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Preface

Todays modern manufacturing processes face shorter production cycles, demand for more flex-

ibility and higher quality of the products. This results in an increased need for new methods

in the area of modeling and controlling of process chains, that allows self-adaption as well as

integration of expert knowledge.

This is the focus of the book at hand. It is one of the first booksthat merges techniques

from classical control theory and modern, probabilistically motivated artificial intelligence to

develop new methods for modeling and adaptive control of dynamic processes. The key element

is a Bayesian network, that allows the explicit modeling of dependencies between events. Thus,

expert knowledge can be easily integrated. However, in thisframework also automatic detection

of the dependencies is possible. This makes Bayesian networks perfectly suited for modeling

and control of manufacturing processes: during the first design expert knowledge can be used,

while in service the parameter can be adapted online withoutuser intervention.

The book gives a comprehensive introduction to Bayesian models as well as to control the-

ory. A link is made between classical methods for describingand handling linear and non-linear

dynamic systems at the one side and dynamic Bayesian networks on the other side. Although the

book describes two applications from manufacturing technology to prove the applicability, the

theory is developed in a general way. First, the reader clearly gets used to linear and non-linear

dynamic systems before the relation is shown to dynamic Bayesian networks. Well known non-

linear units, like saturation or hysteresis, are discussedin the following. The results of modeling

hydroforming and injection moulding show the benefits of theapproach.

Prof. Joachim Denzler
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Chapter 1

Introduction

1.1 Problem presentation

Manufacturing technology has to face several challenges. The time to market is getting shorter

[sfb95; GL99] on the one side, but a high quality is of great importance, as an unsatisfied cos-

tumer might change to the competitor [Pfe93] and tell his opinion a lot of other people [Pfe93].

An additional problem for countries like Germany are high wages [sfb95], so that there is a high

need for automation. The collaborative research center SFB396 tries to master this challenge by

several measures, e.g. by experiments with new materials orcombination of new materials, or

the integration of several process-steps. To achieve the goals also modeling plays an important

role [sfb95]. This is not only valid in the scope of the collaborative research center, but also for

manufacturing technology in general [Lan96].

A model is a simplified image of reality which abstracts, depending on the intended appli-

cation, from unimportant details. In [Lan96] three different groups of models are distinguished.

Process modelsare a quantitative mapping of continuous processes. A second group arecontrol

models, describing the relationship between control devices and the technical processes.Infor-

mation technical modelsare used, if automation with a process computer is intended,and they

represent the automation tasks.

Within the scope of this thesis only process models are discussed. Process models can fur-

ther be characterized as either static, e.g. used for the calculation of suitable settings for input

variables, or dynamic, if the course of the measured variables is of interest. An example for a

static process model is the modeling of the distribution of the forces during hydroforming, with

the aim to guarantee an equal distribution at all points of measurement.

Depending on the planned application, different means for modeling are used, e.g. mathe-

1



2 CHAPTER 1. INTRODUCTION

matical models or Petri nets [Lan96].

In automation also statistical methods are used, e.g. control charts [Pfe98; GL99]. Control

charts record the output variables, representing the quality of the process. Additionally upper

and lower thresholds are defined. When measurements are beyond those thresholds an action is

required. In this thesis also a statistical approach is suggested, based on Bayesian networks. But

in contrast to control charts the suggested approach aims atautomatic control, the input variables

are directly calculated using the statistical model.

Bayesian networks represent the distribution of multiple,discrete or continuous, random

variables. For a better overview, the variables are displayed in an acyclic, directed graph. The

broad applicability of Bayesian networks can be attributedto several advantageous features.

• There are a lot of training algorithms available, both for the structure and the parameter of

Bayesian networks [Bun94; Jor99; Mur02; RS97; GH94; FK03].

• Efficient inference algorithms are developed in the last 15years [LS88; Lau92; LSK01;

Pea88].

• It is possible to work with missing measurements and hiddenvariables [Mur98b].

To apply Bayesian networks to automation, there are a numberof requirements, listed shortly

in the following paragraphs. Of course, most of these requirements are not only specific for

Bayesian networks, but for modeling in general.

First, the accuracy of the model is required; i.e., the deviation between reality and the predic-

tions of the models should be minimized.

The second desired feature is the ability to generalization. That means the model must be

able to make predictions also for yet unpresented settings of the in- or output variables.

In many cases the structure of the model is also subject of modeling [Lan96]. In dependency

on the required application other demands may occur.

Sometimes a number of experiments is executed, to find out a suitable setting for the input

variables. To reduce costs, usually test-plans are used. The aim is to reduce the number of

experiments with a small impact on the knowledge gained by the experiments. This leads to a

low number of training sets which complicates a statisticalanalysis, particularly with discrete

Bayesian networks.

If the model is to be applied in quality management, there is aneed for a permanent adaptation

as additional data are collected during the production process.

When dynamic models are applied in control, other requirements have to be met.
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• As a controller should act without supervision of an operator, a robust model and controller

is needed. An oscillation has to be avoided in all cases.

• The calculation of the manipulated variables has to be donein real-time. The required

response-time depends on the controlled system.

• Failure of sensors should be compensated, so that stability of control is not affected.

• An on-line adaptation of model-parameters is desirable, to keep track with a changing

environment.

In the next two sections the state of the art in control theoryis discussed, and a brief overview

about applications of Bayesian networks is given. In section 1.4 the contribution of this thesis to

the field of modeling and control is sketched.

1.2 State of the art in modeling and control

In section 1.1 it is mentioned, that intelligent modeling and control plays an important role for

manufacturing processes and industrial production. As thelargest part of this thesis considers

this problem from the point of view of Bayesian networks, this section deals with alternative

approaches, so that a more comprehensive picture is given. The approaches of traditional control

are omitted, they are discussed in chapter 3.

In the following different approaches from artificial intelligence are discussed mainly from

the point of view of modeling manufacturing processes and ofindustrial control. In the last

decades rule-based systems, neural networks, fuzzy control, evolutionary systems, and statistical

process control are frequently applied approaches in automatic process control [JdS99; FJdS99].

Rule-based systemsuse a knowledge base, with several rules, to define suitable control ac-

tions. In comparison to the other algorithms, they play a smaller role in industrial control. Major

problems are the knowledge acquisition, needed to develop the knowledge base. An additional

drawback is, that usually a set of rules is not suited to generate numerical control signals, needed

for control purposes. One of the advantages is, that it is easy to generate an explanation for the

suggested control action.

Neural networksare typically divided into an input layer, several hidden layers, and an output

layer. Typically each node in a layer is connected to each node in the succeeding layer. Of course

there are several exceptions, like Boltzmann machines [Dev94] and Hopfield nets [RM86], which

are fully connected. Each layer consists of several nodes. The behavior of the complete net is
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governed by the weights of the connections between the nodesand the activation function, which

maps the weighted input of the parent nodes to the output. During the training process, the

weights of a neural network are adapted, while the type of nodes, the structure, and the activation

function are kept constant. For the training process two different scenarios are distinguished,

supervised and unsupervised learning.

During the unsupervised learning process only the input is given. It is the task of the training

process, to detect frequently occurring patterns. One of the most popular representative is the

Kohonen network, which consists of one in- and output layer. During the training process the

weights of the winner-neuron, whose weights are closest to the input, are adapted, so that its

weights get closer to the presented input. Additionally, the weights of its neighbors are changed

in the same way, depending on the distance to the winner neuron. At the end of the training

process neighbored neurons react on similar inputs.

In supervised learning the input and the desired output are presented to the net. A well-

known example is the backpropagation algorithm. In this case the weights are adapted in order

to minimize the error between actual and required output.

For the purpose of control one should keep in mind that usually the direction of inference

is fixed. Thus it is impossible to train a neural network, so that it simulates the behavior of a

dynamic system and put the desired value at the output nodes to get the manipulated value. In

[WSdS99] different methods for neural control are discussed.

The simplest one issupervised control. Here the neural network is trained, so that it copies

the behavior of an existing controller. After the training is finished the neural network is used

instead of the controller, used for the training.

In the approach of ”direct inverse control” the network “is trained to learn the inverse dy-

namics of the system” [WSdS99]. That means that the systems output is used as the input of the

neural network, which tries to predict the system’s input which has led to the observed output.

To correct the weights the predicted input is compared with the actual one, so that supervised

learning is possible. After the training process the neuralnetwork acts as controller; i.e., the

desired value is used as input of the neural network, the output of the net is used as input signal

for the dynamic system.

In ”neural adaptive control” the neural network is trained to learn the parameters of a plant

and adapt a controller based on this information. In contrast to supervised control and to direct

inverse control the neural network does not act as controller, but to improve the performance of

an existing controller [WSdS99]. When only information about success or failure are available

reinforcement learning could be used.
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The great advantage of neural networks is the ability to copealso with new situations and to

learn nonlinear functions with an arbitrary precision. A drawback is that a neural network is a

kind of black box, so that there is nearly no possibility to interpret the training results.

Another approach is Fuzzy Logic, based on the theory of Fuzzysets, suggested by Lotfi

Zadeh in the late sixties [Zad65]. In principleFuzzy Control[Pre92; HR91] is based on a number

of control rules like

If ’Pressure’ = ’high’ and ’Temperature’ = ’high’ then ’Cooling temperature’ = ’low’,

which are given either by a knowledge engineer or are trainedin combination with a neural net-

work. In comparison to a rule based system, the predicates ofthe preconditions are not evaluated

in a boolean manner, but are mapped to an interval [0 1], representing the degree, a precondition

is fulfilled. After the degree of truth is assigned to each predicate, the boolean operators are ap-

plied. Typically the result of the ’and’-operator is mappedto the minimum of both truth-degrees,

the ’or’-operator is mapped to the maximum of both operands.In this way a degree of truth is

assigned to the conclusion. To combine the results of several rules, making predictions for the

same variable,defuzzyficationhas to be applied to all results. A method regularly applied,is to

use the center of gravity as final result. Fuzzy control can becombined with neural networks to

train the fuzzy rules or with a rule based system to enable it to generate numerical solutions.

When control is regarded as an optimization problemevolutionary algorithmscan be applied

[Nom99]. An example might be the assignment of jobs to different manufacturing systems. The

main idea of evolutionary algorithms is to code the solution, e.g. the algorithm used for control,

in so called chromosomes, e.g. as strings or as trees with operators and variables as leaves and

nodes. At the beginning a lot of solutions are collected in aninitial population. Afterwards

the quality of the solution is judged by a fitness function. Togenerate a new population, new

chromosomes are generated using the old population, where chromosomes, representing a good

solution are used more frequently. The new chromosomes are changed with a low probability,

e.g. by flipping a bit in the chromosomes. This imitates the process of mutation. After the new

population is generated, the iteration of evaluation and generation of new chromosomes begins

once again. The idea is that the overall quality of the solutions increases, as better chromosomes

are preferred during reproduction. A monotonous increase of the quality can be guaranteed, when

the best chromosome is kept in the population, i.e. the elitist strategy is applied. Evolutionary

algorithms are applied, when the fitness function can not be differentiated, i.e. the application of

gradient descent is impossible.

Statistical methodsare seldom used. Chapter 7 of [Lu96] discusses the application of statisti-

cal process control, based on statistical process charts. The idea is to apply principal component
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analysis on both the domain of in- and output variables, to reduce the dimension, and afterwards

learn the dependency between in- and output variables. Thusa prediction of the quality of the

output is possible, and it is possible to trigger the change of the input variables in real time, when

the process is out of control.

This section shows, that there are a lot of possibilities forintelligent process control, Bayesian

networks are usually not mentioned in the literature about industrial control. The next section

will give a coarse overview about the application of Bayesian networks to show, that in principle

the preconditions for the application of Bayesian networksin control are given.

1.3 Bayesian networks and their application

In the last section it was discussed that there are already a lot of means to deal with control

problems. This section shows that Bayesian networks are applied in different domains, e.g.

medical diagnosis, user-modeling, and data-mining. Some applications are time critical [HB95;

HRSB92]. As a lot of training algorithms are available the most important prerequisites for

self-adaptive control are given.

In general Bayesian networks can be regarded as a mean to represent the relation between

several random variables in a directed graph. The nodes in that graph represent the random

variables. The arcs between the nodes stand for the dependency of the nodes.

When a distribution of discrete random variables has to be modeled, the effort grows expo-

nentially with the number of used nodes. This has led to the conclusion, that it is an intractable

task to develop an expert system, based on probability theory [Jen96]. To avoid this exponential

growth of complexity, the inference process in a Bayesian network is based on local distributions

of one random variable, depending on its parents. This measurement makes the statistical in-

ference tractable and reduces also the number of parameters. In a decision theoretic framework

influence diagrams [Zha98a; Zha98b; Jen01], i.e. Bayesian networks with additional nodes to

represent actions and their utility, are used. When time dependent relations have to be repre-

sented dynamic Bayesian networks can be used. A deeper introduction in Bayesian network and

dynamic Bayesian network is given in chapter 2.

The most popular application of Bayesian networks seems to be the Office-Assistant, de-

livered the first time as part of the Office 97 package. The assistant was developed within the

framework of the Lumière project [HJBHR98; HH98], starting 1993. The aim of the project

was to find out the goal and the needs of the user, based on the state of the program, past ac-

tions, and on a possible query to the help system. In a prototype it was even tried to save the
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estimated competency of the user in the registry, which should be used as an additional source

of information. As the aims of the user vary within time, a Dynamic Bayesian network is used

for the representation of the user’s goal [HJBHR98; Had99].The past actions are transformed

by the Lumière Events Language into predicates, which can be regarded as random variables

and modeled in a Bayesian network. Thus the program can identify pattern like plan-less search

and a pause which might indicate the need for help. Using a Bayesian network a probability

distribution of the user’s need is calculated. In a prototype a icon popped up, when a threshold is

exceeded. In the final version this knowledge is used to improve answering queries to the system

by the identification of the user’s goal.

From the historical view the first real-world applications are medical expert systems, e.g. the

MUNIN system [Kit02; AJA+89] for “electromyographic diagnosis of the muscle and nerve

system”[Lau01], the pathfinder system [HHN91] for “diagnosis of lymph vertex pathology”

[Lau01], which was later commercialized as the Intellipathsystem [Jen96]. Additional exam-

ples are the probabilistic reformulation [SMH+91] of the INTERNIST-1/QMR knowledge base

and the Child system at the Great Ormond Street Hospital in London for the diagnosis of heart

diseases [Jen96].

The MUNIN system, developed at the University of Aalborg, isused for the diagnosis of 22

different diseases [Kit02] with 186 symptoms, and has the ability to detect several diseases at

the same time. It is structured in 12 units, representing different muscles and nerves, with 20 -

150 nodes each. Each unit is structured in three layers, where the first two layers represent the

pathological variables, and the last layer the variables for diagnosis.

In comparison to the MUNIN system, the PATHFINDER system hasa simpler structure.

There is one central variable with more than 60 states, representing the different diagnoses. Thus

the system is not able to represent more than one disease at the same time. As parents of the

diagnosis variable there are 130 information variables, sometimes linked with each other [Jen96].

First attempts of user modeling are also found in the PATHFINDER system [HJBHR98] in order

to adapt the questions and answers of the expert system to thecompetence of the user.

The Child system helps the pathologists at the hotline of theGreat Ormond Street Hospital,

to decide whether a blue baby should be transported to a special hospital or not. The structure

and probabilities was initialized by experts, and later refined by existing cases. As a result the

system could compete with experts in that domain [Jen96].

Another domain of application is the modeling of technical systems. A system, based on a

Bayesian model of a technical process is the Vista system [HB95; HRSB92], “which has been

used for several years at NASA Mission Control Center in Houston” [Had99]. Its aim is to
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decide in real-time which information is displayed to the operators in the control center. To do so

a model of the propulsion system, the example used by the Vista-project, is developed including

all types of possible errors, e.g. failure of sensor data. When the Bayesian model detects an

abnormal situation, the most probable causes are displayedto the user together with the necessary

sensor data, to deal with the situation. The utility of the information is measured by the expected

value of revealed information, a measure used to judge the utility of new information. The

decision, which information is displayed to the user, is based on an influence diagram, where the

utility of each action is measured be the expected value of this information.

The intended application in this thesis has to react in real-time. Examples for systems reacting

in real-time are of course the Vista system. Another exampleis object detection and tracking in

images of an infrared camera, supported by Bayesian networks[Pan98]. Also in control Bayesian

networks are discussed. Welch [WS99] discusses sorting of contaminated waste with a hybrid

Bayesian network. To achieve real-time properties only parts with changed evidence are updated.

This section has only shown the most prominent examples, other applications are Data-

Mining [Hec97], trouble-shooting, e.g. for printer [BH96;SJK00], and surveillance of an un-

manned underwater vehicle [Had99]. A rich source of additional applications is found in [CAC95;

HMW95; Kit02; Lau01; Had99]. Haddawy [Had99] and F. V. Jensen [Jen01] offer a list of avail-

able toolboxes for modeling Bayesian networks.

1.4 Contribution of the thesis

As seen in section 1.1, static and dynamic process models aredistinguished. Applicable models

are developed in both domains.

Static modelsFor static models, the technique of piecewiselinear approximationis evolved.

The main idea is to represent some input parameters both by a discrete node and a continuous

node. The discrete nodes are used to implement a kind of skeleton of the desired function. The

number of states, being proportional to the number of pointsin the skeleton, depends on the

required accuracy and is restricted by the available training data. This approach has several

advantages.

• From the practical point of view no special software is required.

• The idea is based on the general idea of function approximation by (multiple) Taylor series,

it is not only applicable in the domain of modeling manufacturing processes. It is expected

that this technique is also applicable, e.g. in the field of data-mining.
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• Both discrete and continuous nodes are implemented directly. Thus no discretization is

required. Therefore loss of information, caused by discretization, is avoided.

• As shown in section 5.1 each node has a special meaning. Thatis, it is easy to incorporate

a-priori knowledge into the model. For example it is easy to deduce initial parameters for

the Bayesian network. Also the interpretation of the training results is easy, so that the

learned parameters can be used to gain insight in the modeledprocesses.

The concept of modeling a function or a manufacturing process by linear approximation

by multiple Taylor series is applied to different manufacturing processes, e.g. to preforming and

calibration of hydroforming, and to injection moulding. Inall cases a great accuracy of the model

is demonstrated. A comparison with the standard deviation of the different processes shows that

a large part of the prediction error is due to scattering of the data.

Also theability to generalizationof Bayesian models is satisfactorily shown. This is partic-

ularly of importance, because test-plans that lead to missing configurations are frequently used

in manufacturing technology. If the observation of a missing configuration is a prerequisite for

the training of the model generalization fails. The thesis discusses the relationship between test-

plans and the structure of the Bayesian networks. It is suggested that for each set of discrete

nodes, being parent of an arbitrary node, all possible settings of the parent nodes have to be

observed. This criterion is applied with great success to the modeling of laser beam welding.

The development of Bayesian networks for different manufacturing processes shows that

Bayesian networks provide a suitable mean to build accuratemodels, which make sensible pre-

dictions even for yet unpresented inputs.

Dynamic modelsThe second focus of the thesis is the modeling of dynamic, in most of

the cases linear, processes. A framework is developed, to use dynamic Bayesian networks as

controller. The main idea is to estimate the state of the system using information about former

in- and output signals. Using the desired value as additional source of information, the Bayesian

network is able to calculate the required input signals, which lead to the desired output. By

comparison between the predicted and the observed output, the disturbance variable is estimated.

Assuming, that the disturbance value changes slowly in comparison to the sampling period, the

estimation of the disturbance variable is propagated to thefuture and can therefore be included

in the calculation of the input signal.

To ensure abroad applicabilitya general model (state space model), well-known in control

theory, is used as controlled system to test the new approach. This model can easily be trans-

formed into two different structures for the dynamic Bayesian network. First, the state space
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approach, where the information about the state of the system is stored in hidden state nodes, can

be used directly to deduce the structure.

In the second approach (difference equation model) the information about the state of the

system is gathered by access to former in- and output nodes. Acomparison between the state-

space approach and the difference equation approach shows that the latter is more stable in all

our experiments. The reason is that the lower number of hidden nodes leads to better training

results.

Thus the primary precondition, thestability of a controller is fulfilled. In a second step the

provided accuracy, depending on the number of time-slices and therefore on the time required

for inference, is tested. It turns out, that the number of time-slices can be severely reduced.

Reducing the number of time-slices leads only to a minor reduction of the quality in terms of the

steady state error and the sum of the squared error.

For hybrid dynamic Bayesian networks inference time is proportional toknpast+nfuture with

k as the number of configurations per timeslice andnpast + npast as the number of time-slices

used to represent past and future. Thus this result is of great importance also for hybrid, dynamic

Bayesian networks. Despite the encouraging results inference time remains a great problem

before hybrid Bayesian networks might be applied for control purposes.

1.5 Overview

This thesis is situated at the intersection of different domains. First the thesis can be seen from

the point of view of the intended application, i.e. the modeling of manufacturing processes and

the control of dynamic systems. On the other hand the used algorithms are from the domain

of mathematics or computer science. As it is the aim that thisthesis is understandable for both

engineers and computer-scientists an introduction is given in all domains. Chapter 2 deals with

an introduction to Bayesian networks. A focus of this chapter are hybrid Bayesian networks,

as they are needed to model nonlinear processes. Additionally, the inference process used for

hybrid Bayesian networks, is also used for Dynamic Bayesiannetworks.

