a set of parameters, e.g. variance or weights of suodes.

* When structure learning is applied a-priori knowledge mige used to include or exclude
some edges from the search process or to provide a nodergyderithe learning process.

» For overdamped systems the number of nodes included irefbalation ofu,., can be
reduced.

A main point of control isstability of the controlled system. For linear SISO systems good
results are obtained by using a difference equation moddi fd3 the state-space approach the
training failed in one case, i.e. convergence was not aeli¢see table 4.4). As the suggested
model for nonlinear systems are based on a state-space maguelrantee for convergence is
still of importance, particularly for the nonlinear casemiarly a guarantee is missing that the
steady state error is reduced to zero.

Alternative approachesThere are other means for stochastic inference beside Baymst-
works. Well known inference algorithms are differsamplingprocedures, e.g. Gibbs sampling.
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Gibbs sampling is implemented for example in BUGS. In [DDNP® is shown that BUGS is
also suitable for modeling of preforming and calibratiohefe are three advantages in compar-
ison to the inference process used for the Bayesian network.

* The inference process is not restricted to conditionalgSeun distributions.
» Usage of deterministic nodes which are helpful to modelinearities.
* Run-time can be reduced by reducing the number of iteration

The last item raises the question how many iterations aressecy before convergence is reached.
Brooks and Roberts [BR97] write: “Ideally we would like toaytically compute or estimate
a convergence rate and then take sufficient iterations fpparticular desired accuracy but this
is not possible in general. In fact for Markov chains it isrertely difficult to prove even the
existence of a geometric rate of convergence to statigtiarit

Closer to Bayesian networks atecision networksntroduced e.g. in [CDLS99]. In decision
networks two types of nodes are added. First decision nb@esave no parents are added. The
decision nodes have an influence on the utility nodes whigtesent the utility of each state; i.e.,
the utility nodes depend on the states and on the decisiogsndal[CDLS99] the decision nodes
are defined to be discrete. Before the approach can be applahtrol problems an extension
to continuous decision nodes is necessary.

9.1.2 Modeling manufacturing processes

There remain several challenges when modeling manufagtyriocesses. The main problem
is the usage ofest-plans The problem is clearly identified in section 7.1.3. Howeuvbe
suggested solution is only applicable when a fully factxdlizest-plan is employed to identify
the main influence factors. That means that all configuratminX;, X; have to be examined
if the combined influence ok, X, is considered important. It does not mean that all possible
configurations of all variables have to be examined.

Section 7.2 shows that the idea to identify subsets of viasalvhere all configurations are
observed, is not applicable to all test plans. For injectimulding the restrictions will be taken
into account during the collection of new data. But it rensasnbject of research whether there
is a general mapping from each test-plan to a structure ofyadftan network.

The principle ofpiecewise approximatiors mostly applied in the approximation of one-
dimensional functions. But, as there are also Taylor séolesiulti-dimensional functions, it is
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likely that an extension for the multi-dimensional casesexi To apply the suggested approx-
imation to multi-dimensional functions an algorithm is ded to figure out suitable points,,

so that the expansion of a functighat a pointu, can be calculated. For the one-dimensional
case visualization is applied. This is no appropriate smiuor the multi-dimensional case. The
second problem is to calculate Taylor series at hiddensstateThis would have a large impact
on hybrid dynamic Bayesian networks used for control. Atriement the selected operating
point depends only on the input. The selection of the opgggboint depending on the state
would cover a wider range of nonlinearities.

9.2 Summary

This thesis deals with the problem of modeling and contratatic and dynamic systems. Thus
it is situated at the intersection of control theory, maotifeing, and stochastic modeling. It is
therefore necessary to give a brief introduction to all doma

In chapter 2 Bayesian networks that are selected as measi®@brastic modeling are intro-
duced. This chapter covers the main aspects of discretedhgibd dynamic Bayesian networks,
including definitions, inference algorithms, and training

Chapter 3 gives an overview about control theory. Main goane the description of linear,
dynamic systems by difference equations and the stateegfgscription. Later on, in chapter 4,
they are used to deduce the structure of a Bayesian netweek iElinear systems offer a broad
applicability, also nonlinear systems have to be discusbguical nonlinearities like saturation,
hysteresis curve, dead-zone and the two-point elemeratbantroduced in several books about
nonlinear control [LWOO; Fol93; Unb97b] are mentioned.eTdim is to develop prototypical
models for frequently occurring nonlinear units which cacbbmbined to more complex units.