Chapter 3 introduces the most important points from controltheory. Major theme is the

state space description, including a short discussion of normal forms. Also the description of

dynamic systems by difference equations is explained, as this theory provides the background of

our models. Additional points are the setting of controllerparameter’s, to provide us with means,

to compare Bayesian controller with traditional ones.

The experiments with dynamic systems are discussed in chapters 4 and 5. The former dis-
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cusses the application of Bayesian controllers to linear dynamic systems and the comparison of

state space and difference equation model.

The latter discusses the research concerning modeling and control of non-linear systems. The

concept of linear approximation by multiple Taylor series is introduced. In the second part of

chapter 5 the control of nonlinear systems is discussed.

Chapter 6 introduces briefly the modeled manufacturing processes. This chapter provides

only a short discussion of the parameters. The physical background is omitted.

The models developed for the manufacturing processes that are introduced in chapter 6, are

provided in chapter 7. Similar techniques to those, discussed in chapter 5, are used. An additional

requirement, discussed in chapter 8, is real-time. Here themeasures which can be taken to react

in real-time, mainly the dependency on the number of time slices, is examined. The thesis

finishes with an overview about the results and suggestions for future work in chapter 9.
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Chapter 2

An introduction to Bayesian networks

2.1 Preliminaries

It is our aim to model technical processes using statisticalmeans. This section will shortly

introduce the terminology of probability theory, i.e. random variables and their dependencies are

discussed. A deeper introduction is given in [Bre69; Bre73].

Manufacturing processes depend on many different parameters, e.g. welding depends on the

power and the velocity of the laser beam. The quality of the joint might be measured by the

tensile strength, i.e. the force needed to divide the two blanks. In our experiments a forceF in

an interval [0 N , 5200 N] as set of possible outcomesΩ was measured.

In a first case the engineer might be only interested whether the tensile strength exceeds a

thresholdFmin, i.e. a mapping

F1(ω
r) =

{
1 if ωr ≤ Fmin

2 otherwise
(2.1)

from the outcome of an experimentωr to a finite set{1 2} is used. In this caseF1 is adiscrete

random variableasF1(ω
r) has only a finite number of possible values.

In a second case the tensile strength itself is of importance, i.e. the identity is used as mapping

F2(ω
r) = ωr. In this case the domain of the mappingF2 is infinite,F2 is acontinuous random

variable. In the following discrete random variables are denoted byX, continuous ones byY or

Z.

It is possible to assign a probabilityP (X(ωr) = x), abbreviated byP (x), to the resultX(ωr).

For continuous random variables a distributionp(Y (ωr) = y), or shorterp(y), has to be used, as

13
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it is not possible to assign a positive probability to a single eventy.

When modeling technical processes usually more than one random variable is involved, i.e.

dealing with probabilitiesP (X1, X2, · · · , XnN
) is essential. Sets of random variablesX =

{X1, X2, · · · , XnN
} are denoted by calligraphic characters, thusP (X1, X2, · · · , XnN

) is abbre-

viated byP (X).

A probability table, which assigns a probability to each event(X1 = x1, X2 = x2, · · · , XnN
=

xnN
), will grow exponentially with the number of random variablesnN . To factorize the proba-

bility P (X1, X2, · · · , XnN
) theconditional probability

P (X1|X2) =
P (X1, X2)

P (X2)
(2.2)

might be used to rewriteP (X1, X2, · · · , XnN
) to

P (X1, X2, · · · , Xn) = P (X1)

nN∏

i=2

P (Xi|Xi−1, · · · , X1) , (2.3)

which is known as thechain rule. SometimesP (X1|X2, X3) = P (X1|X2) holds, that is the

state of the random variablesX3 does not matter, provided that the state ofX2 is known. In

this caseX1 andX3 are calledconditionally independentgivenX2, denoted byX1⊥⊥X3|X2.

WhenX2 is empty,X1 andX3 are calledindependent.

Conditional independency can be used, to rewrite the chain rule to

P (X1, X2, · · · , XnN
) = P (X1)

nN∏

i=2

P (Xi|P(Xi)) , (2.4)

whereP(Xi) ⊆ {X1, X2, · · · , Xi−1} are called theparentsof Xi. Variables which are not in the

set of parentsP(Xi) are assumed to be conditionally independent ofXi. WhenP(Xi) is a true

subset of{X1, X2, · · · , Xi−1}, the conditional probability table forP (Xi|P(Xi)) has less entries

thanP (Xi|X1, X2, · · · , Xi−1).

As an example a snapshot of a family’s life is regarded. First, the seasonS ∈ {’spr’ ,’sum’

, ’fal’,’ win’} which has an influence on the state of the heatingH ∈ {’on’ ,’off ’}, and on

problems starting the car (SP ∈ {’yes’ ,’no’}), is observed. The heating is only switched on,

when the family is not absent (A ∈ {’yes’ ,’no’}. The last random variable is the cost of energy

Ec ∈ {’ low’ ,’medium’ ,’high’}. The probability distribution

P (S, A, H, SP, Ec) = P (S)P (A|S)P (H|S, A)P (SP|S, A, H)P (Ec|S, A, H, SP) (2.5)
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P (A)

A =’yes’ 0.15
A =’no’ 0.85

Table 2.1: Probabili-
ties for nodeAbsent

P (S)

S =’spr’ 0.25
S =’sum’ 0.25
S =’fal’ 0.25
S =’win’ 0.25

Table 2.2: Probabili-
ties for nodeSeason

P (Ec|H) H =’on’ H =’off ’

Ec =’ low’ 0.1 0.9
Ec =’med’ 0.7 0.05
Ec =’high’ 0.2 0.05

Table 2.3: Conditional probabilities for costs of
energyEc

P (H =’on’ |S, A) A =’yes’ A =’no’

S =’spr’ 0.1 0.3
S =’sum’ 0.01 0.05
S =’fal’ 0.1 0.3
S =’win’ 0.2 0.99

Table 2.4: Conditional probabilities for node
Heating

P (SP) P (SP =’yes’ |S)

S =’spr’ 0.05
S =’sum’ 0.05
S =’fal’ 0.05
S =’win’ 0.3

Table 2.5: Conditional probabili-
ties for node starting problemsSP

might be simplified to

P (S, A, H, SP, Ec) = P (S)P (A)P (H|S, A)P (SP|S)P (Ec|H) (2.6)

which reflects the assumption that, e.g., the probability ofabsence does not depend on the season,

and that the costs of energy are independent from the season and of being absent, provided that

the state of the heating is given.

The probabilities for this example can be defined as in tables2.1 – 2.5. They will be used later

in this chapter to illustrate the inference algorithm for Bayesian networks. Table 2.4 shows only

the probability forP (H =’on’ |S, A). As the probabilities sum to oneP (H =’off ’ |S, A) =

1− P (H =’on’ |S, A). The probabilities forSP =’no’ are calculated similarly.

2.2 Definition of Bayesian networks with discrete variables

To illustrate conditional independency, a directed acyclic graph (DAG) with edges pointing from

the parents ofP(Xi) to Xi is used.

The DAG representing the independencies of equation (2.6) is pictured in figure 2.1. These

considerations result in the definition of aBayesian network. Bayesian networks (BNs) are a

compact graphical representation of a probability distribution, and exhibit the conditional inde-
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AbsentA SeasonS

HeatingH StartingSP

EnergyEc

Figure 2.1: Graphical representation of the example

X1X1 X2X2

Figure 2.2: Two different Bayesian networks for the same distribution

pendency of the distribution’s random variables.

Let {X1, . . . , XnN
} be a set of random variables, each of which takes values in some domain

Dom(Xi). A Bayesian network overX1, . . . , XnN
consists of two components: a directed acyclic

graphG(V G, EG), with V G = {X1, . . . , Xn} as its set of vertices andEG = {Xi → Xj|Xj ∈P(Xi)} as set of edges. To each nodeXi a conditional probability distribution (CPD)P (Xi |P(Xi)) is assigned (see [SGS01], page 13).

Note that a Bayesian network defines a unique probability distribution, but not vice versa.

A very simple example is the representation ofP (X1, X2) in figure 2.2, which is equal to

P (X1)P (X2|X1) or to P (X2)P (X1|X2). But usually there is an edge fromX1 to X2 if chang-

ing X1 has an influence onX2, i.e. X1 may be regarded as causing an effect onX2. A detailed

discussion aboutisomorphic Bayesian networks, i.e. BNs representing the same probability dis-

tribution, can be found in [HG95].

The next question is how changes in the evidence, e.g. observing thatS = ′win′, changes the

probability distribution. Before introducing an algorithm for the recalculation of the probability

distribution when new evidence is observed, a quantitativediscussion is given to gain a more

intuitive insight. This discussion (compare [Jen96; Jen01; SGS01]) is based on different types of

connections in a BN.

If there is a directed pathXs → · · · → Xi → · · · → Xe from an arbitrary start nodeXs to an

end nodeXe, this is called aserial connectionbetweenXs andXe. ObservingXs has of course



2.2. DEFINITION OF BAYESIAN NETWORKS WITH DISCRETE VARIABLES 17

Xc

Xc

X1

X1

X2

X2 Xl

Xl· · ·

· · ·

Figure 2.3: Diverging connection (left) and collider (right)

an influence on the probability distribution ofXe, unless there is an evidence forXi. In our

example the observation that the season is winter would increase the probability of high energy

costs, unless it is notified, that the heating is switched off. A common causeXc for different

eventsX1 · · ·Xl is usually modeled by adiverging connection. (Confer left hand side of figure

2.3). For example an observation that the heating is on results in a higher probability for winter,

which in turn leads to a higher probability for starting problems with the car. This example shows

that a diverging connection also enables the flow of information, i.e. an observation for one node

leads to a changed probability distribution of the other node.

The last type of connection, calledcollider (see right hand side of figure 2.3), is used to model

random variablesX1 · · ·Xl, all causing an effect onXc. If Xc is not observed, changes in the

probability distribution ofXi, 1 ≤ i ≤ l have no effect on the probability ofXj , 1 ≤ j ≤ l, i 6= j.

For example observing that the family is absent (A = ′yes′), has no effect on the seasonS.

The three types of connections can now be used to characterize the information flow in a

Bayesian network.

In a serial connectionXs → X1 → X2 → · · · → Xl → Xe the information flow might be

blocked by instantiatingXi, so that changes ofXs no longer have an influence onXe. Diverging

connectionsXi ← Xc → Xj show a similar behavior. Here the information flow betweenXi

andXj can be blocked by instantiating the common sourceXc.

A collider Xi → Xc ← Xj shows a different behavior. When no information is given about

Xc, changes inXi have no influence onXj . Contrarily, when evidence is given forXc or some

of its descendents the information flow betweenXi andXj is enabled. These considerations lead

to the definition of d-separation.

Two distinct variablesXs andXe in a causal network are calledd-separatedif, for all paths

betweenXs andXe, there is an intermediate variableXi (distinct fromXs andXe) such that

either

• the connection is serial or diverging andXi is instantiated or

• the connection is converging and neitherXi nor any ofXi’s descendants have received
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evidence.

If Xs andXe are not d-separated, we call themd-connected.

If the Bayesian network is readily defined, i.e. the DAG and the conditional probabilities are

determined, there are several tasks for which the Bayesian network might be used. The first one

is calledmarginalization. Here the user is not interested in a distribution of all random variables

X = Xp1∪̇Xp2, but only in a partXp1 ⊂X of it. Thus it is necessary to calculate

P (Xp1) =
∑Xp2

P (Xp1, Xp2) ; (2.7)

i.e., to sum over all the variablesXp2 which are not in the marginal distribution. A similar op-

eration exists for continuous random variables, the only difference is that in this case summation

is replaced by integration.

A second frequently occurring question is: How is the probability distributionP (X) changed,

if Xi = xi is known, i.e. how isP (X|Xi = xi) calculated? The next section introduces the fre-

quently used junction tree inference algorithm which is oneway of efficiently calculating the

requested distributions.

2.2.1 Junction tree algorithm

To use the Bayesian network, e.g. in an expert system or in a controller, an efficient inference

machine is necessary to calculate marginal distributions,include evidence, or to calculate in-

stantiations of the random variables which lead to a maximalprobability. One algorithm for

the propagation of evidence is introduced in [Pea88], but inmost of the cases thejunction tree

algorithm is used as described e.g. in [LS88] or [Jen96], where inference tasks are done in a

hypergraph calledjunction tree. The junction tree is generated from the DAG in several steps.

Moralization and triangulation

As a first step, all nodes with a common child are connected. Atthe same time all directions in

the original DAG are dropped. The resulting graph is called amoral graph. The moral graph

resulting from figure 2.1 is given in figure 2.4. As a result thelink between the nodesAbsent and

Season is added.

Next the moralized graph is triangulated. As the triangulation is applied to an undirected

graph (directions are dropped during moralization)G(V G, EG), the edges inEG are denoted by

Xi — Xj.
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AbsentA SeasonS

HeatingH StartingSP

EnergyEc

Figure 2.4: Moral graph of figure 2.1

X1X1 X2X2

X3X3 X4X4

X5X5 X6X6

X7X7

Figure 2.5: Triangulation of a graph

A undirected graphG(V G, EG) is calledtriangulatedif any cycleX1 — X2 — · · · — Xl−1

— X1 of lengthl > 3 has at least onechord, i.e. a linkXi — Xj between two non-consecutive

nodesXi andXj .

If the required chords are not already in the set of edges, they are added, in order to get a

triangulated graph. Figure 2.4 is a trivial example for a triangulated graph, as the longest cycle is

of length 3. A more complex example is given in figure 2.5 whichcontains the cycleX2—X3—

X5— X7—X6—X4—X2 which has no chord. To get a triangulated graph, the linksX3—X4,

X4—X5, andX5—X6 can be added.

The process of moralizing a graph is unique, whereas the triangulation is not. It is of advan-

tage to add as few links as possible in order to obtain the triangulated graph, as the number of

links has a major influence on the time complexity of the inference process. More information

about triangulation and its time-complexity is given in [Kjæ90]. A more thorough introduction

into graph theory with respect to Bayesian networks is foundin chapter 1 of [Lau96].
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A,S,H

H S

H,Ec S,SP

Figure 2.6: Junction tree for example in figure 2.5

Junction tree

It is now possible to identify subgraphs, where all nodes arepairwise linked for example subgraph

G({A, S, H}, {A—S, S—H, H—A}) in figure 2.4. Maximal subgraphs with this property are

calledcliquesand are used as nodes in a hypergraph.

This hypergraph is organized in a special way, so that all nodesX i on a pathXs — X1 —

X2 — · · · — X l — Xe between the start hypernodeXs and the end hypernodeXe contain the

nodes of the intersection betweenXs andXe, formallyX i ⊇ (Xs ∩Xe). This property is also

known as therunning intersection property. The resulting tree is called ajoin tree. The join tree

of our example contains three cliques,{A, S, H}, {H, Ec}, and{S, SP}. According to [Jen01],

there is always a way to organize the cliques of a triangulated graph into a join tree.

For inference purposes additional nodes containing the random variables in the intersection

of two neighbored nodes are added. These additional nodes are calledseparators. The join

tree should be used for the inference process of Bayesian networks, thus a mean is missing

to calculate the distributions for random variables of the join tree. To enable the calculation

of distributions, tables are attached to each clique and separator of the join tree, similar to the

conditional probability tables of a Bayesian network. These tables are calledpotentials, denoted

by φ, e.g. the potential of a cliqueC is denoted byφC. In comparison to probabilities, the entries

of a potential do not sum to 1. Only after message passing, discussed later in this section, these

potentials may be used for the calculation of probabilities.

The domainDom(φ) of a potentialφ is the set of random variables being represented by

the potential. The resulting structure of a join tree, including the separators, together with the

potentials for each node and separator, is called a junctiontree. Figure 2.6 shows the junction

tree of the example in figure 2.4. The rectangles are used for cliques, the ellipses for separators.

Next, the mathematical properties of potentials are discussed. Afterwards the initialization

of the junction tree is discussed. As a result of the initialization the junction tree represents the

same distribution as a Bayesian network.
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Season
φ{A,S,H} ’spr’ ’ sum’

Absent = ’yes’ (3.75 · 10−3, 0.03375) (3.75 · 10−4, 0.037125)
Absent = ’no’ (0.06375, 0.14875) (0.010625, 0.2018754)

’fal’ ’ win’
Absent = ’yes’ (3.75 · 10−3, 0.03375) (7.5 · 10−3, 0.03)
Absent = ’no’ (0.06375, 0.14875) (0.210375, 2.125 · 10−3)

Table 2.6: Potential after initialization

Potentials

As starting point a simple example, which will later on be used to initialize the node{S, H, A}, is

given in table 2.6. Each entry of the table is two dimensionalrepresenting the values forHeating

= ’on’ and Heating = ’off ’. To be able to use potentials for the inference process in Bayesian

networks, it is necessary to define multiplication, division and marginalization for potentials.

Multiplication of two potentialsφ1 andφ2 is done by piecewise multiplication of the entries. If

Dom(φ1) = X1 ∪X2 andDom(φ2) = X2 ∪X3 the product ofφ1 andφ2 is defined as

φ1φ2(x1, x2, x3) = φ1(x1, x2)φ2(x2, x3) . (2.8)

Division is defined in the same way as piecewise division of the table entries.

As an example let us take the probability forAbsent asφ1 and the conditional probability

table forHeating asφ2 (see tables 2.1 and 2.4). The resulting potentialφ3 = φ1φ2 is given

in table 2.7. The two entries in parenthesis represent the values forH =’on’ and ’off ’.The

potentialφ3(’on’ ,’spr’ ,’yes’) = φ1(’yes’)φ2(’on’ ,’spr’) = 0.15 · 0.1 = 0.015. In a similar way

φ3(’off ’ ,’spr’ ,’yes’) = 0.15 · 0.9 = 0.135 is calculated. After multiplication with the potential

φ{S} for the season table 2.6 is obtained.

Marginalization of a potential forX = X1 ∪ S to a potential forS, also calledprojection,

φ↓S(s) =
∑x1∈Dom(X1)

φ(x1, s) (2.9)

is defined similar to marginalization over probability tables. A complete definition of an algebra

using potentials is given e.g. in [Jen96] or [Jen01]. Next the representation of probabilities by a

junction tree is discussed.
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Season
φ3(H, S, A) ’spr’ ’ sum’

A =’yes’ (0.015,0.135) (1.5 10−3, 0.1485)
A =’no’ (0.255,0.595) (0.0425, 0.8075)

’fal’ ’ win ’
A =’yes’ (0.015,0.135) (0.03,0.12)
A =’no’ (0.255,0.595) (0.8415, 8.5 · 10−3)

Table 2.7: Potential resulting from multiplication of the conditional probabilities forAbsent and
Heating

Representation of probabilities by a junction tree

So far the graphical representation of the junction tree andthe mathematical properties of poten-

tials are defined. The missing link is, how the junction tree together with the potentials defines

the probability distribution. The aim is that at all times the quotient of the product of all clique

potentials by the product of the separator potentials is equal to the probability distribution of the

Bayesian network, as expressed in 2.10.

P (X1, · · · , XnN
) =

∏C∈CJ
φC∏S∈SJ
φS (2.10)

This property is ensured during initialization and is neverchanged throughout the complete in-

ference process. Another desirable property, to be reachedat the end of the inference process is

theglobal consistency

φ↓XCi
= φ↓XCj

, (2.11)

which means that the result of calculating the marginal potential is independent of the used

potential.

To guarantee equation (2.10) a potential of 1, that is a potential with each table-entry equal to

1, is assigned to each clique and separator. Afterwards eachconditional probabilityP (Xi|P(Xi))

is regarded as a potentialφF(i) and multiplied with a potentialφC with the domainF(i) ⊆
Dom(C). The setF(i) = P(Xi) ∪ {Xi} denotes the family of nodeXi and contains the node

itself together with all its parents.

Usually it is said that a variableXi is assigned to a node in the junction tree, i.e. to a clique
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P (X1, · · · , XnN
) =

nN∏

i=1

P (X1|P(Xi)) (2.12)

=

nN∏

i=1

φF(i) (2.13)

=
∏C∈CJ

φC (2.14)

=

∏C∈CJ
φC∏S∈SJ
φS . (2.15)

The last equation holds, as all separatorsS are initialized to one.

Here it is important to notice that several potentialsφF(i) may be assigned to the same node

in the junction tree, e.g.A, S, andH may be all assigned to the clique{A, S, H} in the junction

tree. This assignment results in the potential of table 2.6.But only the assignment ofH to the

clique{A, S, H} is obligatory.

Direct after initialization the property of equation (2.11) is not given. For exampleφ↓{H}
{H,Ec}

is

1, as no information about the state of the heating is assigned to that clique.

Message passing

To ensure consistency of the junction tree, messages are passed between the cliques of the junc-

tion tree. This results in a recalculation of the potentials.

A cliqueCj is said to absorb knowledge from a cliqueCi, if the separatorSij betweenCi andCj gets as new potentialφ∗

φ∗Sij
= φ

↓SijCi
(2.16)

the marginal ofCi. Afterwards the cliqueCj is multiplied with the quotient of the new and the

old separator

φ∗Cj
= φCj

φ∗Sij

φSij

. (2.17)

After Cj has absorbed knowledge fromCi, equation (2.10) still holds, as

∏C∈CJ
φ∗C∏S∈SJ
φ∗S =

(∏C∈(CJ\{Cj})
φC)

(∏S∈(SJ\{Sij})
φS) φ∗Cj

φ∗Sij

; (2.18)



24 CHAPTER 2. AN INTRODUCTION TO BAYESIAN NETWORKS

i.e. only the cliqueCj and separatorSij have changed. Including the assignments of equation

(2.16) and (2.17) leads to

(∏C∈(CJ\{Cj})
φC)

(∏S∈(SJ\{Sij})
φS) φ∗Cj

φS∗
ij

=

(∏C∈(CJ\{Cj})
φC)

(∏S∈(SJ\{Sij})
φS) φCj

φ∗Sij

φSij
φ∗Sij

(2.19)

=

(∏C∈(CJ\{Cj})
φC)

(∏S∈(SJ\{Sij})
φS) φCj

φSij

. (2.20)

The first round of message passing is calledcollectEvidence. During collectEvidence the

parent cliquesCp absorb knowledge from their childrenCch. A parent clique is only allowed to

absorb knowledge from its child, if this child has finished its knowledge absorption. Thus the

leaves of the junction tree are not changed during collectEvidence. The root node is the last one

to be updated as it has to wait until all of its children have finished knowledge absorption.

In a second phasedistributeEvidencethe children absorb knowledge from their parents. This

phase is similar to collectEvidence, but the messages are sent in the other direction. After col-

lectEvidence and distributeEvidence are finished, it is guaranteed that the junction tree is globally

consistent. That is for any two potentialsφi andφj which share common variablesS, marginal-

ization results in the same potential

φ↓SCi
= φ↓SCj

(2.21)

for S.

In our example the potentialφ{H,Ec} is initialized with the conditional probability table of

Ec; i.e., φ{H,Ec} = P (Ec|H). The potentialφ{S,SP} is initialized with P (SP|S). The poten-

tial φ{A,S,H}, which is used as root, gets its first value from the product ofP (A), P (S), and

P (H|S, A). When collectEvidence is called,φ↓{H}
{H,Ec}

andφ
↓{S}
{S,SP}

are calculated. As both are

equal to 1, i.e. a table with all entries equal to 1, nothing changes. During distribute evidence

φ
↓{H}
{A,S,H} is calculated. The result, at the end of distributeEvidence, is summarized in table 2.8

which is used to update the separator potentialφ{H} and the clique potentialφ{H,Ec}. Similar

calculations are done for the other clique potentialφ{S,SP}.

Introduction of evidences

Another frequently occurring task is the calculation of marginal probabilities given new evi-

dences. Usuallyhard andsoft evidenceare distinguished. Hard evidence means the knowledge

thatX = x, and soft evidence means the exclusion of some states; i.e.,X ∈ {xi, xj , xk · · · } ⊂
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φ
↓{H}
{A,S,H}

H =’on’ 0.363875
H =’off ’ 0.636125

Table 2.8: Potentialφ↓{H}
{A,S,H} after distributeEvidence

Dom(X). Both types are handled in a similar way. A clique withX ∈ Ci is selected from the

junction tree and all positions in the potential table ofφCi
, being not consistent with the evi-

dence, are set to zero. When evidence is entered, the root node calls collectEvidence. After this

phase is finished, distributeEvidence is called. At the end of message passing the junction tree is

consistent again. Marginal probabilities with respect to the new evidencee

P (X, e) =
∑C\X φC (2.22)

result from marginalizing using arbitrary cliquesC ⊇X. Of course the same holds for a separa-

tor S ⊇X.

The message passing scheme in junction trees may be improvedin different ways. Shenoy

and Shafer[She97] save the division when calculating the new potentials. The main difference

to the junction tree algorithm is that the Shenoy-Shafer algorithm sends messages that do not

include the part of the potential caused by the receiver.

2.2.2 Learning algorithms for Bayesian networks

Up to now, it was assumed that the conditional probabilitiesP (Xi|P(Xi)) are given, and only

questions concerning the calculation of marginals and the probability of special configurations

are discussed. But in reality typically only the domain knowledge of the modeled application

and a lot of data are given. That is, neither the structure, nor the conditional probabilities are

given. The former is not within the scope of the thesis, for a discussion see e.g. [FMR98; CH92;

HGC95; HG95].

When learning the parameters of a distribution, e.g. the conditional probabilities of the

Bayesian network of figure 2.1, it is of advantage, if all nodes are observed. But usually in-

complete data occur frequently during model development. Additionally the usage of hidden

nodes, which do not represent an existing value, is sometimes helpful in order to reduce the

number of parameters. When learning the distribution, it isassumed that the unobserved values
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are missing at random, i.e. that no additional information is given by the fact that some variables

are unobserved. This assumption is meaningful for the technical context of this thesis. A short

discussion of the different types of missing data is given in[CDLS99] or [RS97]. The data of

the modeled processes also contain continuous variables. Thus, it is necessary to use a training

method which is able to deal also with continuous values, ideally with discrete and continuous

values at the same time.

In a statistical approach, it is supposed that the type of thedistribution, e.g. Gaussian or

Dirichletian, is given and that only the parametersθ of the distribution are trained. The parame-

ters of the distribution are regarded as an additional random variable, the probability of a special

configurationx given the parametersθ is therefore denoted byP (x|θ).

For learning, two different approaches can be used. The firstone is themaximum likelihood

estimation. The aim is to maximize the (logarithmic) likelihood of the observationsP (xj). When

nc(x) denotes, how often a configurationx is observed, the likelihoodL′

L′(θ) =

N∏

j=1

P (xj) =
∏x P (x)nc(x) (2.23)

is defined as the product of the probability of theN observations. More often the log-likelihood

L(θ) =
∑x nc(x

j)log(P (xj)) (2.24)

is used.

The second approach is the Bayesian approach which is characterized by the given a priori

distributionp(θ) of the parameters. The a-posteriori distributionp(θ|x1, · · · , xN) which incor-

porates the observations is calculated. Usually so called conjugate priors [Bun94] are used, so

that the a-posteriori distributionp(θ|x1, · · · , xN) is of the same family as the a-priori distribu-

tion. For discrete Bayesian networks a Dirichlet distribution or for binary random variables a

Beta distribution [Rin97] may be used.

In the following the EM algorithm [DLR77; ST95] will be discussed. This algorithm is based

on the maximum likelihood principle. It is frequently used for training with missing data, and it

is able to deal with discrete and continuous data at the same time [Mur98a; MLP99]. It can be

even used for the estimation of a suitable structure of a dynamic Bayesian network [FMR98].
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Observationxi A S H SP Ec

x1 ’yes’ ’ sum’ ’ on’ ’ yes’ ’ med’
x2 ’yes’ ’ sum’ ’ on’ ’ no’ ’ med’
x3 ’yes’ ’ sum’ ’ off ’ ’ no’ ’ low’
x4 ’no’ ’ sum’ ’ off ’ ’ no’ ’ low’
x5 ’no’ ’ sum’ ’ off ’ ’ no’ ’ low’

Table 2.9: Possible observations for the Bayesian network of figure 2.1

In a Bayesian network the probabilityP (x) is factorized by the chain rule to

P (x) =

nN∏

i=1

P (x(i)|x(P(Xi))) (2.25)

wherex(P(Xi)) denotes the configuration of the parent nodesP(Xi) within the configurationx.

Similarly x(F(Xi)) denotes the configuration of the family andx(i) the instantiation of thei-th

node withinx.

In table 2.9 five possible observations for the Bayesian network in figure 2.1 are listed. Using

the observationx1 of table 2.9 the configurationx1
(P(H)) = (’yes’,’ sum’). Similarly the con-

figurationx1
(F(H)) is equal to (’on’,’ yes’,’ sum’) and x1

(H) = (’on’). Using the factorization of

equation (2.25), the log-likelihood of equation (2.24) is rewritten to

∑x nc(x) log(P (x)) =
∑x nc(x) log(

nN∏

i=1

P (x(i)|x(P(Xi)))) (2.26)

=
∑x nN∑

i=1

nc(x) log(P (x(i)|x(P(Xi)))) . (2.27)

To restrict the computation of the log-likelihood to local factorsnc(x(F(Xi))) andP (x(i)|x(P(Xi)))

equation (2.27) is adapted to

L(θ) =

nN∑

i=1

∑x(F(Xi))

nc(x(F(Xi))) log(P (x(i)|x(P(Xi)))) . (2.28)

In equation (2.27) the termP (H =’on’ |A =’yes’, S =’sum’) occurs once for observation

x1 and once for observationx2. In equation (2.28) the configurationH =’on’ , A =’yes’,

S =’sum’ counts twice as it is observed twice.
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A distribution of discrete random variables is determined by the conditional probabilities

P (Xi = xij |P(Xi) = p(Xi)) = θ
i,p(Xi)
j , (2.29)

i.e. θi,p(Xi)
j denotes the probability, that thei-th random variableXi is instantiated with thej-th

valuexij ∈ {xi1, xi2, · · · , xini
} = Dom(Xi) of its domain, and that their parents are instantiated

with p(Xi). Now the log-likelihood

L(θ) =

nN∑

i=1

∑x(F(Xi))

nc(xF(Xi)) log(θ
i,x(P(Xi))x(i)

) . (2.30)

can be expressed in terms of its parametersθ. Assuming that the parameter of different ran-

dom variables or for different parent configurations are unlinked (global respectively local meta

independence)[CDLS99]θ
i,x(P(Xi))x(i)

is maximized by

θ̂
i,x(P(Xi))x(i)

=
nc(x(F(Xi)))

nc(x(P(Xi)))
. (2.31)

For the Bayesian network of figure 2.1, table 2.9 lists five observations. Using equation (2.31)

results in

θ
H,{A=′yes′,S=′sum′}
′off ′ =

1

3

θ
H,{A=′yes′,S=′sum′}
′on′ =

2

3

If unobserved variablesu have to be taken into account each configuration

x = uo (2.32)

consists of an unobserved partu and an observed parto. Thuslog(P (o, u|θ)) has to be max-

imized. Now things become more complicated as an estimationfor u depends onθ and vice

versa. If unobserved variables occur, the EM algorithm can be used. It employs two different

steps. In the first step (E-step) an estimationθ(k) from thek-th iteration is used to calculate

expected values for the missing valuesu.

This missing values are now used to calculate the estimated counts

ñc(x(F(Xi))) = E[nc(x(F(Xi)))|θ(k), o1 · · ·oN ] (2.33)
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of x(F(Xi)) given theN observationsoi. The expected counts can be calculated

ñc(x(F(Xi))) =

N∑

j=1

P (Xi = x(i),P(Xi) = x(P(Xi))|θ(k), oj) (2.34)

using the probabilitiesP (Xi = x(i),P(Xi) = x(P(Xi))|θ(k), oj) that can easily be computed

using the junction tree algorithm or other inference algorithms for Bayesian networks. The next

step of the EM-algorithm is the maximization step. Similar to equation (2.31) the new parameters

are now estimated by

θ̂
i,x(P(Xi))x(i)

=
ñc(x(F(Xi)))

ñc(x(P(Xi)))
, (2.35)

the counts are simply replaced by the estimated counts. The new parameters are now used in a

new expectation maximization loop. It is proven that the estimation ofθ(k) converges, but not

necessarily to a global maximum. Thus it is advantageous to use a-priori information, instead of

starting with an arbitrary estimation forθ(0), to get a good initialization.

So far only inference and training of discrete Bayesian networks were discussed. The next

step will be to add continuous variables to the Bayesian network.

2.3 Hybrid Bayesian networks

The data from the engineers do not only consist of discrete variables, like the type of blank,

but also continuous variables like temperature or pressure. One possibility to cope with this

situation is to find a discretization of continuous variables, e.g. by vector quantization. Of course,

discretization does not only result in a loss of information. Additionally, there is no mean to

make predictions for values between discrete values. Thus it seems of advantage to enhance the

Bayesian network so that it can cope directly with continuous random variables.

To enable an analytical calculation of means and variances two restrictions apply. It is sup-

posed that there are only linear dependencies between the continuous variables and that the con-

tinuous variables are normally distributed.

The restriction to linear dependencies is overcome by usingboth, a discrete and continuous

node, for a continuous random variable, where the discrete node is triggered by the continuous

on. In section 2.3.1 the distribution of a so called hybrid Bayesian network is defined. For

inference there are two possible algorithms. The first one, introduced 1992 by S. L. Lauritzen

[Lau92], uses two different representation schemes for thedistributions. Switching between

those representations involves a matrix inversion and is therefore numerically instable. This
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Absent Season

Heating StartingSP

EnergyEc
c

Temp.τ

Figure 2.7: Example for a hybrid Bayesian network

drawback is fixed by the second approach, described by the same author in [LJ99].

2.3.1 Definition of hybrid Bayesian networks

Similar to discrete Bayesian networks, also hybrid Bayesian networks are defined using a DAG.

The set of nodesV G

V G = ∆G ∪ Γ G (2.36)

contains the random variables which can be partitioned in discrete and continuous random vari-

ables∆G respectivelyΓ G. Once again the conditional independencies are characterized by the

structure of the DAG. Usually, it is assumed that discrete variables have no continuous parents,

an exception is the ’variational approximation’ introduced in [Mur99]. Lerner [LSK01] suggests

to expand the inference algorithm, so that also Softmax nodes, representing a distribution of a

discrete random variable that depends on one or more continuous parents, can be handled.

The probability of discrete nodes can therefore be characterized by a conditional probability

table. Continuous nodesY are assumed to be normally distributed, i.e. a Gaussian distribution

is defined for each configurationx of the discrete parentsP(Y ) ∩∆G. These normal distribu-

tions are defined by their mean and varianceγ(x). The mean of the CG (conditional Gaussian)

distribution

p(y | x, z) = N (α(x) + β(x)T z, γ(x)) (2.37)

depends on an offsetα(x), the evidencez given for the continuous parents and a weight vector

β(x).

As an example let us consider the energy costsEc
c as a continuous variable. The energy

costs depend on the temperatureτ . The Season is regarded as parent of the temperatureτ .

The Bayesian network is depicted in figure 2.7. To distinguish discrete nodes from continuous

nodes, the discrete nodes are drawn as rectangle or square, the continuous nodes are drawn as



2.3. HYBRID BAYESIAN NETWORKS 31

A,S,H

S,H,τ

H,τ ,Ec
c

S,SP

Figure 2.8: Junction tree for the example depicted in figure 2.7

p(τ |S) α(S) γ(S)

S =’spr’ 12 5
S =’sum’ 20 5
S =’fal’ 12 5
S =’win’ 5 5

Table 2.10: Distribution for nodeτ

p(Ec
c |H, τ) α(H) β(H) γ(H)

H =’off ’ 300 -0.2 100
H =’on’ 500 -20 100

Table 2.11: Distribution for nodeEc
c

ellipse or circle. The dashed lines are not part of the Bayesian network. They are added during

moralization. No additional links are added during triangulation, which results in the junction

tree depicted in figure 2.8. The conditional probabilities are defined as before in tables 2.1 – 2.5.

For the new continuous nodes the parameters in tables 2.10 and 2.11 are used. They are selected

so that the model reflects a sensible behavior, e.g. the mean temperature in summer is higher

than the mean temperature in winter.

The most frequently used inference algorithms for hybrid Bayesian networks are both based

on a junction tree. The first steps towards a junction tree, moralization of the BN and triangu-

lation, are nearly identical to the steps for discrete BNs. The only difference is that the trian-

gulated graph is not allowed to contain a continuous pathX1 – · · ·–Yi – · · ·–X2 between two

non-neighbored, discrete nodesX1 andX2. A good overview about triangulation algorithms for

discrete BNs is given in [Kjæ90], the proceeding for hybrid BNs is described in [Ole93] and

[JJD94]. Using the triangulated graph a junction tree is calculated which has as special property

a strong root. The strong root is important for marginalization during message passing.

A cliqueCR in a junction tree is astrong rootif any pairCA,CB of neighbors on the tree

with CA closer toCR thanCB satisfies

(CB \ CA) ⊆ Γ G ∨ (CB ∩ CA) ⊆∆G. (2.38)
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X1 X1

Y1
Y1Y2

Y3

Y4

Root R

Figure 2.9: Two cliques with a hybrid separator

X1X1

X2X2

Y1

Y2

Y3

Y4

Y5

Root R

Figure 2.10: Two cliques with a discrete separator

According to Leimer [Lei89] the cliques of a decomposable marked graph can always be

transformed in a junction tree with at least one strong root.

Neighboring cliques which might occur in a junction tree aredepicted in figure 2.9 and 2.10.

In figure 2.8 the clique{A, S, H} can be used as strong root. The separator between{A, S, H}
and{S, SP} is a subset of∆G. When{S, H, τ} = CA and{H, τ, Ec

c} = CB, the set differenceCB \ CA = {H, τ, Ec
c} \ {S, H, τ} = {Ec

c} ⊂ Γ G.

Using a junction tree with strong root guarantees that the separator potentials calculated dur-

ing collectEvidence are always CG-potentials. When calculating the separator potentials in the

other direction usually a CG potential with the same mean anddispersion is used instead.

After the construction of the junction tree, each node of theBN is assigned to one clique

in the junction tree. That means the potential of the node is multiplied with the clique’s po-

tential. The representation of the potential depends on theused inference algorithm. The first

one is described in [Lau92]. It works similarly to the algorithm for discrete BNs; i.e., the joint

distribution is calculated by a division of the clique potentials by the separator potentials. This

algorithm uses two different potential representations atthe same time. The transformation from

one representation scheme to the other includes the calculation of an inverse matrix. Sometimes

this leads to numerical instability. To avoid numerical instability, Lauritzen introduced a second

inference algorithm in [LJ99] which distinguishes betweenso called head and tail variables. A

potential is proportional to a distribution of the head variables given the tail variables.
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2.3.2 Inference in hybrid Bayesian networks

Moment and canonical characteristic

Up to now the strong root of the junction tree is discussed. The junction tree is used by both algo-

rithms. In analogy to discrete BNs, each variableX is assigned to a cliqueC, so thatF(X)) ⊆ C.

The potential of each variable is represented by themoment characteristic; i.e. by its meanξ(x),

the covariance matrixΣ(x), and the probability of the configurationsP (x). The distribution of

continuous nodesY , given the configurationx, is equal to

p(Y | x) = N (ξ(x), Σ(x)) (2.39)

wheneverP (x) > 0. Beside the moment characteristic it is possible to represent a CG-distribution

by thecanonical characteristic, i.e. by a potential

φ(x, y) = χ(x) exp(g(x) + h(x)T y − yT K(x)y/2) (2.40)

whereχ(x) denotes an indicator function which is equal to 1 iffP (x) > 0, andg(x) is a real

number. The length of the vectorh is equal to the length ofy. The symmetric matrixK is

the inverse of the covarianceΣ. Sometimesχ(x) is omitted andP (x) > 0 is required instead.

As both representation schemes are used for different operations during inference process, a

transformation

P (x) ∝ (det (Σ(x)))
1
2 exp(g(x) + h(x)T Σ(x)h(x)/2) (2.41)

ξ(x) = K(x)−1h(x) (2.42)

Σ(x) = K(x)−1 (2.43)

K(x) = Σ(x)−1 (2.44)

h(x) = K(x)ξ(x) (2.45)

g(x) = log(P (x)) +
log(det(K(x)))− | Γ | log(2π)− ξ(x)T K(x)ξ(x)

2
(2.46)

between the moment and the canonical characteristic has to be defined. The number of continu-

ous nodes in the potential is denoted by| Γ |.
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Initialization

The canonical characteristic is used for initialization

g(x) = −α(x)2

2γ(x)
− log(2πγ(x))

2
(2.47)

h(x) =
α(x)

γ(x)

(
1

−β(x)

)
(2.48)

K(x) =
1

γ(x)

(
1 −β(x)T

−β(x) −β(x)β(x)T

)
(2.49)

using the parameters given by the definition of the BN.

During the initialization of the junction tree in figure 2.8 the random variableEc
c has to

be assigned to the clique{H, τ, Ec
c}. This clique is the only one which contains the parentsP(Ec

c) = {H, τ}. The nodeτ has to be assigned to the clique{S, H, τ}. For the initialization

of φ{H,τ,Ec
c} the distributionN (Ec

c |H, τ) is transformed in a potential. Using the parameters of

table 2.11 results in the following canonical characteristic for the potentialφ{H,τ,Ec
c}.

g(H = ′off ′) = − 3002

2 · 100
− log(2π · 100)

2
= −450− 3.22 = −453.22

h(H = ′off ′) =
300

100

(
1

0.2

)
=

(
3

0.6

)

K(H = ′off ′) =
1

100

(
1 0.2

0.2 −0.04

)

=
1

100

(
0.01 0.002

0.002 −4 · 10−4

)

Provided the domainsDom(φ1) = Dom(φ2) of two arbitrary potentialsφ1 andφ2 are equal,

the canonical characteristic can be used directly for the multiplication and division of potentials

(g1, h1, K1)× (g2, h2, K2) = (g1 + g2, h1 + h2, K1 + K2) . (2.50)

Usually the precondition of equal domains is not given, thusanexpansionof the potentials from
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e.g.φ{X1,Y 1}(x1, y1) to φ{X1,X2,Y 1,Y 2}(x1, x2, y1, y2)

g{X1,X2,Y 1,Y 2}(x1, x2) = g{X1,Y 1}(x1) (2.51)

h{X1,X2,Y 1,Y 2}(x1, x2) =

(
h{X1,Y 1}(x1)

0

)
(2.52)

K{X1,X2,Y 1,Y 2}(x1, x2) =

(
K{X1,Y 1}(x1, x2) 0

0 0

)
(2.53)

may be necessary to guarantee equal domains. Using expansion and multiplication, an initial

potential of all cliques in the junction tree is calculated.The separators are initialized with

φS = 1, i.e.φS = (0, 0, 0).