At the end of chapter 3 two traditional controllers, naméig tapproach by Ziegler and
Nichols, and the Dead-Beat controller are introduced. Tdreyused to compare the new ap-
proach of a Bayesian controller to controllers in practicsd.

In chapter 4 th8ayesian controllers introduced. As a starting point, both the state-space de-
scription and the difference equation model that are retyulsed in control theory are mapped
to dynamic Bayesian networks. These models are also engpfoydesting the new approach.
The usage of general models has the following advantages

» The approach is independent from the intended applicaEgan if some domain-knowledge
is used, the models can easily be transferred to other apipins.
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» The approach can thoroughly be tested by simulation. Balaces the effort for modeling
as there is no need to start expensive plants. Moreovergkefifailure is reduced when
the solutions are transfered to the final application.

» Knowledge from control theory can easily be incorporated the Bayesian model.

In control theory dynamic systems are described by diff@gmbaquations. One mathematical
model is obtained by rewriting the differential equatiomtdifferential equations of first order.
This model is called thetate-space descriptiothe state of the system is represented by hidden
state nodes. The differential equations are transformeuh tequivalent description in discrete
time. The obtained model is similar to a Kalman filter; i.bg statec;, ; depends on the former
statex; and on the input;;. The output depends on the state, and in special cases atbe on
input. The state-space model is mapped to a structure of angignBayesian network. The
similarity to the Kalman filter is used to deduce the weigis mmeans of the dynamic Bayesian
network (see section 3.1.2 for Kalman filters and sectionvhith discusses the relation between
Kalman filters and dynamic Bayesian networks).

To get an efficient controller, the first time-slices are ukegdhe representation of the past;
i.e., the evidence for the first time-slices comprises ird aatput. This information is used to
estimate the disturbance as the difference between thelraodehe observation. In the state-
space model additionally the state of the system is estanate

For the future no information but the desired value is givElne desired value is entered as
evidence and afterwards the manipulated value is cal@igtenarginalization over all variables
except the required input. The estimated disturbance lsded in the calculation as its estima-
tion is propagated from the past to the future. This propagas based on the assumption that
the characteristic of the disturbance changes slowly. Bvantee a good performance a special
relation of the covariances is essentially.

» The variances of the input nodes are set to a large valus.sékiing reflects the assumption
that the controller must respond to a changed disturbandesired value by changing the
input.

» The variance of the nodes representing the disturbancelasvtihe variance of the input
and greater or equal to the variance of the output nodesic&arty the variance of the
disturbance node in the first time slice is greater than thawee of the output nodes. This
setting enables the estimation or the disturbance whern angioutput are given.

» The variance of the output is set to a small value, becausegsumed that the model is
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correct. Deviations between the model and the observat®explained by an adequate
estimation of the disturbance.

The relation between the variances is fixed, that is the vegisare not adapted during training.

In a first step (see section 4.1) tfeasibility of a Bayesian controlles tested. To judge the
performance of a controller the sum of the squared errop¥beshoot, the steady state error and
the settling time is used (compare table 4.2).

The feasibility test shows that the desired value is reaghallicases with a deviation smaller
or equal than 2 %0 of the desired value within a settling timeragller than 0.7 s (Test systems
with a natural angular frequency of 10 s are used).

To come to a self adaptive systemaining is necessary. It is performed with the EM-
algorithm which is included in the BN-toolbox. The EM-algbm used for training only guar-
antees that a local maximum of the log-likelihood is reachiEmlobtain a large accuracy of the
model several measures are taken concerning the traintag da

* The time-series used for training are exchanged aftertivations.

» Time-series of different type (step-response, impulspaase and sine-response) and fre-
guencies are applied.

In order to obtain an optimal training result the searchesgar the state-space model is reduced
by the usage of thebservable canonical forrwhich allows to fix the weights from the state
nodesX ® to the output nodé€). As also the weight from the disturbance ndtieto the output)

is fixed, the nod€) is excluded from training. The parameters of the disturbarade are also
fixed, because it is assumed that the characteristic of #terdance changes slightly from one
time-slice to the next. Thus two layers are excluded fronmiing.

The overshoot of the trained controller is greater thanHeranalytical controller. This leads
to a smaller squared error for the reference reaction. Hewyéwe less accurate model leads to a
larger squared errdy (24 = 1) for the disturbance reaction and to a greater settling tim€he
steady state error remains with three (of 30) exceptionsvb#ie 1%-level. The most critical
result is the missing convergence in one case.

This severe drawback is remedied by thiference equatiomodel. It is obtained by trans-
forming the differential equation to a difference equatidhis is done by approximation of the
derivatives by differences of function values. The statéhefsystem is represented by regress
to former function values; i.e., the calculationgf , is based on information aboyf”, and
us—;. Thus the usage of difference equations leads to a higher dddrkov model. For the
implementation of higher order Markov models two differeréthods are suggested:
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» Expansion of the BN-toolbox, so that also higher order Marknodels can be unrolled to
usual Bayesian networks.

» Adding redundant nodes to the model, so that former inpudscautputs are represented in
two different time-slices.

For the difference equation model it is supposed that tleene idisturbance during training.
Thusgq, = y;*, the observed output is entered twice as evidence. Thusdaehinodes are left
which leads to a stable training result. The steady state ey is in all cases smaller or equal
than 7%. of the desired value and convergence is achieved gasg¢s. In comparison to the
state-space system the number of training-iterationgisaed from 20 to 5, but convergence of
the log-likelihood can be observed after the second itemati

Chapter 4 is restricted to linear systems. This restriagsaliminated by the usage bf/brid
Bayesian networkas discussed in chapter 5. The idea is to approximatnénear functiorby
multiple Taylor series. When the model is employed a discneide selects the suitable Taylor
series. For test purposes the model is applied to the satyrand to the hysteresis curve. The
saturation is modeled with a relative error smaller than 8% hysteresis is also modeled with
high accuracy, but a training of the hysteresis model is nesible.

The linear approximation is combined with linear dynamiad®ig, both with the difference
equation model and the state-space model. For nonlinegarsgshe difference equation model
provides no acceptable results, particularly the traingagnstable. The combination of the
saturation model with the state-space model leads to aaueptesults, the steady state error
is between 5 and 6%. of the desired value. But at the momentdigabhemployment is not
possible due to the large evaluation time of approximatélyg t calculate the new input signal.

Most of themanufacturing processese nonlinear. Chapter 7 discusses the application of
Bayesian networks to several subprocesses of hydroformeiggpreformingand calibration.
For preforming the pressure between the blanks is predigitda relative error smaller than
3%, for the calibration the relative error is between 30 ab%5but the predicted curve is close
to the original data, the error is largest at the burstingpdnother important point is that both
models show generalizability. That is they are able to makeiptions for yet unknown data,
a feature which is usually associated with neural netwoBkg.not all of the presented models
offer generalizability.

The counter example is the model for injection moulding. @halysis of the data shows
that only 5% of the possible configurations are tested. Twslumber of examples leads to the
fact that not all configurations of discrete parents are sk Thus there are parameters in the
conditional probability tables which cannot be trainedj&se are no examples. Literature about
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guality management points out that the missing configunatere due to deliberate test-plans.
For simple test-plans subsets of variables, where all cor#igpns are tested, can be identified
and used as possible parents. Following this instructionodemfor thewelding processs
developed (see section 7.1.3 and [DDNKO3]). This modelss able to make predictions for
unknown inputs. Thus the aim of generalizability is reacireédimost all cases. The only
exception is the model fanjection mouldingwvhich is therefore not suited to deduce a suitable
operating point for injection moulding. The reason for théure is that there is no set of two
variables where all configurations are observed.

The thesis finishes with a discussion aboedl-time The number of time-slices can be
severely reduced which leads both to a reduction of theitrgiand the evaluation time. For
models of second order the number of time-slices used folutinee can be reduced to two. In
one time-slice no evidence is given for the output node, éoersd time-slice is used to enter the
desired value as evidence. There is nearly no impact on¢hegstate error and on the settling
time. Also the number or time-slices used for the representaf the past can be reduced. The
minimal number depends on the order of the system to be mibdgie it seems from advantage
to use one or two additional time-slices to reduce the stetatg error.

As discussed in section 9.1, there are a lot of problems tohed, but the thesis offers
a stable base for Bayesian control. At the beginning the 8lagpecontroller might be used for
slow processes with no available mathematical model, ddlieee is a need for a self-adaptive
controller with no hard real-time requirements.
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Appendix

Used mathematical symbols for Bayesian networks

Symbol Description

C A clique, i.e. a set of random variables used as a node in éiguricee.

C; A set of cliques

dy Expected probability for configuratian

det(M) Determinant of a matrif\f

Dom(X;) Domain of the random variabl¥;

E[Y] Expectation of a random variablé

Eg Denotes the edges in a gra@h

e Evidence entered in a Bayesian network

F Force, variable used e.g. for the tensile strength

F(X) Family of the random variabl&’, F(X) = {X} UP(X)

F(X) Instantiation off (X)

g Graph, not necessarily a DAG

g(x) Parameter of the canonical representation, dependingeocottfiguratione

h(x) Vector, parameter of the canonical representation, depgruh the configuration
£

Jy Junction tree for time-slicein a DBN

K(x) Matrix, parameter of the canonical representation, deipgnoh the configuration
Z.