In the junction tree depicted in figure 2.8 the three variables A, S, andH are assigned to

the clique{A, S, H}. This clique has to distinguish 16 different characteristics (g, h, K), one

for each configuration. For the configurationA =’yes’,S =’spr’ , H =’on’, the new potential

φ∗
{A,S,H} is

φ∗
{A,S,H} = φ{A}(A = ′yes′)× φ{S}(S = ′spr′)×

φ{A,S,H}(A = ′yes′, S = ′spr′, H = ′on′)

= (−1.8971, 0, 0)× (−1.3863, 0, 0)× (−2.3036, 0, 0)

= (−5.586, 0, 0) .

For the other cliques no multiplication is necessary duringinitialization.

Marginalization and message passing

Directly after the initialization, message passing is triggered. For message passing equations

(2.16) and (2.17) are used, but with a changed potential definition in comparison to the discrete

case. According to equation (2.16) marginals have to be calculated during message passing.

Marginalization of a CG-distribution over continuous variables results in a CG-distribution. For

marginalization over a discrete variable, a sum of multipleGaussians with different weights has

to be calculated. The resulting potential is not necessarily a CG-potential. E.g. figure 2.11 shows

a mixture of two Gaussians.

Marginalization of a CG-potential is only guaranteed to result in a CG-potential, if marginal-

izing is carried out over a continuous variable. The marginal φ
↓{X ,Y 1}
{X ,Y 1,Y 2}

= (g′, h′, K ′) of
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Figure 2.11: Mixture of two Gaussians

φ{X ,Y 1,Y 2} = (g, h, K) with

h =

(
h1

h2

)
K =

(
K11K12

K21K22

)

g′(x) = g(x) +
| Y 1 | log(2π)− log(det(K11(x))) + hT

1 (x)K11(x)−1h1(x)

2
(2.54)

h′(x) = h2(x)−K21(x)K−1
11 (x)h1(x) (2.55)

K ′(x) = K22(x)−K21(x)K−1
11 (x)K12(x) (2.56)

is a so calledstrong marginalin contrary to theweak marginalwhere only mean and dispersion

of the overall distribution are preserved.

Marginalization over discrete variables results in a CG-potential only if there are no continu-

ous variables in the domain of the potential or if these continuous random variables are removed

by marginalization first.

When sending messages in the direction of the strong root, a strong marginalization takes

place. Calling distributeEvidence from the strong root, a weak marginalization fromφ{X1,X2,Y } =
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(P, ξ, Σ) to φ
↓{X1,Y }
{X1,X2,Y } = (P ′, ξ′, Σ ′)

P ′(x1) =
∑x2

P (x1, x2) (2.57)

ξ′(x1) =
∑x2

ξ(x1, x2)P (x1, x2)

P ′(x1)
(2.58)

Σ(x1) =

∑x2

Σ(x1, x2)P (x1, x2)

P ′(x1)
+

∑x2

(ξ(x1, x2)− ξ′(x1))
T (ξ(x1, x2)− ξ′(x1))P (x1, x2)

P ′(x1)
(2.59)

may take place, where only the mean and dispersion of the CG-distribution are preserved. After

sending messages in both directions, the junction tree is consistent, i.e. for two neighboring

cliquesC1 andC2 with separatorS
φ↓SC1
≈ φ↓SC2

(2.60)

holds, where≈ means that the first two moments are identical. After messagepassing is fin-

ished, the cliques represent the true marginals for discrete variables, for the hybrid case it is only

guaranteed that mean and dispersion of a cliqueφC
φC ≈ φ↓C (2.61)

are equal to the marginal of the joint potentialφ.

To get the junction tree in figure 2.8 globally consistent, collectEvidence is called. First the

marginalφ∗
{H,τ} = φ

↓{H,τ}
{H,τ,Ec

c}
is calculated and assigned to the separator. Directly afterwards the

new separator potentialφ∗
{H,τ} is multiplied withφ{S,H,τ}

φ∗
{S,H,τ} = φ{S,H,τ} × φ∗

{H,τ} . (2.62)

The division by the old separator potential is omitted here as this potential is initialized to one.

Afterwards the strong root{A, S, H} is updated. First the new separator potentials

φ∗
{S,H} = φ

∗↓{S,H}
{S,H,τ} (2.63)

φ∗
{S} = φ

↓{S}
{S,SP}

(2.64)
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are calculated. Then the strong root gets the new potential

φ∗
{A,S,H} = φ{A,S,H} × φ∗

{S,H} × φ∗
{S} . (2.65)

Once again the division by the old separator potential is omitted, as they are equal to 1 directly

after initialization. All the calculated marginals are strong marginals. Considering the property

of the strong root it can be seen that during collectEvidencemarginalization always leads to

strong marginals. During distribute evidence weak marginals occur, whenφ↓{H,τ}
{S,H,τ} is calculated.

Here marginalization over the discrete variableSeason is necessary. In this case a mixture of

eight Gaussians is approximated by a mixture of two Gaussians. An equality of the potentials is

therefore not possible.

Introduction of evidences

The last task is the introduction of evidences. Discrete evidencesX = x are entered by multi-

plication of the potential with an indicator function so that the potential is zero for impossible

configurations. In contrast to discrete evidences, for continuous evidencesY = y all cliquesC
with {Y } ⊆ C have to be changed. Suppose that a potentialφ = (g, h, K) with

h =

(
h1(x)

hY (x)

)
K =

(
K11 K1Y

KY 1 KY Y

)

is simplified, by enteringY = y. The new potentialφ′ = (g′, h′, K ′) is calculated by removing

the components forY by

g′(x) = g(x) + hY (x)y − KY Y (x)y2

2
(2.66)

h′(x) = h1(x)− yKY 1(x) (2.67)

K ′(x) = K11(x). (2.68)

Of course the introduction of evidences leads to a smaller domain of φ′. After entering the

evidence, the junction tree is inconsistent. Thus the functions collectEvidence and distributeEv-

idence must be called again to come to a consistent junction tree. After message passing the

clique potentials are proportional to the marginalized joint distribution.

Unfortunately it turned out that the frequent transformation between moment and canonical

characteristic is numerical unstable due to the matrix inversion. This drawback is avoided in the

inference algorithm introduced in [LJ99]. The main idea is to partition the set of continuous
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H

Ec
c

τ 1

Figure 2.12: Equivalent network for the training of the nodeEc
c

variables intoheadandtail, so that a potential represents a CG distribution of the headvariables

depending on the tail variables.

2.3.3 Learning the parameters of a hybrid Bayesian network

The aim is comparable to the aim in section 2.2.2, i.e. to learn the parameters of the modeled

distribution. For discrete nodes conditional probabilitytables are learned, the technique is the

same, if no arcsX → Y from discrete to continuous nodes are allowed. For the continuous

nodes the meanα, the weight vectorβ, and the varianceγ are the parameters to be estimated.

If global and local independence of the parameters are supposed, it is sufficient to maximize the

parameters of each family independently. Of course, for theestimation of the instantiation, the

complete Bayesian network has to be used. When assuming thatevery continuous nodeY has

at least one continuous parentZ whose last element is 1, the meanα can be modeled by the last

column of the weight vectorβ.

As an example see figure 2.12 which shows an equivalent network for nodeEc
c , where the

meanα is replaced by the weight of the link1→ Ec
c .

The distribution of nodeY with discrete parentsX and continuous parentsZ becomes

p(y|x, z) =
1√

(2π)γ
exp(

1

2
(y − β(x)T z)γ−1(y − β(x)T z) , (2.69)

whereγ is the variance of the normal distribution. For the more general case of a multidimen-

sional normal distribution see [Mur98a]. For the purpose ofthe thesis one-dimensional distribu-

tions are sufficient.

Using an indicator functionδx(x1) being 1 iff x1 = x and 0 otherwise, the part of the
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ESS Remark

dx ∑N
j=1 δjx with δjx = E[δx(xj)|oj]

SY Y,x ∑N
j=1 δjxEx[(yj)2|oj ]

SZY,x ∑N
j=1 δjxEx[zjyj|oj ] Only if Y has continuous parents

SZZT ,x ∑N
j=1 δjxEx[zj(zj)T |oj ] Only if Y has continuous parents

SY,x ∑N
j=1 δxEx[y|oj] Only if Y has no continuous parents

Table 2.12: Essential Sufficient Statistics for training ofhybrid Bayesian networks

log-likelihood depending on the parameters ofY is

L = log(

N∏

j=1

∏x [p(yj|zj, xj , oj)]δx(xj)) . (2.70)

The vectoro denotes theN observations, but all random variablesy, z andx may be unobserved.

Once again the problem is that an estimation of the parameters requires the knowledge of the

instantiation of the unobserved variables and vice versa. For the solution the EM-algorithm might

be used. It starts with an arbitrary parameter-setθ(0). This is used to calculate the estimated log-

likelihood

L = −1

2

N∑

j=1

E[
∑x δx(xj) log(γ(x))+δx(xj)(yj−β(x)T zj)γ(x)−1(yj−β(x)T zj)|oj]. (2.71)

To keep track of theN training examples, theessential sufficient statistics(ESS), listed in table

2.12 are used.

The indexx in Ex is used to denote the expectation given thatX = x. The values used by

these formulas are calculated by enteringo as evidence and then using the junction tree algorithm

to calculate the missing values.

Using the statistics the new estimations

β̂(x)T = ST
ZY,xS−1

ZZT ,x (2.72)

γ̂(x) =
SY Y,x
dx − β̂(x)T SZZT ,x

dx (2.73)

α̂(x) =
SY,x
dx (2.74)
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H τ Ec
c 1

’on’ 10 493 1
’on’ 13 457 1
’off ’ 27 107 1
’off ’ 19 209 1
’off ’ 22 153 1

Table 2.13: Numbers used for the training of the parameters of nodeEc
c

are calculated. The Bayesian network is used to calculate the expected values of the unobserved

random variables given the parameter of the last M-step. These expected values are used to

calculate the ESS. When all training cases are included in the ESS, the parameters are maximized

using equations (2.72) to (2.74), where the last one is used for continuous random variables

without continuous parents. For a discussion of the multidimensional case see [Mur98a].

As an example we regard the training ofEc
c , with F(Ec

c) = {H, τ, Ec
c}. To simplify the

example, we assume that all variables are observed so that wecan ignore the other random

variables of the example and one EM-step is sufficient to train the parameters. As training cases

the values in table 2.13 are observed.

The observations of table 2.13 results in the following statistics

dH=′on′ = 2

dH=′off ′ = 3

SY Y,H=′on′ = 4932 + 4572 = 451898

SZY,H=′on′ = [10 1]493 + [13 1]457 = [10871 950]

SZZT ,H=′on′ =

[
10

1

] [
10 1

]
+

[
13

1

] [
13 1

]
=

[
269 23

23 2

]
.

This ESS results in the following new parameters for the nodeEc
c

β̂
T

= [−12 613]

γ̂ = 0 .

The results is obviously correct as there are two parametersfor two examples so that a variance

equal to zero meets expectation.
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Xt1 Xt2 Xt3 Xt4

Yt1 Yt2 Yt3 Yt4

Figure 2.13: A Hidden Markov Model as an example of a Dynamic Bayesian network

2.4 Dynamic Bayesian networks

The networks discussed in the previous sections had one common trait, namely there is only one

random variable for each measurement. This is sufficient forsome of the engineering processes

discussed in this thesis, but for many purposes it is not. Particularly for the analysis of time

series, for medical purposes (e.g. the regular measurementof a patients fever), or for dynamic

processes described by differential equations, it is necessary to represent the measured data at

different points in time. So information about the past can be used for the prediction of the future.

The main idea is to represent each point in time by a separate Bayesian network, called time-

slices. These time-slices are linked together by temporal edges (cf. [Kjæ92] [Kjæ93]) or inter

slice connections. Usually the Markov assumption holds

x0, x1, · · · , xt−1⊥⊥xt+1, · · · , xt+k|xt, (2.75)

i.e. the future is conditionally independent of the past given the present. The nodesXt having

links to neighbored time slices are called theinterfacenodes. Kjærulff defines the interface as all

nodes with incoming links from previous time slices [Kjæ92], whereas K. P. Murphy [Mur02]

distinguishes between forward and backward interface where the forward interface of a time-

slice contains all nodes with an edge to the next time-slice.In the backward interface all nodes

with an incoming edge from the previous time-slice are included.

As an example the HMM in figure 2.13 can be regarded. Here the discrete state nodesXt are

in the forward interface of time slicet.

Usually the nodes representing the same random variable at different points in time, e.g. the

nodesYt2 , Yt3 , andYt4 have the same parameters. An exception are sometimes the nodes of the

first time-slice. In figure 2.13Xt1 has no incoming links, thus the node represents a probability

P (Xt1) which is in most of the cases different fromP (Xt|Xt−1), t2 ≤ t ≤ t4. So the first
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time-slice represents the a-priori distribution, the other time-slices the distribution of the random

variables at timet, given the information at timet − 1. This leads to the following definition of

a DBN, taken from [Mur02]

A DBN is defined to be a pair (BN1,BN→, where BN1 is a BN which defines the prior and

BN→ is a two slice temporal Bayes net, which definesP (Xt|Xt−1) by means of a DAG as follows

P (Xt|Xt−1) =

nN∏

i=1

P (Xi,t|P(Xi,t)) , (2.76)

whereXi,t is the i-th node at timet. In this definitionX is either a discrete or a continuous

random variable.

There are a lot of different inference algorithms. The simplest one, used for the experiments

discussed in chapter 4, is to unroll the DBN totmax time-slices, so that it becomes a hybrid

Bayesian network as discussed in section 2.3.1 withntstmax nodes, wherents denotes the number

of nodes in each time slice. E.g. figure 2.13 can be regarded asa DBN withnts = 2 unrolled to 4

time-slices. The advantage is that the same inference algorithm as discussed in section 2.3.1 can

be applied. The disadvantage is the fixed number of time slices.

To deal with a varying number of time slices Kjærulff [Kjæ92;Kjæ93] suggests a reorgani-

zation of the junction tree. Murphy discusses several inference algorithms in his thesis [Mur02],

one of them is the interface algorithm. The first step is the organization in a junction tree with the

restriction that all interface nodes are in one clique. Thiscan be forced by adding additional links

to the moralized graph. After triangulation there is one clique which separates the time-slices

from each other. For example see figure 2.14 which shows the junction tree resulting from figure

2.13.

Now each time slice is represented by a junction tree, which contains additional nodes from

the previous time-slice. This junction tree contains exactly one clique which is linked to the

previous time slice and one clique linked to the next time slice. As figure 2.14 shows, the cliques

to the previous and to the next time slice might collapse to one clique.

The interface algorithm starts by calling collectEvidencefor the clique containing the nodes

of the forward interface, first for the junction treeJ1, which represents the nodes of the first time

slice. Afterwards the cliques with the forward interface inJ2 to Jtmax call collectEvidence. This

results in an absorption of knowledge from the previous timeslice.

In the backward pass, the forward interface cliques are calling distribute evidence, starting

in the junction treeJtmax . This step includes the distribution of the knowledge to theprevious

time-slice.



44 CHAPTER 2. AN INTRODUCTION TO BAYESIAN NETWORKS

Xt1

Xt1

Xt1

Xt2

Xt2

Xt2

Xt2

Xt2

Xt3

Xt3

Xt3

Xt3

Xt3

Xt4

Xt4

Xt4

Yt1 Yt2 Yt3 Yt4

Figure 2.14: Junction tree of the HMM in figure 2.13

In our example first collectEvidence is called by the cliques{Xt1 , Xt2}, {Xt2 , Xt3} and fi-

nally by {Xt3 , Xt4}. This finishes the forward pass. During the backward pass distributeEvi-

dence is called by{Xt3 , Xt4}, {Xt2, Xt3} and at the end by{Xt1 , Xt2}.
In the discussed example all separators are discrete ones, thus all calculated marginals are

strong. Usually this can not be guaranteed so that week marginals might occur in both the

forward and the backward pass.

In the next section the basics of control theory are introduced. After the introduction to con-

trol theory is finished, the application of dynamic Bayesiannetworks as controller is discussed.



Chapter 3

Control of dynamic systems

The overall aim is to study the question whether Bayesian networks can be used for control

purposes. To show the limits and preconditions for the usageof Bayesian controller, this chapter

starts with a characterization of dynamic systems. Afterwards linear systems, together with the

theory of Kalman Filters, are discussed. The knowledge about linear systems leads to a general

structure of Bayesian networks and suitable parameter settings. For non-linear units, prototypical

models are provided for some frequently occurring transferunits. For a discussion of non-linear

systems see section 3.2. In section 3.3 traditional controlmethods and criteria to judge the quality

of control are introduced. These criteria allow a comparison between traditional and Bayesian

controller.

Generally each dynamic system, denoted as transfer unitϕ, maps an input functionu(t) to

an output functionym(t)

ym(t) = ϕ[u(t)]. (3.1)

Firstly, we restrict ourself totime invariantsystems. In time invariant systems a delayed input

signalu(t− t0) leads to the same, delayed output signal

ym(t− t0) = ϕ[u(t− t0)]. (3.2)

Even if equation (3.2) does not hold exactly, it is a common approach in parameter estimation

to assume time invariance. In practice this leads to satisfying results, if changes of the plant are

much slower than the adaptation of the controller (cf. [SL91]). Thus, from now on it is assumed

that dynamic systems are time invariant.

The second property of dynamic systems, which simplifies analysis and control, islinearity.

45
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A transfer unitϕ is linear if and only if for arbitrary constantsc1 andc2

ϕ[c1u1(t) + c2u2(t)] = c1ϕ[u1(t)] + c2ϕ[u2(t)] (3.3)

holds.

In the next two sections the descriptions of linear and non-linear systems, as they are usually

used in control theory, are discussed. The aim of the discussion is to guarantee that the new

approach, introduced in this thesis, is applicable to a widerange of systems. The main idea is

to model typical linear and non-linear systems, and show howthese systems respectively the

developed models may be combined to more complex systems.

The knowledge about typical non-linear units also demonstrates the theoretical limits of

Bayesian models for the modeling of dynamic processes. Of course these limits are not iden-

tical with the limits of a stochastic approach in general, asBayesian networks are restricted to

a mixture of Gaussians. Using particle filters [TL98; IB98] may open a complete new range of

applications.

3.1 Description of linear dynamic systems

This section discusses two different approaches for the mathematical description of linear, dy-

namic systems. Both of them correspond to a special Bayesiannetwork. The first discussed

description is the state-space description, which is also used for multiple input multiple output

systems (MIMO). The description by difference equation leads to Bayesian networks with less

hidden nodes and thus shows a better training behavior.

A dynamic system may be regarded as a black box with several input and output signalsu

andym respectively. We distinguish the output of the modelym and the observed outputq, where

the latter includes also the influences of the disturbance variablezd.

The current output of the dynamic system does not depend solely on the input signal, but also

on an internal stateXs or on former in- and output signals. Linear, time invariant systems with

one-dimensional in- and output, are regularly described bydifferential equations

n∑

i=0

ac
i

diym(t)

dti
=

m∑

j=0

bc
j

dju(t)

dtj
. (3.4)

Only systems withm ≤ n are physical realizable. As a simple example a car with massM ,

accelerated by a forceF and slowed down by friction and a spring, is discussed. The friction is
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proportional to the product of a constantb and the velocityv = ds
dt

, the excursions of the spring

causes a forceks. Thus

M
d2s(t)

dt2
+ b

ds

dt
+ ks = F (t) (3.5)

holds. By substitutionx1 = ds
dt

andx2 = s the example can be transformed to a system of

differential equations of first order

[
dx1(t)

dt
dx2(t)

dt

]
=

[
− b

M
− k

M

1 0

][
x1(t)

x2(t)

]
+

[
1
M

0

]
F (t) (3.6)

s(t) = x2(t), (3.7)

or generally

dxs(t)
dt

= Axs + Bu(t) (3.8)

ym(t) = Cxs + Du(t) . (3.9)

Equations (3.8) and (3.9) are called the state-space description of a dynamic system. The matrix

A at the left hand side of equation (3.8) describes the trajectory of the statexs. For a homo-

geneous system, i.e.u(t) = 0, the description of the system by the transfer matrixA and the

current statexs
0 is sufficient to calculate the state of the system in the future. The influence of the

inputu on the statexs is described by the input matrixB. The first equation of the state-space

description describes therefore the state transition influenced by the inputu.

The modeled output of a system depends in many cases only on the statexs as described by

the output matrixC, for jump Markov systems it depends also on the inputu.

The state-space description is also used to describe multiple-input multiple-output (MIMO)

systems. In the general caseA is an × n matrix, wheren is equal to the order of the system,

the state vectorxs is n × 1 vector. Then × r input matrixB describes the reaction of ther

dimensional input. Theo × n-dimensional output matrixC depends on the dimensiono of the

output. The feedthrough matrixD is of dimensiono× r.

In reality all dynamic systems are exposed to disturbing influenceszd′. For linear systems

it is possible to add the system’s reaction to all disturbance variables to one variablezd which

has an effect on the output of the system. Thus the observed outputq is the sum of the model’s

output and the disturbance variable.

q(t) = ym(t) + zd(t) (3.10)
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Figure 3.1: Step response of a second order system

The dynamic system is displayed as dashed box in figure 3.7. The manipulation reaction de-

scribes the response of the system to the input signalu(t), e.g. the reaction to the impulse func-

tion. Mathematically the manipulation reaction can be described by the state-space description.