L Likelihood

L Log-likelihood

MT Transpose of the matrikd

M- Inverse of matrix\V/
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Symbol Description

ne(x) Denotes how often a configuratianis observed

N () Expectation, how often a configuratianis observed

ny Number of nodes in a Bayesian network

Mopast Number of time-slices used for the representation of thé pas

Nfuture Number of time-slices used for the representation of theréut

Ng Number of states per time-slice in a Dynamic Bayesian ndtwor

N Number of training examples

Tits Number of nodes in a time-slice

N Normal distribution

P Probability (discrete random variables)

P Probability distribution (continuous random variables)

P(X) Parents of a node for random variatie

p(X) Instantiation of the parents of random variahle

R Strong root in a junction tree

Szva ESS for the product of random variablésandY” given the configuratior and the
observations.

S Denotes a separator, i.e. a set of random variables usedog®eama junction tree.
In analogy to the clique§ denotes a set of separators.

tmax Number of time slices in a DBN

Tins Inference time for a Bayesian network

Vg Vertices of a graplyy

X, x X denotes a discrete random variahlets instantiation

X, x Vector of discrete random variables

X/ j-th training example

Yy, 7,z Continuous random variables together with their instdiotia

a Parameter of a continuous node in a Bayesian network

B Weight of the potential definition in [LJ99]

r Covariance matrix, used in the definition of a continuousenioda Bayesian net-
work

I Continuous nodes in a Bayesian network

Ag Discrete nodes in a Bayesian network

(7] Parameters of a distribution, e.g mean and dispersion fawssan distribution

Mean of a potential (moment characteristics)
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Symbol Description
X Covariance of a potential (moment characteristics)
»(X) Potential of a set of random variabl&s
x(x) Indicator function being 1 if?(x) > 0
2 Set of outcome of an experiment
w" Result of an experiment
U Disjoint union
|y | Length of a vectoy
X, 1 X 3] X, X, isconditionally independent frodX 5 given X,

IS
c

Marginalization of a potential, here marginalization of fhotential of a cliqué€ to
the separatob

Symbols used for control theory

Symbol Description

as, a; Output-coefficients for a differentiak{) or difference ¢;) equation, describing a
linear dynamic system

N Input-coefficients for a differentiabf) or difference ¢;) equation, describing a lin-
ear dynamic system

A, B,C,D Parameters of the state space model, sometimes used togéththe indexBN,
like Agy. Inthis case these parameters are used to model a timet@isystem.

D Damping of a dynamic system

e(t) Error, difference between desired value and current value

€oo Steady state error

Fu(s) Desired control transfer function

G(s) Laplace transformed transfer function

Gu(s) Control transfer function

1 Designates different quality measures

K Gain of a transfer unit, e.g<; denotes the gain of the dynamic system

m Maximal deriviation of the input signal in differential egion 3.4

n Order of the differential or difference equation descrgb@nlinear dynamic system

) Dimension ofy™ of a dynamic system
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Symbol Description

q(t), q Observed output signal of a dynamic systefft) denotes the signal in a continuous
time systemg;, signals in a time discrete system

r Dimension of the input: of a dynamic system

Re(s) Real part of a complex number s

s Complex number, usually used within a Laplace-transfortresasfer function

® Transfer unit

11,7, Time constants to describe a dynamic system of second order

ts Settling time

T, Rise time

Ty Dead-time

T, Delay time

U, u Input to a dynamic system

Unew Control input calculated from the estimated input for sael/points in time.

w Desired value

X State in the state-space description

s Operating Point

ym Output of the model, to be distinguished from the observegdudy

24 Disturbance input

4] Short time duration

AT Sampling period

Au Deviation from the operating point

€ White noise term used to model the disturbance of a system

o(t) Step-function

Z Z-transformation
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Used symbols in process models

Symbol Description

C Cushion

F Force

P Inner pressure between the blanks
P, Holding pressure

Spl Plasticizing stroke

Sw Warpage

Te Cavity temperature

Te,max Maximal cavity temperature
T Feed temperature

Tm Melting temperature

To Preheating temperature

1% Volume

v Velocity

W, Injection work

Used abbreviations

Abbreviation Explanation

BN
DAG
DBN
ESS
MIMO
MRAC
SISO
STC

Bayesian network

Directed acyclic graph

Dynamic Bayesian network
Essential Sufficient Statistic

Multiple input, multiple output system
Model reference adaptive controller
Single input, single output system
Self tuning controller
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Index