The disturbance reaction defines the reaction on, usually uncontrolled, environmental influ-

enceszd(t). It is the task of a controller to reduce the effect of a disturbance as fast as possible.

To get a good impression of a dynamic system, it is helpful to regard the response to different

input signals, e.g. thestep function

σ(t) =

{
0 if t < 0

1 if t ≥ 0
(3.11)

or theimpulse function

u(t) =

{
1
δ

if 0 ≤ t < δ

0 if t ≥ δ
, (3.12)

which can approximately be regarded as a very short impulse of durationδ. Figure 3.1 displays

the step response of a system described by2u(t) = ym + 0.1dym

dt
+ 0.01d2ym

dt2
which is one of

our test systems. The impulse response of the same system is shown in figure 3.2. A second

order system may overshoot and needs a long time to converge to a new value. In this thesis we

will show how to calculate an input signal, so that overshooting is avoided and the output settles

quickly to its new value. This method is based on Kalman filters as described in section 3.1.2.
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Figure 3.2: Impulse response of a second order system

The example of a second order system is now used to discuss thenatural angular frequency

and the dampingD of a dynamic system. Generally, a second order delay elementis described

by

Ksu(t) = T 2
2

d2ym(t)

dt2
+ T1

dym(t)

dt
+ ym(t) . (3.13)

The factorKs describes the gain of the system, that is the quotient of the output by a constant

input signal.T1 andT2 are two time constants. The ratio ofT1 andT2 describes thedamping

ratio [LW00; Unb97a]

D =
T1

2T2

. (3.14)

Thenatural angular frequency

ω0 =
1

T2
(3.15)

describes the oscillation behavior. For an undamped system, i.e.D = 0, theresonance frequency

ωr = ω0

√
1− 2D2 (3.16)

is equal to the natural angular frequency.

According to the damping five different systems are distinguished. They show different step

responses.

Overdamped systems withD > 1 converge to their new output without any overshoot. There
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Figure 3.3: Calculation of delay timeTu and raise timeTa

are different parameters to characterize overdamped systems. E.g. the step response is character-

ized by the gainKs, the delay timeTu, and the rise timeTa. The time constantsTu andTa are

calculated as depicted in figure 3.3. In a simple approach by Ziegler and Nichols they are used

to determine the parameters of a controller.

Critically damped systems withD = 1 show a faster increase of the output than systems with

higher damping. If the dampingD is between 0 and 1, an overshoot together with an oscillation

with decreasing amplitude is observed, as shown in figure 3.1. When a damping of 0 is reached

the amplitude of the oscillation keeps constant. Further decreasing of the damping to a value

between -1 and 0 leads to an unstable system whose step response has an increasing amplitude.

For the more general case ofn-th order system theLaplace transformationis helpful which

maps a functionf(t) to

F (s) =

∫ ∞

0

f(t) exp(−st)dt . (3.17)

The quotientG(s) of the Laplace transformed out- and input signalY m(s) respectivelyU(s)

G(s) =
Y m(s)

U(s)
(3.18)

is calledtransfer functionof the dynamic system. Linear single-input single-output(SISO) sys-
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tems are described by

G(s) =
bc
0 + bc

1s + · · · bc
msm

ac
0 + ac

1s + · · ·+ ac
nsn

=
B(s)

A(s)
(3.19)

the quotient of two polynomialsA(s) andB(s).

Sometimes the described system reacts with a delayTd, calleddead-time, to changes of the

input. This is modeled by an additional terme−Td , so that

G(s) =
B(s)

A(s)
e−Td . (3.20)

Please note thatA(s) andB(s) are used for the description of the system, whereasY m(s) and

U(s) denote the Laplace-transformed in- and output signals. To get an impression of the behavior

of the dynamic system the homogeneous system, i.e.u(t) = 0, is regarded. In the Laplace

transformed this leads toU(s) = 0 and thus to

A(s) = ac
0 + ac

1s + · · ·ac
ns

n = 0 , (3.21)

usually called thecharacteristic equation.

If all zerossk with A(sk) = 0 are in the left half s-plane, i.e. the real partRe(sk) < 0, the

system is stable. If at least onesk has a real partRe(sk) > 0 or if a multiple pole is placed on

the imaginary axis, i.e.Re(sk) = 0, the system is unstable.

In equations (3.8) and (3.9)A is an×n matrix, wheren denotes the order of the differential

equation. For single input single output systems, i.e. bothym andu are scalars instead of vectors,

B andC are vectors of lengthn andD is a scalar. Thus, there aren2 + 2n + 1 parameters in

the state space description. Comparing the number of parameters in the state space description

with the maximal number of parameters in differential equation (3.4) leads to the conclusion that

there are many possible state space descriptions for the same differential equation. Reducing the

number of parameters would result in a smaller search space of possible state space descriptions,

which means a more robust and effective learning process. That is exactly what is done by normal

forms.

3.1.1 Normal forms

As mentioned in the last paragraph of section 3.1, there is nounique state space description for

a given differential equation. As a simple example imagine adynamic system with gainKs. To

model such a system the amplification can either take place between the inputu and the statexs
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or between the statexs and the outputym.

Control theory distinguishes several normal forms, usually the form of the matricesA, B, C,

andD makes the difference. As this chapter is no introduction to control theory, only theobserv-

able canonical formis discussed. The reason to use the observable canonical form is of practical

nature and will be explained later.

By a transformation process, defined e.g. in chapter 1.6 of [Unb97b], the matricesA, B, C,

andD take the form

A =




0 0 0 · · · 0 0 −a0

1 0 0 · · · 0 0 −a1

0 1 0 · · · 0 0 −a2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 · · · 1 0 −an−2

0 0 · · · 0 1 −an−1




B =




b0

b1

...

bn−1




C = [0 0 0 · · ·1] D = bn .

(3.22)

It is important to note that the introduction of normal formsis neither a restriction of the dynamic

system, nor is the input/output-behavior of the system changed. Only the internal state of the

system is concerned. Using the observable canonical form the number of free parameters is

reduced to2n + 1. This number is equal to the number of parameters in the differential equation

(3.4), provided thatn = m andan is normalized to 1. So no redundancy is left.

Up to now only the description of systems in continuous time space is discussed. The next

section 3.1.2 describes the transformation to discrete time domain. This transformation is also

suitable to deduce the weights of a DBN, modeling the system.

3.1.2 Kalman filter

For digital control the output signalsq(t) are not measured for all points in time, usually the

measurements are taken regularly with a fixed sampling period ∆T . The same is valid for the

input signalu(t), which is only calculated for special points in time. Between two pointt and

t + 1 it is assumed thatut is constant, i.e.u(τ) = ut for t ≤ τ < t + 1. Linear time discrete

systems are described in the same way as continuous time systems, only the coefficients have

to be changed. The coefficients are deduced by comparison to Kalman filters, a well-known

method for tracking and prediction of stationary, linear systems. It can be used to calculate

the parameters of time discrete systems as described in section 3.1, equations (3.8) and (3.9).
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Furthermore Kalman filters are a special case of DBNs, so the results obtained for Kalman filter,

e.g. in [Gel94], may be used without any changes.

Kalman filters represent a time discrete system whose state transition

xs
t+1 = ABNxs

t + BBNut (3.23)

is described by the matrixABN. In this equationt is used as index to denote a time discrete

system. The index ’BN’ is used, as the transfer matrices are different for time discrete systems.

To calculateABN, a solution of differential equation (3.8) is needed, asABN has to integrate

all the state transitions betweent and t + 1. As long as no input is present, equation (3.8) is

solved by

xs(t) = xs(t0)Φ(t, t0) (3.24)

where

Φ(t, t0) =
∞∑

i=0

Ai (t− t0)
i

i!
(3.25)

is called transfer matrix. Assumingt = tk+1 and t0 = tk with a constant time difference

∆T = tk+1 − tk the matrix

ABN = Φ(tk+1, tk) (3.26)

depends only on the time difference∆T andA. ThusABN is constant for allk; i.e., the param-

eters of a DBN, modeling the dynamic system, are independentfrom the time slice.

Taking into account the influence of the input on the state leads to

BBNut =

∫ tk+1

tk

Φ(tk+1, τ)Bu(τ)dτ (3.27)

which simplifies to

BBN = ∆T

∞∑

i=0

Ai∆T i

(i + 1)!
B (3.28)

if only systems with a constant sampling period∆T = tk+1− tk and a constant inputut = u(τ)

within one time-slice are considered. To build a DBN which incorporates equations (3.26) and

(3.28),BBN is used as weight matrix between the input nodes and the statenodes as shown in

figure 3.4. MatrixΦ(∆T ) describes the transition from one state to the next and is therefore used

as weight matrix for the inter slice connection between two states in neighboring time slices. This
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Figure 3.4: Bayesian network used for modeling the state transition

means that the state at timet + 1 is calculated by

xs
t+1 = [Φ(∆T ) BBN] ·

[
xs

t

ut

]
. (3.29)

In a BN the meanξ of the normal distribution is equal toξ = α + βz. In contrast to equation

(2.37), describing the one-dimensional case,α is a vector, andβ is a matrix.

The offsetα has to be set to zero and the weights of the state nodeXs are set to

β = [Φ(∆T ) BBN] , (3.30)

so that the weights of the state nodes reflect the state transition in the presence of inputu. The

output depends linearly on the state and is not time dependent. Thus the matrixC andD remain

unchanged also in a time discrete system. Figure 3.4 shows two time-slices of a linear DBN.

The nodes of the net are pictured as circles, the rectangles are used to display the weights of the

Bayesian net. It is assumed that the modeled system is no jumpMarkov system, i.e.D = 0.

As a further consequence, the dimension of the hidden state nodes is equal to the order of the

differential equation describing the system.



3.1. DESCRIPTION OF LINEAR DYNAMIC SYSTEMS 55

3.1.3 Description of dynamic systems by difference equation

In the state-space description (3.8) and (3.9) the statexs usually cannot be observed. Even

if the parameters of a Bayesian network can be trained despite the occurrence of unobserved

variables, it is more cumbersome. According to our experience, the number of needed iterations

and examples is higher in the presence of unobserved variables. Thus it would be desirable to

model with a description without hidden variables.

The starting point is again the description by differentialequation (3.4). The derivatives of a

functionf can be approximated by the finite differences

df

dt

∣∣∣∣
t=k∆T

≈ f(k∆T )− f([k − 1]∆T )

∆T
(3.31)

d2f

dt2

∣∣∣∣
t=k∆T

≈ f(k∆T )− 2f([k − 1]∆T ) + f([k − 2]∆T )

∆T 2
(3.32)

d3f

dt3

∣∣∣∣
t=k∆T

≈ f(k∆T )− 3f([k − 1]∆T ) + 3f([k − 2]∆T )− f([k − 3]∆T )

∆T 3
. (3.33)

Derivatives of higher order are approximated in a similar manner. Thus it is possible to rewrite

equation (3.4) using expressions (3.31) to (3.33) instead of the derivatives. This procedure results

in a difference equation which can be solved for

ym = −
n∑

i=1

aiy
m
t−i +

n∑

i=0

biut−i−d , (3.34)

with d = Td

∆T
as the discrete dead-time. Please note that the coefficientsin equations (3.4) and

(3.34) are different, the coefficients for the time continuous system are marked by the superscript

c. It is not possible to rewrite the differential equation to adifference equation without adapting

the coefficients1. As only the structure will be used, a description of the transformation algorithm

is omitted. The available algorithms are discussed e.g. in [Sch02].

In analogy to the description of dynamic systems by the Laplace transformation, time discrete

systems are often described by theZ-transformationof a functionf(k)

Z{f(k)} = F (z) =

∞∑

k=0

f(k)z−k . (3.35)

1For a transformation the Z-transformation might be used.
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For single input single output systems the Z-transformation leads to a transfer function

G(z) =
Y m(z)

U(z)
=

b0 + b1z
−1 + · · · bnz−n

1 + a1z−1 + · · ·anz−n
z−d . (3.36)

Once again the system is described by two polynomialsA(z) = 1 + a1z
−1 + · · ·anz

−n, and

B(z) = b0 + b1z
−1 + · · · bnz

−n, and the dead timed.

The description by Z-transformation has similar advantages as the Laplace transformation;

e.g., the convolution integral, which is used to calculate the output of the serial connection of two

systems, is mapped to the multiplication of the two Z-transfer functions. Similarly, the addition

of two z-transfer functions is used to calculate the output of two parallel systems.

The difference equation (3.34) can also be used for estimation of the parametersai andbj . As-

suming that there aren+N−1 input- output pairsut−n+1, ut−n+2 · · ·ut+N−1, qt−n+1, · · · , qt+N−1,

the errorǫt+j between the observed valueqt+j and the predicted values is, according to equation

(3.34), equal to

ǫt+j = qt+j−qt+j−1a1−qt+j−2a2 · · ·−qt+j−nan +ut+j−1a1 +ut+j−2a2 · · ·+ut+j−nan . (3.37)

For all ǫt+1 · · · ǫt+N this results in a system of N linear equations




ǫt+1

ǫt+2

...

...

ǫt+N




=




qt+1

qt+2

...

...

qt+N




−




qt · · · qt−n+1 ut · · · ut−n+1

qt+1 · · · qt−n+2 ut+1 · · · ut−n+2

...
...

...
...

qt+N−1 · · · qt−n+N ut+N−1 ut−n+N







a1

...

an

b1

...

bn




(3.38)

or shorterǫ(N) = q(N)−M (N)Ξ(N). The matrixM denotes the matrix for the observations

of the input- and output values. It is necessary to solve thisequation for the parameter vectorΞ.

This can be done by the least square approach, the sum of the squared error is minimized by

Ξ̂ =
[
M (N)TM(N)

]−1
M(N)q(N) . (3.39)

The approach just discussed is only valid for white noiseǫ. In the case of colored noise, there is

no closed solution; a possible approach is e.g. gradient descent or the EM-algorithm. This case

is discussed more deeply in [Unb97a].
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The estimation of the control parameters may lead to a self-tuning controller whose basic

principle is the identification of the system in the first stepand the calculation of the controller’s

parameters in dependence of the plant model in a second step.

3.2 Non-Linearities in dynamic systems

For linear systems, discussed in the last section, equation(3.3) hold. All other systems are called

non-linear. In this section an overview about frequently occurring non-linear units in control

theory is given. Later on this list will be used to develop prototypical models for as many non-

linear units as possible. The prototypical models can be combined among each other or with a

linear sub-system. According to [SL91] the decomposition of a system in a linear and a non-

linear subsystem is often possible and useful.

When analyzing non-linear systems the Laplace transformedis no longer the quotient of two

polynomials. But it is still possible to characterize them by two differential equations

ẋs = f(xs, u, t) (3.40)

ym = g(xs, u, t) (3.41)

with arbitrary non-linear functionsf andg, and the initial state

xs(t0) = xs
0 . (3.42)

The state-space description of linear systems is a special case of differential equations (3.40)

and (3.41). For modeling purposes and to analyze the behavior of dynamic systems, differential

equation (3.40) may be linearized by a Taylor series. The operating pointx̌s, ǔ is usually an

equilibrium point; i.e., the derivative of the state is zero. Thusf (x̌s, ǔ, t) = 0. Using the

substitutions

∆xs(t) = xs(t)− x̌s (3.43)

∆u(t) = u(t)− ǔ (3.44)

to denote the deviation from the operating point, differential equation (3.40) is approximated by

∆ẋs ≈ A∆xs + B∆u (3.45)
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whereA andB denote the Jacobian matrices

A =




∂f1(xs,u)
∂xs

1
· · · ∂f1(xs,u)

∂xs
n

...
...

∂fn(xs,u)
∂xs

1
· · · ∂fn(xs,u)

∂xs
n


���������� xs = x̌s

u = ǔ

(3.46)

B =




∂f1(xs,u)
∂u1

· · · ∂f1(xs,u)
∂ur

...
...

∂fn(xs,u)
∂u1

· · · ∂fn(xs,u)
∂ur


���������� xs = x̌s

u = ǔ

. (3.47)

For a discussion see [Unb97a]. In this case the system can be modeled approximately as de-

scribed in section 3.1. If linearization is no solution to the modeling problem, special solutions

for each data set or rather engineering process have to be developed. In many cases common

transfer units are met [Föl93; SL91; Unb97b]. In this section some of them are introduced. In

section 5.1 Bayesian networks are introduced to model thosenon-linear units.

A common phenomenon in engineering issaturation. When a valve is closed, further dimin-

ishing the pressure has no effect. The same happens in an amplifier. For very high inputs the

maximal output is reached. Further increasing the input does not change the output. Assuming a

linear gain between minimal and maximal output, this type ofnon-linear unit is described by

ym(u) =






−ym
max if u ≤ −usat

ym
max

usat
u if −usat ≤ u ≤ usat

ym
max if u ≥ usat

(3.48)

This function consists of three different linear parts, so afirst approach for modeling might be

a discrete node with three states as a switch. This switch is parent of a continuous node which

models the output.

Another non-linear unit, which might be applied as a simple temperature controller is the

two-point element

ym(u) =

{
−ym

max if u < 0

ym
max if u > 0

. (3.49)

Another possibility to express this relationship between in- and output is

ym(u) = −ym
max sgn(u) (3.50)
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When using this unit as a controller the input of the system isu(t) = ym
max sgn(w(t)− q(t)); i.e.,

the input is positive if the desired value is greater than thecurrent value and vice versa. When

systems with dead-timeTd has to be controlled an oscillation with the angular frequency

ω0 =
π

2Td
(3.51)

[Unb97b; Föl93] is observed. Thus, for systems with no or low dead time, a controller which

reacts only when the deviation from the desired value is larger than a thresholduΘ is from

advantage. Thus athree-point controllerwith three possible outputs−ym
max, 0, y

m
max

ym(u) =





−ym
max if u < uΘ

0 if −uΘ ≤ u ≤ uΘ

ym
max if u > uΘ

(3.52)

might be used for control purposes. It is possible to represent it by two two-point elements:

ym
1 (u) =

ym
max

2
+

ym
max

2
sgn(u− uΘ) (3.53)

ym
2 (u) = −ym

max

2
+

ym
max

2
sgn(u + uΘ) (3.54)

ym(u) = ym
1 (u) + ym

2 (u) =
ym

max

2
(sgn(u− uΘ) + sgn(u + uΘ)) . (3.55)

A similar behavior is shown by the next function which shows adead zonebetween the

thresholds−uΘ anduΘ. For inputs smaller or greater than the thresholds the output

ym(u) =





ms(u + uΘ) if u ≤ −uΘ

0 if −uΘ < u < uΘ

ms(u− uΘ) if u ≥ uΘ

(3.56)

is also proportional to the slopems (confer figure 3.5).

Up to now all the introduced non-linearities consist of multiple lines. Of course this is not

valid for all non-linearities. Simple counter-examples are

ym(u) = u2 (3.57)

or arbitrary non linear functions, e.g. the dependency between volume and pressure in hydro-

forming.
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Figure 3.5: Dead zone
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Another class of non-linearities depends not only on the input, but also on the first derivative,

e.g. the input/output dependency depicted in figure 3.6. There is no unique output foruΘ ≤
u(t) ≤ uΘ. Thehysteresiswas first observed in magnets, the function is equal to

ym(u, u̇) =





−ym
max if u < −uΘ

ym
maxsgn(u− ym

maxsgn(u̇)) if −uΘ ≤ u ≤ uΘ

ym
max if u > uΘ

. (3.58)

If more than one input is used also the multiplication or division of two signals is non-linear. Of

course this list is not complete. But it allows to draw some conclusions. To model non-linearities

with multiple lines or the dependency of the derivative of the input signal it is important to model

the sgn-function.

For the general caseym = f(u) a Taylor series with multiple operating points is applied. The

same approach might also be suitable for

ym = u1(t)u2(t) (3.59)

with operating pointšu1 andǔ2

ym ≈ ǔ1ǔ2 +
∂ym

∂u1

∣∣∣∣
u1=ǔ1
u2=ǔ2

+
∂ym

∂u2

∣∣∣∣
u1=ǔ1
u2=ǔ2

. (3.60)

A direct representation with hybrid Bayesian networks is not possible, as the mean output of a

continuous node depends linearly on the instantiation of the input nodes.

If the hybrid Bayesian network is inaccurate for the data to be modeled sampling mechanisms
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like particle filters might be used. E.g. BUGS, a system basedon Gibbs-sampling [STBG96a;

STBG96b; STBG96c], allows the usage of deterministic nodesand non-Gaussian distributions.

But the disadvantage is that there are no inference mechanisms with a closed solution for the

general case.

Another problem in dealing with non-linearities is the detection of equilibrium points with

ẋs = 0. In linear systems

ẋs = Axs + BBNu = 0⇒ xs = A−1BBNu (3.61)

there is one equilibrium point for systems withdet(A) 6= 0. For systems withdet(A) = 0

there might be an infinite number of equilibrium points or none. The latter case is impossible for

u = 0. For the non-linear case multiple equilibrium points can occur.

In the next section two different approaches for control, which calculate the input signals

using the deviation of the current output from the desired value, are introduced. First PID con-

trollers, which are widely used in industry, are discussed.The second approach are Dead-Beat

controllers which guarantee a minimal settling time. For additional approaches see [Unb97a;

Sch02].