Bayesian network, 15
hybrid, 29
isomorphic, 16

canonical characteristic, 33
CG distribution, 30

chain rule, 14
characteristic equation, 51
chord, 19

clique, 20

collectEvidence, 24
collider, 17

d-connected, 18
d-separated, 17
damping, 49
dead zone, 59
dead-time, 51
defuzzyfication, 5
difference equation, 55
direct inverse control, 4
discrete

random variable, 13
distributeEvidence, 24
diverging connection, 17
dynamic system, 46

essential sufficient statistics, 40
evidence
hard, 24
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soft, 24
evolutionary algorithms, 5
expansion, 34

Fuzzy Control, 5

generalization, 9
global consistency, 22
graph

triangulated, 19

head variables, 39
hysteresis, 60, 103

impulse function, 48
integral of squared error, 62
interface, 42

join tree, 20
junction tree, 18

knowledge absorption, 23
Kohonen network, 4

Laplace transformation, 50
linear approximation, 8
linearity, 45

manipulation reaction, 62
marginal

strong, 36

weak, 36
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marginalization, 18 separators, 20

maximum likelihood, 26 squared error sum, 62

model statistical methods, 5
control, 1 step function, 48
information technical, 1 strong root, 31
process, 1 supervised control, 4

model-reference adaptive controller, 63
moment characteristic, 33
moral graph, 18

tail variables, 39
three-point controller, 59
time invariant, 45
natural angular frequency, 49 transfer function, 50
neural adaptive control, 4 transfer matrix, 53
neural network, 3

Z-transformation, 55
normal form, 52

observable canonical form, 52

parents, 14
PID controller, 63
potential
division, 34
multiplication, 34
probability
conditional, 14
probability table, 14
projection, 21

random variable
conditionally independent, 14
continuous, 13
independent, 14

resonance frequency, 49

rule based system, 3

running intersection property, 20

saturation, 58, 102
self tuning controllers, 63
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Zusammenfassung

Zielsetzung der vorliegenden Dissertation ist es, dyneimeidBayesnetze fur die Modellierung
und Regelung von statischen und dynamischen Prozessemeenden, die hauptsachlich aus
der Fertigungstechnologie stammen.

Hierzu werden die Zustandsraumbeschreibung und die Baibcimg dynamischer Systeme
durch Differenzengleichungen auf dynamische Bayesndigelaldet. Diese Abbildung liefert
neben der Struktur des Bayesnetzes auch die Mittelwerte@avwdchte der Knoten. Dadurch
erhalt man ein Modell, das das gleiche Verhalten wie dasuysche System zeigt.

Um zu einem Regler zu kommen, werden die ersten Zeitscheiégdynamischen Modells
fur die Modellierung der Vergangenheit verwendet. Durah Bingabe ehemaliger Ein- und
Ausgaben kann die Storgrof3e anhand der Abweichung zers8lnsgabe des Modells und der
tatsachlich beobachteten Ausgabe geschatzt werdenSd@evert wird als Beobachtung in der
Zukunft eingegeben. Durch Marginalisierung wird auf ein@ghiche Eingabe geschlossen.

Um zusatzlich Nichlinearitaten zu modellieren, werdersd mit hybriden Bayesnetzen mod-
elliert. Dabei wird die Eingabe gleichzeitig durch eineskileten und einen kontinuierlichen
Knoten modelliert. Die kontinuierlichen Knoten dienen Approximation der Nichtlinearitat
durch eine Taylorreihe. Der diskrete Knoten schaltet zZmesadiesen Taylorreihen um. Dadurch
wird eine Approximation mit mehreren Taylorreihen gleieliy vorgenommen. Dieses Prinzip
wird erfolgreich auf die Modellierung der Teilprozesse fégomen, Kalibrieren und Schweil3en
des Innenhochdruckumformens und auf den Spritzguss amgéwa

Anschlie3end wird die Modellierung der Nichtlinearitatait der Modellierung dynamischer
Systeme kombiniert. Bei der Kombination der Nichtlingsen mit der Zustandsraumdarstel-
lung wird fast die gleiche Genauigkeit erzielt, wie bei deodéllierung linearer Systeme. Es
bleiben aber Probleme mit der Echtzeitfahigkeit des SysteDurch Verwendung von weniger
Zeitscheiben wird die Laufzeit zwar stark reduziert, behtiinearen, dynamischen Systemen
laRt sich damit aber keine Echtzeitfahigkeit erreichen.
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