3.3 Controlled systems

The aim of a controller is to change the inputu of a dynamic system so that the output of a

system is kept close or equal to the desired value. A simple example is the room-temperature,

controlled by the heating. Here the desired valuew is the favorite temperature of the inhabitants.

This temperature should be kept constant despite disturbances, e.g. opened doors or windows.

Usually the controller is driven by the error, the difference between the desired value and the

output.

In section 1.2 approaches, usually referred to as intelligent control, are discussed. This sec-

tion deals with traditional approaches, i.e. PID- and Dead-Beat controllers.

Additionally, several criteria are developed to judge the performance of the controller dis-

cussed in this section and the Bayesian controller in chapter 4.

The main elements of a control loop are depicted in figure 3.7 where all variables are assumed

to be one-dimensional. The desired valuew is compared with the outputq of the system; e.g.

the current temperature is compared with the desired one.

The difference between desired and current valuee is used as input for the controller which
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Figure 3.7: Block diagram of a controlled system

calculates the input for the actuator. The changed input value of the dynamic system results in a

new output. Themanipulation reactiondescribes how the system responds to new inputs. The

manipulation reaction can e.g. be described by a differenceequation or the state-space description

as discussed in section 3.1. A crucial feature of control is the feedback loop which compares the

output with the desired value.

Additionally, the controller has to deal with multiple disturbanceszd′

i (t) from the environ-

ment. In a detailed approach the effect of each disturbance has to be modeled by its own transfer

function, but for linear systems it is possible to substitute the effect of all disturbances by one

disturbance variable

Z(s) =
∑

i

Gi(s)Zi(s) (3.62)

which is added to the output. This model is similar to the approach used for system identification.

From now onzd is added to the outputym so thatq(t) = ym(t) + zd(t).

In many cases controllers use the errore(t) = w(t) − q(t) as input, a model of the dynamic

system is not needed. To judge the performance of a controller there are several measures. The

selection of a suitable measure depends on the application.The integral over the squared error

I =

∫ ∞

0

(e(t)− e∞)2dt (3.63)

is frequently used, wheree∞ denotes the steady state error; i.e., the error which remains after

convergence to a steady state. In digital control the error is only known for special points in time

so that the squared error sum

Id =
tconv∑

t=0

∆T (et − e∞)2 (3.64)

is used instead of the integral. Summation is stopped attconv when all signals are converged to
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their final value. For practical reasons, convergence is assumed when all changes in the last 25

time slices are smaller then10−4.

The next section explains the function of a PID controller which is very popular in industry.

As second controller type also the Dead-Beat controller is defined. The Dead-Beat controller is a

digital filter which guarantees minimal settling time. As drawback a mathematical model of the

dynamic system is required for parameter setting of the filter.

3.3.1 Different types of controllers

The task of a controller is to minimize the effects of an occurring disturbance. Widely used are

PID controllers which have an output proportional to the error and to the integral/derivative of

the error. There are different approaches for the selectionof the controller-parameters depending

on the user’s requirements. When the mathematical description of the plant is given, a calcu-

lation which minimizes the squared error, as defined by equation (3.63) (for the calculation see

[Unb97a]), or the settling time might be used. For a discussion of techniques from artificial

intelligence see section 1.2.

This section starts with the discussion of thePID controller. Afterwards one method for

the selection of the parameters which minimizes the settling time is given. It presupposes a

mathematical description of the plant. If the plant parameters are unknown parameter estima-

tion might be used, e.g. the EM algorithm. These considerations lead to the first type of self

adaptive controllers, known asself tuning controllers(STC), which estimate the plant’s param-

eters and calculate the controller’s parameters accordingly. This approach is opposed to the

model-reference adaptive controller(MRAC) which uses a reference model to specify the ideal

response of the adaptive control system. The adaptation of the controller’s parameters has the

aim to approximate the reference model.

PID controller

A PID controller consists of three different parts, some of them may be missing. The (P)roportional

part of a PID controller leads to an output

u(t) = Kce(t) (3.65)

proportional to the error and to the gain of the controllerKc. Exceptionally, the output is de-

noted byu(t) as the controller’s output is usually used as the input of thedynamic system. The
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disadvantage of a pure P controller is the remaining steady state error which is proportional to

e∞ =
1

1 + K0
wσ(t) (3.66)

when the input is proportional to the step functionσ(t). The closed loop gainK0 = KcKs is the

product of the controller’s gainKc and the plant’s gainKs.

To avoid the steady state error, an (I)ntegral part, whose output

u(t) =
Kc

TI

∫ t

0

e(τ)dτ (3.67)

U(s) =
Kc

TIs
E(s) (3.68)

is proportional to the integral of the error, is added. The outputu(t) of the integral part depends

on the integral timeTI . Both the controller gainKc and the integral timeTI are used to adapt the

PI-controller to different dynamic systems. The PI-controller reduces the steady state error for a

disturbancezd(t) = zd
0σ(t) to zero.

To reduce the overshoot, a control signal

u(t) = KcTD
de(t)

dt
(3.69)

U(s) = KcTDsE(s) (3.70)

proportional to the derivative of the error is used. The (D)erivative part is governed by the

derivative time constantTD. So a PID controller, which combines all three parts, has theoutput

u(t) = Kce(t) +
Kc

TI

∫ t

0

e(τ)dτ + KcTD
de(t)

dt
. (3.71)

As it is impossible to realize a pure D controller, a DT1 unit with

U(s) = KcTD
T1s

1 + T1s
E(s) (3.72)

is used. Its behavior depends on the one hand on the derivative time constantTD and on the other

hand on the time constantT1.

In most of the cases the controller uses the errore(t) = w(t) − q(t) as input signal which

results in the control loop depicted in figure 3.8 with
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ym(t)u(t)

zd(t)

w(t)
G(s)Gc(s) +

+
+

-

Figure 3.8: Typical control loop

Y m(s) = Zd(s) + [W (s)− Y m(s)]Gc(s)G(s) (3.73)

Y m(s) =
1

1 + Gc(s)G(s)
Zd(s) +

Gc(s)G(s)

1 + Gc(s)G(s)
W (s) . (3.74)

Neglecting the disturbance variable, equation (3.74) leads to

Y m(s) =
Gc(s)G(s)

1 + Gc(s)G(s)
W (s) (3.75)

or to the control transfer function

Gw(s) =
Y m(s)

W (s)
=

Gc(s)G(s)

1 + Gc(s)G(s)
(3.76)

which reflects the reaction of the system, when the desired value is changed. This equation can

be used to calculate the transfer function of the controllerGc(s)

Gc(s) =
1

G(s)

Gw(s)

1−Gw(s)
, (3.77)

provided that the desired command response is known.

A similar equation in the discrete time domain can be used to figure out controller settings

for a filter, which guarantees that the new desired value is reached within finite time. This filter,

called Dead Beat controller, is discussed in the next section.

Dead Beat Controller

In digital control an equation similar to (3.77)

Gc(z) =
1

G(z)

Gw(z)

1−Gw(z)
, (3.78)
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is used. The only difference is that z-transformation is used instead of Laplace-transformation.

To design a controller, the control transfer functionGw(z) is assumed to be equal to the desired

control transfer functionFw(z). Thus the controller results in

Gc(z) =
1

G(z)

Gw(z)

1−Gw(z)
=

A(z)

B(z)z−d

Fw(z)

1− Fw(z)
(3.79)

whered is the discrete dead-timed = Td

∆T
. In order to get a realizable controller the dead-time of

the closed loop is at least the dead-time of the system. Thus the required control transfer function

is restricted to

Fw(z) =
K(z)z−d

N(z)
(3.80)

whereK(z) andN(z) are arbitrary polynomials, provided thatA(z) andB(z) have only zeros

within the unit circle. That is, equation (3.80) is only applicable for stable systems.

One possible design criterion is that the outputym
t is equal to the desired valuewt after a

finite number of time steps. This requirement is expressed bythe restriction ofFw(z) to

Fw(z) = K(z)z−d . (3.81)

This selection guarantees only that the output is equal to the desired value at sampling time.

Therefore stability of the input signals is used as next requirement. The selection

K(z) =
B(z)

B(1)
(3.82)

guarantees a stable input (for an explanation see [Unb97a; Sch02]) and additionally a minimal

settling time. Together with equation (3.79) this results in

Gc(z) =
A(z)

B(1)−B(z)z−d
. (3.83)

The approach of a Dead-Beat controller is not restricted to stable dynamic systems. The appli-

cation to unstable systems leads to further restrictions, discussed e.g. in [Unb97a; Sch02].

Not in all cases a mathematical description of the plant is given. An empirical approach was

introduced e.g. by Ziegler and Nichols [ZN42]. Even if strong restrictions apply, it is still very

popular (confer page 246, [Unb97a]). The approach by Ziegler and Nichols is therefore also

compared to the Bayesian controller.
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Figure 3.9: Output signal forKc = Kcrit

Settings using raise and delay time Controller settings using critical gain
Type of controller KC TI TD

P 1
Ks

Tr

Tu
0.5Kcrit

PI 0.9
Ks

Tr

Tu
3.33Tu 0.45Kcrit 0.85Tcrit

PID 1.2
Ks

Tr

Tu
2Tu 0.5Tu 0.6Kcrit 0.85Tcrit 0.12Tcrit

Table 3.1: Controller settings based on the methods of Ziegler and Nichols

Empirical approach

Another frequently used method is developed by Ziegler and Nichols. It is valid for systems

approximated by first order systems with dead timeTd

Gs(s) =
Ks

1 + T1s
exp(−Tds) , (3.84)

which are determined by a time time constantT1, the gainKs and the dead timeTd. The step

response of such systems is characterized by the gainKs, the raise timeTa and the delay time

Tu. The parameter are figured out using the intersection of the tangent with the x-axis and the

line with ym(t) = Ks as displayed in figure 3.3. In [ZN42] the settings given in table 3.1 are

suggested.

A second method, also by Ziegler and Nichols, is based on the measurement of the critical

controller gainKcrit.

Critical controller gain means that the controller gainKc of a P controller is increased until

oscillation is observed, as depicted in figure 3.9. The durationTcrit of the oscillation is measured.

Afterwards the formulas given in table 3.1 are used for adjustment of the parameter.
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Chapter 4

Modeling Linear Dynamic Systems with

Bayesian Networks

As seen in chapter 3 automatic control is a field with a long tradition. Also self-adaptive control

has a history of more than 50 years. Of course, self-adaptivecontrol requires a kind of learning

or training algorithm which either refines the adaptation ofthe controller directly, or first im-

proves the model, and afterwards the controller’s parameters depending on it. Frequently used

approaches in adaptive control are neural networks and Fuzzy Logic. Bayesian networks are

seldom used, although they offer a lot of attractive properties for the usage in adaptive control.

The main advantage is the similarity between Kalman filter and DBNs. Thus, a-priori knowl-

edge from control theory can easily be used to deduce the structure and parameters of a suitable

model. Afterwards the Bayesian network is used without any changes to figure out suitable input

for the system to be controlled.

For non-linear systems, there are no models readily available. In principle, there are also

structure learning algorithms, but experience in modelingmanufacturing processes shows that a

lot of know-how about the modeled process is required duringdevelopment of the model.

For the modeling of non-linear systems a strategy that consists of two different steps is sug-

gested in this thesis. Firstly, well known non-linearitiesare modeled. Secondly, the primitive

units developed in the first step can be combined - either by a well informed knowledge-engineer

or by a modified structure learning algorithm - to a complex model. The suggestions for the first

step are described in chapter 5.1, the second step is beyond the scope of this thesis.

In the next section the similarities between Kalman filter and DBNs are used to map the

state-space model to a DBN. As DBNs are not only able to predict results from given inputs, but

also to calculate suitable input signals to obtain a desiredoutput, this model will be used to infer

69
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suitable manipulated variables, given the desired value.

Additionally the test systems, used to evaluate the new typeof controller, are introduced. In

section 4.2 it is shown how normal forms (confer section 3.1.1) are applied to reduce the search

space for training of Bayesian networks.

The trained models are tested with the same systems as in section 4.1, so that the performance

of the trained model can be compared with the analytical one.The results obtained with this

structure are sufficient in most cases. In one case however, convergence of the output signal is

not achieved. To accomplish convergence in all cases a second structure, based on difference

equations, is tested. When assuming that there is no disturbance during training, there are no

hidden nodes left. Thus greater accuracy is obtained with less training data. The disadvantage of

this model is that the Markov assumption is not met. So most ofthe tools for Bayesian models

are not able to deal with such models directly. A work around is described in section 4.3, the

expansion of the Bayesian toolbox together with the experiments for controlling higher order

systems are described in section 4.4.

As the control with Bayesian networks is a completely new approach, a comparison with

traditional approaches is also necessary. One method, frequently used in industrial control, are

PID controllers. A traditional method for figuring out theirsetting is introduced by Ziegler and

Nichols [ZN42]. A modern mean, used in Digital control, are Dead-Beat [Sch02] controllers.

Dead Beat controllers are used to eliminate the deviation ofthe output from the desired value in

a finite number of time steps.

The comparison with these approaches, which finishes the discussion of Bayesian control of

linear systems, is presented in section 4.5. Linear systemsare an important subset of dynamic

systems. Sometimes the approaches introduced in this chapter are also suitable for non linear

systems, provided that linearization around the operatingpoint is possible. The other cases are

discussed in the next chapter which deals with nonlinear systems.

4.1 Principle of a model based controller

The main idea of a Bayesian controller is that the dynamic system is modeled by a DBN [DDN02a;

DDN03a]. The desired value is entered as evidence. A calculation of the marginal distribution

of the input nodes results in the input which may be used to achieve the desired value. A linear
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SISO system may be modeled by the state-space description

xs
t+1 = ABNxs

t + bBNut (4.1)

ym
t = cBNxs

t + dBNut , (4.2)

wherexs
t represents the state of the system,ut the input, andym

t the undisturbed output of the

system. These equations were readily discussed in section 3.1, compare with equations (3.8),

(3.9), and (3.23) for time discrete systems.

Provided that the statexs
t and the inputut are normally distributed, a Bayesian network, as

displayed in figure 4.1(a), can be used to calculate the mean of the following statexs
t+1 and the

outputym
t . The distribution of a continuous nodeY with parentsZ is given by

p(y | z) = N (α + βz, γ) , (4.3)

whereα denotes the mean,β the weight vector of the linkZ → Y , andγ the variance of the

distribution.

Setting the meanα = 0 results in

p(xs
t+1 | ut, x

s
t ) = N (β1

[
xs

t

ut

]
, Γ 1) (4.4)

p(ym
t | ut, x

s
t ) = N (β2

[
xs

t

ut

]
, γ2) (4.5)

for the distributions ofXs
t+1 andY m in figure 4.1(a). The weightβ1 is n× (n+ r)-dimensional

for an-dimensional state andr-dimensional output. Weightβ2 is o×(n+r)-dimensional, where

o denotes the output-dimension. Whenβ1 andβ2 are set to

β1 = [ABN bBN] (4.6)

β2 = [cBN dBN] , (4.7)

the Bayesian network depicted in figure 4.1(a) models the state transition and output of a dy-

namic system as intended. Such a network can be used for simple control purposes, when no

disturbances occur (confer [DDN00a]). For real applications disturbances have to be considered.

In reality these disturbance variables may affect everywhere. For linear systems all disturbance

variables, together with their transfer functions, can be added to a disturbance variablezd
t which
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acts directly on the output of the dynamic system. Thus it is necessary to distinguish the modeled

output of the systemym
t and the observed or measured output

qt = ym
t + zd

t (4.8)

which includes the disturbance variablezd
t . Following this discussion figure 4.1(a) has to be

extended to figure 4.1, which includes nodes for the representation of the disturbance variable.

In the case discussed here, the modeled outputym
t depends only on the input and the state, and

not on the system’s output (compare to the state-space description, discussed in section 3.1,

equations (3.8) - (3.10)). Therefore

qt = ym
t + zd

t = cBNxs
t + dBNut + zd

t (4.9)

can be modeled directly, the weight vectorβQt
of nodeQt is equal to

βQt
= [cBN dBN 1] . (4.10)

The connection between the input nodeUt and the output nodeY m
t or Qt, depicted as dashed

line, is only necessary for systems which react immediatelyon changing the input.

For systems to be controlled by a Bayesian network, the effect of a disturbance at timet

has to be eliminated, by changing subsequent inputsut+j, j ≥ 1. Thus the disturbance has to

be estimated for the future. This is done by estimation of theformer disturbance as difference

between the modeled and the observed output. Afterwards this estimation is propagated into the

future. This is done by adding a link betweenZd
t andZd

t+1 as displayed in figure 4.1. When

assuming that the disturbance usually stays constant from one time step to the next, this link gets

a fixed weight of one.

If there are large changes of the disturbance from one time-slice to the next, the frequency of

the disturbance might be larger or close to the sampling frequency. Thus the precondition of the

sampling theorem does no longer hold. As a consequence the sampling rate, set manually before

the training, should be increased.

Adding some more time-slices and the link betweenZd
t andZd

t+1 leads to figure 4.2. The

npast time-slices at the left hand side are reserved for the representation of the past. In figure 4.2

three time-slices, denoted byt − 2 · · · t are used for the past. Each time-slice consists of four

different nodes. The layer at the top represents the input. The inputut has an influence on the

statexs
t+1. The state nodes are depicted as second layer in figure 4.2. The third layer is used for
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Figure 4.1: Model for state-space description

Manipulated variables

Distributionp(t)(u, xs, zd, q, w)

Actual value

New manipulated variable

Evidence

Desired value

t− 2 t− 1 t t + 1 tmax − 1 tmax

u

zd

xs

q qq ww

· · ·

Disturbance
variable

Fixed weight State transition xs
t+1 = ABNxs

t + bBNut

Figure 4.2: State-space model used for control
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the estimation of the disturbance variablezd
t . The observed outputqt, shown in the forth layer, is

a linear function of the disturbance variablezd
t and the statexs

t+1. The information available for

the past is the inputut−npast+1 · · ·ut and the observed outputqt−npast+1 · · · qt.

The outputqt+1 is determined byzd
t+1 andxs

t+1, the inputut+1 has no influence onqt+1. Thus

no evidence is given forqt+1.

For the future it is necessary to tell the controller the desired valuew (compare with section

3.3). This is achieved by usingw as additional evidence forqt+i, that isqt+2 = · · · = qtmax
= w.

The main idea is to enteru, q and w as evidence of the shaded nodes in figure 4.2 and use

the (marginal) distribution ofu as input. To come to a working system, which shows a good

performance, some missing parameters have to be set. First the parameters of the input nodes

are yet undiscussed. The mean of the input depends on the gainof the system and on the desired

value. Both of them are unknown. That means that nothing is known about the mean of the

system. This is expressed by a large varianceγU .

For the selected model all nodes in a layer have the same parameters. Exceptionally the

parameters for the nodes in the first time-slice might be different from the parameters used for

the remaining time-slices, as nodes in the first time-slice have no parents. Thus, in figure 4.2,

the parameters forZd
t−2 are different from the parameters forZd

t . However, usually it makes no

sense to add information about the time-slice when parameters are discussed in a DBN.

A large varianceγU for the input nodes means that the meanαU has only a negligible influ-

ence on the marginal distribution ofU . Beside the lack of knowledge about a suitable mean of

the input, there is a second consideration which leads to thesame result. If the desired valuew is

changed, the Bayesian network regards this change as observation in the future.This observation

can be explained by three different causes:

• The input has changed which leads to the new desired value. This is the required reaction.

Please imagine that your guest is shivering. As a reaction you will increase the desired

temperaturew. It is the task of the controller to increase the measured temperatureq, e.g.

by increasing the flow of hot water through the heating, i.e. by changing the input.

• The disturbance variable will change in the future. If bothin- and output had been constant

in the past, there is no reason that this will happen.

• The system changes the estimation of the state. As the system under consideration is

regarded as time invariant this is the least likely cause of achanged input.

Only the first possibility results in the desired behavior. To ensure that a changed output (a new

desired value) is explained by a changed input the dispersion of the input node has to be set to a
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maximum. In our application the covariance matrixΓXs = diag(γ1, · · · , γn) is diagonal. To get

a maximal covariance for the input nodes means thatγU ≫ γi 1 ≤ i ≤ n should hold.

This concludes the discussion about the parameters ofU . The next node under consideration

is the state node. Mean and weights of this node are calculated, the covariance is yet unknown.

First it is supposed that the used model is correct, expressed by a minimal covariance. Also

considerations about an occurring disturbance leads to thesame result. When a disturbance

occurs the observationqt+1 no longer fits to the state estimation. Asqt+1 depends onxs
t+1 and

zd
t+1 there are two possible explanations for a deviation betweenthe estimated and the observed

output:

• The estimation ofxs
t+1 or q is wrong. This is synonymous with an erroneous model.

• The disturbance has changed.

As the second explanation is much more likely than the first one, the covariance of the disturbing

value in the first time-slice is selected larger than the covariance of the state-nodes, i.e.ΓXs =

diag(γ1, · · · , γn) γZd
t=1
≫ γi 1 ≤ i ≤ n. For the remaining time-slices the variancesγ1, γZd,

andγQ are selected in the same order of magnitude.

The last parameter to be selected is the mean of the disturbance variable. The disturbance is

regarded as white noise, the meanαZd is set to zero.

4.1.1 Calculation of the input signal

Control is an ongoing task; i.e., in regular intervals new output signals are measured, and new

input signals have to be calculated. When this task is finished all old signals are moved one

time-slice to the left, the oldest-one is deleted and the current signals are entered at time-slicet.

This is necessary as we work with a DBN of finite length.

This section discusses the steps of one complete circle which consists of calculation of new

input, measurements, and shifting the evidences to the left.

At the beginning of each circle the signalsut−npast+1 · · ·ut, qt−npast+1, · · · qt, qt+2 = w =

qt+3 = · · · qtmax
are entered as evidence. Afterwards the input signalsut+1 · · ·ut+i are calculated

by marginalization. The new input signalunew

unew =
1

∑k
i=1 wi

k∑

i=1

wiut+i (4.11)

is calculated as a weighted sum ofk signals. For our experimentswi = k + 1− i is used so that
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Table 4.1: Test systems for evaluation

System K T1 T2 Description

1 2 1 0.1 Damped system with gain two with no tendency to overshoot
2 2 0.1 0.1 System with dampingD < 1. Thus the step response shows an

overshoot
3 10 0.05 0.1 System with high gain and a large tendency to overshoot.

the input signals for the near future get a strong weight. If only the predictionut+1 is used for

the calculation ofunew, this might result in an oscillating signal.

After calculation, the input signal is sent to Simulink which is used for the simulation of

the dynamic system. Simulink calculates the output of the system and the last in- and output is

stored. Afterwards all signals are shifted one time-slice to the left, so that the total number of

time-slices is kept constant.

4.1.2 Evaluation of the controller

For evaluation of the controller, the reference and the disturbance reaction is used. Reference

reaction means that the system’s response is evaluated, if the desired valuew is changed. The

disturbance reaction tests the ability of the controller toeliminate the effects of the disturbance.

For the evaluation three different systems of second order,described by the differential equa-

tion

Ku(t) = ym(t) + T1
dym

dt
+ T 2

2

d2ym

dt2
, (4.12)

are used. The test systems are listed in table 4.1.

As discussed in section 3.1, the behavior of a linear dynamicsystem is characterized by the

dampingD = T1

2T2
. The step response of system number 1 has a dampingD > 1. Thus, it shows

no overshoot, as the step response of systems 2 and 3. In comparison to system number 1 and 2,

test system 3 has a larger gain. Thus the three test systems show different characteristics. They

can be therefore be regarded as being representative for theclass of linear second order systems.

To use the Bayesian network as controller the weights has to be set so that the DBN models

the behavior of the dynamic system to be controlled. Using the substitutionxs
1 = ym andxs

2 =



4.1. PRINCIPLE OF A MODEL BASED CONTROLLER 77

dym

dt
= ẋs

1 leads to the following equivalent system of first order differential equations

[
dxs

1(t)

dt
dxs

2(t)

dt

]
=

[
0 1

− 1
T 2
2
− T1

T 2
2

][
x1(t)

x2(t)

]
+

[
0
K
T 2
2

]
u(t) (4.13)

ym(t) = [1 0]

[
xs

1

xs
2

]
. (4.14)

From this equation the state-space description

A =

[
0 1

− 1
T 2
2
− T1

T 2
2

]
; b =

[
0
K
T 2
2

]

c = [1 0] d = 0

(4.15)

is deduced. Using equations (3.26) and (3.28) the state-space description is transformed to a

discrete time state-space description. With the constantsfor system 1 and∆T = 0.05 s this

leads to

ABN =

[
0.9605 0.0096

-0.9631 -0.0026

]
; bBN =

[
0.0791

1.9262

]

cBN = [1 0] dBN = 0 .

(4.16)

For the judgment of the Bayesian controller, first the desired value is changed from 0 to 10 to

test the reference reaction. The in- and output signalsq respectivelyu are recorded to calculate

the evaluation criteria given in table 4.2. For example the settling timets until the difference

between desired value and outputq remains under a threshold is measured. A second evaluation

criterion is the squared error sum.

After convergence of in- and output signals the disturbancezd is changed from 0 to 1, so that

the disturbance reaction is tested.

The results, shown in table 4.3, are obtained with a dynamic Bayesian network with a sam-

pling period of∆T = 0.05 s. It should be stressed that there is nearly no steady state error. Of

course also PI and PID controllers are able to reduce the steady state error to zero.

The timets(z
d = 0, c%) until the desired value is obtained is acceptable. It can be compared

to a Dead-Beat controller, explained in section 3.3.1, whose transfer function is calculated using

the plant’s transfer function. This type of controller is able to achieve the desired value in a finite

number of time steps which is equal to the order of the dynamicsystem and a term, depending
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Table 4.2: Used evaluation criteria for controllers
Criterion Description

Squared error sumId(z
d) Calculated according to equation (3.64). This sum is similar to the

squared integral criterion, but is adapted to the time discrete case.
Overshoot Difference between the maximal output and the desired value
e∞ Steady state error, that is the remaining error after convergence of

the output signal.
ts(z

d = 0, c%) Time from changing the desired valuew until the difference be-
tween the desired value and the current observed output remains
smaller thanc% of the desired value.

ts(z
d = 1, c%) Same asts(zd = 0, c%), but the disturbance is changed from 0 to

1.

on the dead time of the system. For our examples a Dead-Beat controller would react in 0.1 s as

the test-systems are of second order and have no dead time.

The price for the short reaction time of the Dead-Beat controller are large input signals which

might exceed the capability of the actuators. The reaction time for the Bayesian controller can be

shortened whenunew = ut+1. Please confer with section 4.5 for a comparison between Bayesian

controller and traditional controller.

As a result of this section it is concluded that Bayesian controllers work as intended, if they

are supplied with a correct model. The next step towards a self adaptive controller is to use

training algorithms to get the weights of the Bayesian network. This will be the subject of the

next section.

4.2 Trained Bayesian controller

Before starting the discussion about the training of the Bayesian network it is necessary to clar-

ify which parameters are trained. In the preceeding sectionit was explained that a Bayesian

controller needs a special relationship between the node‘scovariances, in order to guarantee an

optimal performance of the controller. Thus, the followingparameters are excluded from the

training:

• Covariance of the input nodes. The result is that the controller reacts to a changed distur-

bance or desired value by adapting the input.

• The covariance of the nodes representing the disturbance.For our test models this value is
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Table 4.3: Results for Bayesian controller with calculatedweights

System 1 2 3

Id(z
d = 0) 8.4 9.6 10.3

e∞(zd = 0 0.02 0.01 0
Overshoot 0.02 0.56 0.92
Id(z

d = 1) 0.15 0.19 0.23
e∞(zd = 1) 0 0 0.01
ts(z

d = 0, 1%) [s] 0.45 0.45 0.7
ts(z

d = 0, 3%) [s] 0.35 0.4 0.45
ts(z

d = 1, 1%) [s] 0.45 0.55 0.6
ts(z

d = 1, 3%) [s] 0.3 0.35 0.45

fixed to 5 for the first time-slice, for the remaining time-slicesγZd = 0.01.

• The links betweenZd
t andQt get a fixed weight of one.

Excluding the parameters from training has the positive side effect that the search space is re-

stricted. This is relevant as the EM-algorithm, used for training, converges towards a local ex-

tremum.

Beside the reduction of the search space, obtained by fixing the parameter listed above, the

search space is further restricted by the usage of normal forms, discussed in section 3.1.1. The

consideration starts with the observation that the differential equation

n∑

i=0

ac
i

diym(t)

dti
=

m∑

j=0

bc
j

dju(t)

dtj
(4.17)

depends on less parameters than the state-space description (confer equations (3.8) and (3.9),

discussed in section 3.1). Thus there is no unique mapping from a differential equation to the

state-space description. The usage of the observable canonical form removes this ambiguity.

When using the observable canonical formcBN is set to[0 · · · 0 1], thus only one link from the

last state node to the output is needed. The net simplifies as depicted in figure 4.3 which uses a

dynamic system of second order as example.

The dashed line fromxs
1,t to xs

1,t+1 at the right hand side should indicate that this connection

is superfluous as long as only the normal form is regarded, Theexperiments in this section are

made with a net wherexs
1,t andxs

1,t+1 are connected, as experiments have shown that the results
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Figure 4.3: Simplification of a dynamic system of second order

are slightly better if a net including this edge is used.

The linkZd
t → Qt is part of the representation of equation (3.10); i.e., the observed output is

obtained by adding the modeled output to the disturbance variable. Thus all links toQt are fixed,

therefore this node is excluded from training.

The next question concerns the used training signals. We used u(t) = ustepσ(t), which is

similar to the step responseσ(t), but with different step heightsustep. As second training signal

the impulse response was used. This means that

ut =

{
uimpulse t = 0

0 t > 0
(4.18)

with uimpulse as random number. Both signals are frequently used in control theory.

For the training 40 time-series were generated using Simulink. Then the Bayesian network

is trained for 5 iterations to adapt the weights of the state nodes. Afterwards, new simulations

are started to gain fresh training signals. The procedure isrepeated 4 times so that all in all 20

iterations are made. According to our experience 20 iterations are sufficient for training. As

training algorithm the EM-algorithm is used, as this algorithm is also able to deal with hidden

variables, e.g. the state nodesXs
1 andXs

2 . The experiments carried out are the same as in the last

section, first the desired value is changed from 0 to 10 to evaluate the reference reaction. After

convergence the disturbance is increased. Thus, in the firstmoment, the output signal increases

from 10 to 11. Each experiment is repeated 10 times so that also the stability of the introduced

approach can be judged.
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Table 4.4: Results of experiments with state-space model, system 1
Experiment number 1 2 3 4 5 6 7 8 9 10 Mean

Id(zd = 0) 7.46 7.43 7.45 7.61 7.37 7.69 7.67 7.63 7.51 noConv. 7.53
e∞(zd = 0) 0.01 -0.01 0.01 0.00 -0.01 0.01 0.02 0.01 0.00 noConv. 0.01
Overshoot 0.53 0.31 0.52 0.45 0.38 0.55 0.49 0.50 0.53 noConv. 0.48
Id(zd = 1) 0.15 0.15 0.16 0.16 0.15 0.18 0.17 0.17 0.16 noConv. 0.16
e∞(zd = 1) 0.03 0.02 0.03 0.04 0.02 0.04 0.05 0.04 0.03 noConv. 0.03
ts(z

d = 0, 1%) [s] 0.70 0.60 0.70 0.70 0.50 0.75 0.75 0.75 0.70 noConv. 0.68
ts(z

d = 0, 3%) [s] 0.50 0.35 0.45 0.50 0.40 0.55 0.55 0.55 0.50 noConv. 0.48
ts(z

d = 1, 1%) [s] 0.55 0.45 0.50 0.55 0.45 0.55 0.60 0.55 0.55 noConv. 0.53
ts(z

d = 1, 3%) [s] 0.30 0.30 0.30 0.35 0.30 0.35 0.35 0.35 0.35 noConv. 0.33

Table 4.5: Results of experiments with state-space model, system 2
Experiment number 1 2 3 4 5 6 7 8 9 10 Mean

Id(zd = 0) 9.45 9.46 9.47 9.50 9.50 9.40 9.43 9.51 9.52 9.44 9.47
e∞(zd = 0 -0.01 -0.00 -0.01 -0.01 -0.00 -0.00 -0.01 -0.01 -0.01 0.00 0.00
Overshoot 0.72 1.03 0.79 0.68 1.11 1.29 0.78 0.76 0.67 0.93 0.88
Id(zd = 1) 0.26 0.27 0.27 0.29 0.27 0.26 0.27 0.28 0.29 0.28 0.27
e∞(zd = 1) 0.01 0.02 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01
ts(z

d = 0, 1%) [s] 0.55 0.85 0.65 0.55 0.85 0.70 0.60 0.80 0.75 0.85 0.72
ts(z

d = 0, 3%) [s] 0.45 0.70 0.45 0.45 0.70 0.55 0.45 0.50 0.45 0.55 0.53
ts(z

d = 1, 1%) [s] 0.70 0.75 0.75 0.85 0.70 0.75 0.70 0.80 0.90 0.85 0.78
ts(z

d = 1, 3%) [s] 0.60 0.60 0.60 0.65 0.60 0.60 0.60 0.60 0.65 0.65 0.62

In general, the results for the trained Bayesian controller, listed in tables 4.4 to 4.6, are similar

to the results obtained for the analytical case. The most crucial point is the missing convergence

in the tenth case of table 4.4. Thus the mean given in the last column is taken from the first nine

cases.

The squared error sumId of the trained Bayesian controller is better than in the analytical

case. The reason for this fact gets obvious, when the input signal for the trained case is compared

with the analytical case. It becomes evident that the trained controller shows a stronger reaction

as the controller whose weights are set analytically.

The larger input signals lead to a larger overshoot of 0.48 incomparison to 0.02 in the an-

alytical case. The mean amount of the steady state error for the reference reaction is 0.01. In

the worst case – not including case 10 which shows no convergence – the steady state errore∞

is 0.02, which corresponds to 2 ‰ of the desired value. For thedisturbance reaction the steady

state error amounts to 0.05 in the worst case which is worse than the steady state error in the

reference reaction.

The results for system 2, shown in table 4.5, are slightly better than the results for system 1.



82 CHAPTER 4. MODELING LINEAR DYNAMIC SYSTEMS

0 1 2 3 4 5
0

2

4

6

8

10

12

Time [s]

Output

Input

In
-

O
u

tp
u

t

(a) Calculated weights

0 1 2 3 4 5 6 7 8
−2

0

2

4

6

8

10

12

Time [s]

Output

Input

In
-

O
u

tp
u

t

(b) Trained weights

Figure 4.4: Signals for system 2

Particularly convergence was achieved in all cases. The established tendency, observed in the

evaluation of the first test-system, is also valid for system2. The squared error sum is slightly

smaller as in the analytical case. This is due to a larger input (Compare figures 4.4(a) and 4.4(b))

which also leads to a larger overshoot.

The mean of the steady state error is less or equal to 1‰ of the desired value for both the

reference and disturbance reaction.

The settling time is better for the inferred model, e.g. the inferred model needs 0.45 s until

the new desired value is reached, the average time for the trained model is 0.72 s.

The model for system three show the limits of the state-spaceapproach. The average steady-

state error for the third test system is 0.26, but the median of 0.02 shows that in most cases an

acceptable result is obtained.

Also the steady state error for the disturbance reaction shows that the training process is at

its limits. The average steady state error is 0.35, which is beyond 3% of the desired value. But

also for the disturbance reaction the median of approximately 0.05 is acceptable.

The settling timets(zd = 0, c%) is much larger as in the analytical case. That is due to two

cases with a remaining error larger than 1 or 3% (Confer table4.6, experiment number 3 and 4).

When these two cases are left out of the calculation the meants(z
d = 0, 1%) is equal to

0.84s.
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Table 4.6: Results of experiments with state-space model, system 3
Experiment number 1 2 3 4 5 6 7 8 9 10 Mean

Id(zd = 0) 10.03 9.82 10.01 25.37 10.06 9.84 9.87 10.00 9.86 11.39 11.63
e∞(zd = 0 0.03 0.01 -0.51 1.95 0.02 0.00 0.01 0.02 0.00 0.08 0.26
Overshoot 1.15 0.86 1.75 7.27 1.24 0.91 1.04 1.26 1.04 0.88 1.74
Id(zd = 1) 0.52 0.45 0.02 0.15 0.52 0.39 0.49 0.43 0.36 0.92 0.43
e∞(zd = 1) 0.09 0.06 0.41 2.54 0.04 0.03 0.04 0.05 0.02 0.19 0.35
ts(z

d = 0, 1%) [s] 1.00 0.60 4.70 18.00 1.00 0.45 0.50 0.90 0.50 1.80 2.95
ts(z

d = 0, 3%) [s] 0.50 0.40 4.70 18.00 0.55 0.45 0.45 0.55 0.45 0.65 2.67
ts(z

d = 1, 1%) [s] 1.85 1.40 3.70 14.05 1.30 0.95 1.25 1.00 0.85 5.50 3.19
ts(z

d = 1, 3%) [s] 1.00 0.95 3.70 14.05 0.95 0.75 0.90 0.80 0.70 1.80 2.56

As summary of the experiments described in section 4.1 and 4.2 it is concluded that Bayesian

networks are a suitable mean for self-adaptive control, provided a successful training process is

given. In section 4.3 a second model based on the difference equations, introduced in section

3.1.3, is examined. This model has the great advantage of less hidden nodes. The Experiments

described in section 4.3 have shown that a higher accuracy incontrol is achieved, even if less

examples are needed for training.

4.3 Higher order Markov-model

In section 3.1.3 a second possibility for describing lineardynamic systems was introduced. In

the description by difference equation (confer equation (3.34))

ym = −
n∑

i=1

aiy
m
t−i +

n∑

i=1

biut−i (4.19)

no hidden nodes are left. Instead of using state nodes, former in- and outputsut−i andym
t−i re-

spectively are taken to calculate a prediction of the next output. As in the state-space description

also the disturbance variable has to be taken into account. That is, the estimation ofzd
t has to be

added toym
t to figure out the observed output. This consideration leads to the model depicted in

figure 4.5 which shows a dynamic system of second order.

In comparison to the state-space model it is not possible to save the layer for the modeled

outputym
t . Adding the disturbance variablezd

t to ym
t directly (confer figure 4.6) leads to wrong

predictions in presence of a disturbance.

When looking at figure 4.5, particularly at nodeY m
t+2, one notices that the Markov assump-

tion, explained in section 2.4, is not met asY m
t+2 depends also onY m

t andUt. For models of higher

order a recourse toY m
t−i andUt−i, i > 1 is necessary for the prediction ofY m

t+2. This causes prob-
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Figure 4.5: Modeling of equation (3.34) by a dynamic Bayesian network

lems, as some of the toolboxes for Bayesian networks, including the one implemented by K. P.

Murphy which is used for our experiments, are not able to dealwith Markov models of higher

order. There are two obvious solutions.

• Adding additional nodes to the model with the task to transfer the values of random vari-

ables, belonging to former time-slices, to the current one [DDN02b].

• Reimplementation of a small part of the Bayesian network toolbox. Due to the evaluation

mechanism, the unrolling of the dynamic Bayesian network, the necessary expansion of the

toolbox is restricted to the generation of the Bayesian network. The evaluation algorithm

does not need to be changed. Also the training algorithm is left untouched as it is also

based on the unchanged unrolled Bayesian network. The results obtained with this model

to control systems of second and third order are discussed insection 4.4.

The first approach, used tor the experiments in this section,has the advantage that it can be used

for rapid prototyping so that the supposition that the difference equation model is advantageous

for a Bayesian controller can be checked easily. When additional nodes are used, the same value

is represented by two different nodes in different time-slices. This leads to the structure in figure

4.7.

Of course it has to be guaranteed that the same value is assigned to nodes representing the

same value. For example the valuesut andym
t are represented in the first and second time-slice in

figure 4.7. It is guaranteed by two different mechanisms thatall nodes representingut or ym
t get

the same value. For input nodes the value is entered twice as evidence. For systems that show no
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Figure 4.6: Faulty model which leads to incorrect prediction

immediate reaction on changes of the input nodes, the links betweenut andym
t are superfluous.

Thus, one of the input nodes is unnecessary.

For the modeled output of the system this is not possible as there is no evidence given forym
t .

The solution in this case is a link between two nodes representing the same value with a fixed

weight of one. An example is the link betweenym
t in the time-slice at the left and in the middle

of figure 4.7.

The next step concerns the training of the Bayesian network.Our aim using the difference

equation is to use as less hidden nodes as possible. When assuming that there is no disturbance

during training, it is possible to setzd = 0 andym = q. Thus there are no hidden nodes left.

Similar to the experiments with the state-space descriptions, some of the parameters are

clamped in order to guarantee that the controller acts as intended. The following parameters

are excluded from training:

• Variance of the input nodesγU

• Variance of the modeled outputγY m

• Both edges toQ has a fixed weight of one, the varianceγQ is set to a small value, for the

described experimentsγQ = 0.01

• The connection betweenZd
t andZd

t+1 has a fixed weight of one, the variance of the first

time-slice is set to three (at the first time-slice it is not possible to make proper predictions

as the information from former signals is missing), in the remaining time-slicesγZd = 0.01.
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Figure 4.7: Model for difference equation with redundant nodes

As there are no hidden nodes left, the number of iterations isreduced to five, but of course the

convergence of the EM-algorithm is observed immediately. The number of data sets used for

training remains 40.

The results obtained for system 1 with the difference equation model are depicted in table

4.7. The most important result is that the control signal converged in all cases; i.e., the differ-

ence equation model shows the stability necessary for real world applications. This argument is

supported by the low distortion of the training results. When table 4.4 and 4.7 are compared the

most impressive result is that the dynamic system controlled with the difference equation model

shows nearly no overshoot in comparison to an overshoot of 0.48 of the state-space model.

Table 4.7: Results of experiments with higher order Markov model, system 1
Experiment number 1 2 3 4 5 6 7 8 9 10 mean

Id(zd = 0) 8.51 8.51 8.51 8.51 8.51 8.51 8.51 8.51 8.51 8.51 8.51
e∞(zd = 0) -0.09 -0.09 -0.05 -0.07 -0.05 -0.10 -0.08 -0.07 -0.06 -0.06 0.07
Overshoot -0.09 -0.09 -0.05 -0.07 -0.05 -0.10 -0.08 -0.07 -0.06 -0.06 -0.07
Id(zd = 1) 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11
e∞(zd = 1) 0.02 0.02 0.05 0.04 0.05 0.00 0.03 0.04 0.04 0.05 0.03
ts(z

d = 0, 1%) [s] 0.75 0.75 0.60 0.60 0.60 2.40 0.65 0.65 0.60 0.60 0.82
ts(z

d = 0, 3%) [s] 0.45 0.45 0.40 0.40 0.40 0.45 0.40 0.40 0.40 0.40 0.42
ts(z

d = 1, 1%) [s] 0.30 0.60 0.30 0.30 0.30 0.60 0.30 0.30 0.30 0.30 0.36
ts(z

d = 1, 3%) [s] 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
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Figure 4.8: Signals of difference equation controller, system 1

The squared error sum for the reference reaction is better for the state-space model. The

reason for this is the same as in the comparison between the analytical and trained state-space

model. The larger overshoot results in a faster reduction ofthe difference between observed

output and desired value and therefore to a smaller squared error sum (compare figure 4.8).

For the disturbance reaction the difference equation modelshows better results, a hint that the

difference equation model is trained more accurately. Comparing the settling time shows similar

results. The state-space model is slightly better as long asthe reference reaction is compared

(0.68 s in comparison to 0.82 s of the difference equation model). If the disturbance reaction is

compared the difference equation model shows better results (0.33 s vs. 0.25 s).

Using system 2 for comparison shows similar results as system 1. Less overshoot (0.45 vs.

0.88) of the difference equation model which leads to a slightly worse squared error sumId (9.82

vs. 9.47). Despite the worse squared error sum the settling time, that is the time until the desired

value is reached, is shorter for the difference equation model.

As mentioned in section 4.2, system 3 is suited to show the limit of the state-space approach.

Comparing the results of the state-space model and the difference equation model, depicted in

tables 4.6 and 4.9, shows that the new structure clearly overcomes this limit.
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Table 4.8: Results of experiments with higher order Markov model, system 2
Experiment number 1 2 3 4 5 6 7 8 9 10 mean

Id(zd = 0) 9.82 9.83 9.82 9.82 9.82 9.82 9.82 9.83 9.83 9.82 9.82
e∞(zd = 0) 0.03 -0.03 -0.05 -0.04 -0.03 -0.05 -0.04 -0.03 -0.04 -0.04 0.04
Overshoot 0.45 0.45 0.43 0.44 0.45 0.43 0.44 0.46 0.44 0.44 0.45
Id(zd = 1) 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16
e∞(zd = 1) -0.04 -0.04 -0.06 -0.05 -0.04 -0.05 -0.05 -0.04 -0.05 -0.05 -0.05
ts(z

d = 0, 1%) [s] 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45
ts(z

d = 0, 3%) [s] 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40
ts(z

d = 1, 1%) [s] 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35
ts(z

d = 1, 3%) [s] 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

Table 4.9: Results of experiments with higher order Markov model, system 3
Experiment number 1 2 3 4 5 6 7 8 9 10 mean

Id(zd = 0) 9.90 9.89 9.89 10.10 9.89 9.89 9.90 9.89 9.91 9.89 9.92
e∞(zd = 0) 0.01 0.01 0.01 0.03 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Overshoot 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15
Id(zd = 1) 0.19 0.19 0.19 0.18 0.19 0.19 0.19 0.19 0.19 0.19 0.19
e∞(zd = 1) -0.04 -0.04 -0.04 0.00 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.03
ts(z

d = 0, 1%) [s] 0.70 0.65 0.65 1.70 0.65 0.65 0.65 0.65 0.75 0.65 0.77
ts(z

d = 0, 3%) [s] 0.45 0.45 0.45 1.05 0.45 0.45 0.45 0.45 0.45 0.45 0.51
ts(z

d = 1, 1%) [s] 0.60 0.60 0.60 0.55 0.60 0.60 0.60 0.60 0.60 0.60 0.60
ts(z

d = 1, 3%) [s] 0.25 0.25 0.25 0.30 0.25 0.25 0.25 0.25 0.30 0.25 0.26

The results obtained with the difference equation model arein all respects better than these

obtained with the state-space model. As usual the state-space model shows the larger overshoot.

In this case this does not lead to a smaller squared error sum.The fact that the trained difference

equation model sometimes even surpasses the state space model whose weights are set, is par-

ticularly from interest. For instance the squared error sumis smaller for both, the reference and

the disturbance reaction. Also the settling times are nearly the same. The disadvantage of the

approach with redundant nodes, as depicted in figure 4.7, is the overhead for the computation of

the redundant nodes which increases linearly with the orderof the system.

4.4 Modeling of higher order systems

In sections 4.1 to 4.3 all used test systems are of second order. Even if the approach with redun-

dant nodes is still possible for higher order systems, a lot of overhead is caused by this solution.

In principle there are different possibilities to model systems with ordern > 2 which will be

discussed in this section more or less from the theoretical point of view.
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• When the state-space approach is used, it is possible to increase the number of state nodes

or the dimension of the state node to model a system of higher order.

• Splitting the system in subsystems of second order.

• Splitting of the system in parallel subsystems.

• Usage of higher order Markov models, being able to predict the output by resource to

former in- and output signals.

• Approximation of a higher order system by a system of secondorder.

When the state-space approach is used, it is theoretically also possible to model MIMO sys-

tems of higher order. But as seen in section 4.2 the training of the state-space model might cause

problems. One additional problem for systems withn > 2 is the high number of the state nodes

itself. When the junction tree of the higher order model is constructed, the state nodes and all

of their parents are all content of one clique. For a SISO system of forth order this leads to

nine-dimensional cliques, asXs
t−1 andUt−1 are parents of the state nodesXs

t . This leads to nu-

merical problems during inversion of the covariance matrix, included in the inference algorithm

introduced in [Lau92].

One solution of the problem is to split the system in a serial connection of second order

systems. The idea is to split the numerator and denominator of the transfer function

G(s) =
N(s)

D(s)
=

N1(s)

D1(s)

N2(s)

D2(s)
· · · Nn/2(s)

Dn/2(s)
(4.20)

into polynomialsNi(s) andDi(s) of second order. This reduces the numerical problems, but

there are two restrictions. This approach is only suitable for SISO systems, as the transfer func-

tion of MIMO systems are polynomial matrices. The other restrictions is the training which

might cause problems.

The second approach is the division in parallel subsystem. Assuming that all poles inD(s)

are real

G(s) =

p∑

k=1

(
ck,1

(s− sk)
+

ck,2

(s− sk)2
+ · · ·+ ck,rk

(s− sk)rk

)
(4.21)

wherep is the number of different poles,sk is a pole ofD(s) andrk denotes how often(s− sk)

occurs the decomposition ofG(s). ThusG(s) is decomposed in parallel subsystems, as parallel

subsystems are mapped to the sum of their transfer functions. As the number of poles is not

always known before modeling starts, this approach cannot be used in all cases.
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Table 4.10: Test results for system number 4

BN4

Id(z
d = 0) 66.45

e∞(zd = 0) 0.05
Overshoot 1.80
Id(z

d = 1) 1.44
e∞(zd = 1) 0.09
ts(z

d = 0, 1%) [s] 7.12
ts(z

d = 0, 3%) [s] 4.40
ts(z

d = 1, 1%) [s] 10.92
ts(z

d = 1, 3%) [s] 3.68

The most promising approach is the application of higher order Markov models. For the

evaluation of this approach the Bayesian toolbox is expanded so that Markov models of higher

order can be implemented directly without the usage of redundant nodes. For a third order system

G(s) =
0.4s + 2

0.01s3 + 0.5s2 + 0.2s + 1
(4.22)

whose step response shows an overshoot, the results are depicted in table 4.10. The results

are obtained with a sampling period of∆T = 0.4 s and 40 training examples. Trials with

∆T = 0.05 s fail. The reason for this might be the small number of time-slices, so that a long

term prediction is not given. For the reference reaction andthe disturbance reaction the steady

state error is below the 1% level. For a comparison with traditional controller see section 4.5.

The last possibility for modeling higher order systems is toselect a model of lower order, for

example

G(s) =
K

(1 + T1s)(1 + T2s)
(4.23)

might be used . Other models are introduced in [Unb97a].

4.5 Comparison to PI and Dead-Beat controller

In sections 4.1 to 4.4 the capabilities of Bayesian controllers are examined based on the criteria

listed in table 4.2. This section deals with controllers used in industrial practice in order to com-

pare their performance with the Bayesian controller (see also [DDN03b]). Due to the numerous

methods to figure out controller settings it is impossible totry out all current approaches.

We have selected the approach by Ziegler and Nichols [ZN42] which, despite its age, is
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Figure 4.9: Setup for experiments with PI and Dead-Beat controller

Table 4.11: Settings for PI controller

Number Kcrit tcrit ControllerD(z)

1 32.58 0.1 14.661z−6.039
z−1

2 2.25 0.29 1.0125z−0.8083
z−1

3 0.213 0.37 0.0959z−0.0807
z−1

4 64 0.17 28.8z−19.0549
z−1

one of the most commonly used approaches. When this approachis applied to digital control a

high sampling period has to be selected so that the controller operates nearly in a continuous time

space. Moreover this mechanism is originally developed foroverdamped systems, a precondition

only given for system 1.

Dead-Beat controllers are particularly designed for digital control. They guarantee that the

desired value is reached within a finite number of time steps,depending on the order of the

system and the dead time. Therefore this type of controller is suited to give a lower bound for the

settling timets. But is has to be kept in mind, that this method is based on the exact knowledge

of the transfer function and of the desired reference reaction. Particularly, the first requisite is

usually not given. For our experiments the control loop depicted in figure 4.9 is used.

To figure out the settings according to Ziegler and Nichols the controller is first used as pure

P-controller, i.e.G(z) = Kc. The controller gainKc is increased until the closed loop starts

oscillation. The controller gainKcrit and the critical timetcrit are measured. For our test sys-

tems these values are given in table 4.11. Afterwards the controller is calculated according to

table 3.1. The resulting controller is dedicated for continuous time. To adapt it to discrete time
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Table 4.12: Settings for Dead-Beat controller

Number Transfer functionG(z) ControllerD(z)

1 0.0791z−1+0.0188z−2

1−0.9578z−1+0.0067z−2
1−0.9578z−1+0.0067z−2

0.0978−0.0791z−1−0.0188z−2

2 0.2088z−1+0.1766z−2

1−1.4138z−1+0.6065z−2
1−1.4138z−1+0.6065z−2

0.3854−0.2088z−1−0.1766z−2

3 1.1286+1.0377z−1

1−1.5622z−1+0.7788z−2 z
−1 1−1.5622z−1+0.7788z−2

2.1663−1.1286z−1−1.0377z−2

4 0.544z−1+0.0529z−2−0.0127z−3

1−1.5730z−1+0.8651z−2−2.0612e−09z−3
1−1.573z−1+0.8651z−2−2.0612e−09z−3

0.5842−0.544z−1−0.0529z−2+0.0127z−3

the controller setting was mapped to discrete time domain using the according matlab function.

This mapping was done using the same sampling period∆T as for the Bayesian controller to

ensure compatibility of results. But this selection is questionable as it does not guarantee the

requirement that the controller operates in nearly continuous time. For the tests, discussed in this

section, only PI-controllers are used. Tests with PID controller yield no satisfying results. Possi-

ble reasons may be the fact that the Ziegler-Nichols approach is usually restricted to overdamped

systems in continuous time domain.

For the Dead-Beat controller the dynamic system is mapped todiscrete time domain and

afterwards the controller was calculated. The results are depicted in table 4.12.

The controllers listed above are compared to a Bayesian controller, based on the difference

equation model. In difference to the results, discussed in section 4.3, the models are implemented

directly using an expansion of the BN-toolbox for higher order Markov models. Two different

settings for the Bayesian network are tested. The first version, called BNT1, uses onlyut+1 for

the calculation ofunew. That is the number of nodesk in equation (4.11) is set to 1. Hence

unew = ut+1 . (4.24)

The second version BNT4 uses four nodes for the calculation of unew, i.e

unew =
1

10
(4ut+1 + 3ut+2 + 2ut+3 + ut+4) . (4.25)

As figures 4.10(a) and 4.10(b) show, one of the main effects isthat the input signal is damped

down. This makes sense, because the actuator might be too slow to follow the oscillation. The
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Table 4.13: Test results for system number 1 and 2

Test System 1∆T = 0.05 s Test System 2∆T = 0.05 s
ZN DB BN1 BN4 ZN DB BN1 BN4

Id(z
d = 0) 12.43 5.2 4.98 8.09 15.39 6.04 5.02 9.66

e∞(zd = 0) 0 0.01 0.03 0.06 0 0 0.01 0.02
Overshoot 8.82 0.01 0.06 0.06 4.03 0 0.36 0.54
Id(z

d = 1) 0.12 0.05 0.09 0.11 0.15 0.06 0.11 0.16
e∞(zd = 1) 0 0.01 0.02 0.03 0 0 0.03 0.04
ts(z

d = 0, 1%) [s] 1.1 0.1 0.10 0.50 3.35 0.1 0.35 0.45
ts(z

d = 0, 3%) [s] 0.85 0.1 0.10 0.35 2.5 0.1 0.20 0.40
ts(z

d = 1, 1%) [s] 0.55 0.1 0.15 0.55 1.5 0.1 0.15 0.30
ts(z

d = 1, 3%) [s] 0.3 0.05 0.15 0.20 0.5 0.1 0.15 0.25

Table 4.14: Test results for system number 3 and 4

Test System 3∆T = 0.05 s Test System 4
ZN DB BN1 BN4 ZN DB BN1 BN4

Id(z
d = 0) 21.51 6.15 4.97 9.89 13.87 40.20 39.80 66.45

e∞(zd = 0) 0.01 0 0.00 0.00 0.00 0 0.03 0.05
Overshoot 1.70 0 0.00 1.15 6.34 0.22 0.23 1.80
Id(z

d = 1) 0.21 0.06 0.12 0.19 0.31 0.40 0.94 1.44
e∞(zd = 1) 0 0 0.03 0.04 0 0 0.05 0.09
ts(z

d = 0, 1%) [s] 6.05 0.1 0.05 0.65 2.65 1.2 3.88 7.12
ts(z

d = 0, 3%) [s] 4.4 0.1 0.05 0.45 2.0 0.8 2.32 4.40
ts(z

d = 1, 1%) [s] 2.5 0.1 0.55 0.60 1.5 0.4 5.48 10.92
ts(z

d = 1, 3%) [s] 1.05 0.1 0.15 0.25 0.85 0.4 1.20 3.68

results for Ziegler Nichols are worst. Particular for system 4, the sampling period∆T has to be

decreased to 0.05 s. The other systems were tested with∆T = 0.4 s. That means that the squared

error sum in table 4.14 should not be compared to BN1, BN4, andthe Dead-Beat controller.

The comparison for system 1 shows that the Bayesian network BN1 shows similar results as

the Dead-Beat controller. For an overdamped system it mightbe sensible to select only one node

for the calculation ofunew. In this case similar settling timests are obtained. Systems two and

three both have a dampingD < 1, so that oscillation is possible. The results for BN1 and DB

are similar, but as figure 4.10(a) shows, too large input signals lead to oscillation. Also the Dead-

Beat controller shows a sudden change of the input signal at the beginning (see figure 4.11 for the

in- and output signals of the Dead-Beat controller) For the Dead-Beat controller an appropriate

mean to limit the signals of the actuator is to increase the sampling period∆T , for Bayesian
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Figure 4.10: Signals of Bayesian controller, system 2, based on difference equation
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Figure 4.11: Signals of system 2 for the Dead-Beat controller
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networks the number of nodes used for calculation ofunew can be increased. This leads of course

to an increase of the squared error sum, as the first input signal is decreased. Additionally, the

settling time is increased.

The right hand side of table 4.14 shows that the Bayesian network approach is also suitable

for systems of third order. The steady state error is below 1%of the desired value. But the

settling time is worse than for the Dead-Beat controller.

In chapter 4 the application of Bayesian controllers to linear systems has been discussed.

The next chapter discusses the modeling of non-linearitieswith Bayesian networks. In some

books about non-linear control, some frequently occurringfunctions are listed. The idea is to

design models for these elements which can be combined to more complex models and have

the advantage, that a lot of a-priori knowledge can be used for the design. Thus some of the

parameters can be clamped, so that the training effort is reduced.

It is hard to compare the different methods. The Bayesian controller has a high time-complexity.

According to [Lau92] the “most complex operation is the weakmarginalization over a given

clique. If the clique contains discrete variablesX ∈ ∆G with state space of cardinalitynX

and q continuous variables, then the computational complexity is of the order of magnitude

q3
∏

X∈�G
nX”.

In this chapter only continuous nodes are used, thus an upperlimit of the time complexity

is q3. The largest clique of the state-space description contains 2n state nodes plus the input

nodes (remember that at least one clique must contain the state nodes and its parents). The time

complexity ofq3 results from matrix inversion, hence it makes no differencethat only strong

marginalization is applied during inference.

The training time of a state-space model with 25 nodes is approximately 1600 s, the evalua-

tion time 0.43 s. Thus the run-time is the weak point of the Bayesian network. Its advantage is

the ability to adapt itself to different systems.

In contrary to the Bayesian controller the Dead Beat controller is based on a mathematical

description. If this description is available or can be estimated, the Dead-Beat controller is a good

choice, because it guarantees a minimal settling time and the control signals are easily calculated.

The approach of Ziegler and Nichols is restricted to overdamped systems. Additionally, it is

originally developed for continuous time systems. Thus it is a very valuable empirical formula,

but far from optimal.

So the Bayesian controller is recommended if the system is unknown, In the other case the

Dead-Beat controller offers better features. But the reader should keep in mind that the Bayesian

controller is in a prototypical stage (compare chapter 9). Moreover the comparison of this chapter
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is incomplete as other self-adaptive methods are not regarded.



Chapter 5

Bayesian networks for modeling nonlinear

dynamic systems

This section discusses the approximation of a nonlinear function by piecewise linear approxima-

tion. In a first approach, introduced in section “Linear Approximation”, it is shown how a hybrid

Bayesian network simulates several Taylor series at the same time.

All input variables that have a nonlinear influence on the output are represented both by a

discrete and a continuous variable. The discrete variable selects a pointua closest to the current

input u. In first models an extra nodeEQ is used that calculates the quantization erroreQ =

u−ua. This model is used without modifications for the modeling ofcalibration in hydroforming.

In section “Simplification of linear approximation” it is shown how this node is saved. This

simplified version is used for the model of saturation.

In Section 5.2 the approximation of a nonlinear function by several Taylor series is combined

with the modeling of dynamic systems. Additionally the results of section 8 are applied to restrict

the run-time.

5.1 Prototypical modeling of nonlinear units

Linear Approximation

A differentiable functionf is approximated by a Taylor series

f̀(u) = f(ua) + f ′(ua)(u− ua), (5.1)

97
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at a pointua. The functionf̀ denotes the approximation off , f ′ the first derivative andua an

arbitrary point.

To model the approximation of a functionf with several Taylor series the model depicted in

figure 5.1 is used. The mean off(U)’s distribution, representingf(u),

αf(U) + βf(U)eQ = f̀(u) (5.2)

is equal to the approximation of the functionf , provided that the mean

αf(U) = f(ua) , (5.3)

and the weight

βf(U) = −f ′(ua) (5.4)

is equal to the first derivative off at pointua. The nodeEQ calculates the difference between

the inputu and its closest pointua. This is easily obtained by setting the mean ofEQ

αEQ
= ua (5.5)

and the weightβEQ
between nodeU andEQ

βEQ
= −1 . (5.6)

It remains to show how to select the correct pointsua. Usually a link points from the cause to

the effect of an event, so that a linkU → Ud would be naturally. The introduction of such a link

contradicts the assumption that there are no continuous parents of discrete nodes. For exceptions

see [Mur99; LSK01].

Our experiments have shown that triggering ofUd also works with a linkUd → U . To

understand how the continuous node triggers the discrete node assume thatu is closest toua.

Thus the amount|ua − u| < |ui − u|, a 6= i. Therefore the probability distribution of nodeU is

maximal ifUd = a which leads to an increased probability ofUd = a. The increased probability

for Ud = a is used to select the corresponding parameters for the node representingf(u).

In order to obtain acceptable training results the following two conditions have to be met.

• The selected pointsu1, u2, · · · , uk (k equal to the number of states ofUd) should be near

the centers of the straight lines used to approximate the function f . This is a matter of a

good initialization.
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Figure 5.1: Linear approximation by multiple Taylor series

• The standard deviations associated with the different meansui of U should be in the same

order of magnitude as the difference between two neighboredpointsui and uj. If the

scattering of the data is different for different regions ofthe functionf , the (co)variances

can be clamped or tied. At least the BN-toolbox, used for the experiments, offers these

features. For a discussion how the EM-algorithm is changed to enable clamped or tied

covariances see [Mur98a]. If the size of the regions differsseverely it is necessary to

divide some larger regions, even if they might be modeled by one line.

A critical point in training are test-plans, if one state represents only one setting, and the

second state several settings. As an example imagine a modelof the threshold process, shown in

figure 5.2.

The first state represents an inputu = 1.5, the second state all inputs between 2.5 and 5.5.

Assuming that each experiment is repeated 6 times, the variance for the second state is estimated

at

γ2 =
1

23

(
6(2.5− 4)2 + 6(3.5− 4)2 + 6(4.5− 4)2 + 6(5.5− 4)2

)
= 1.304 . (5.7)

For the first state variance is zero. In our exampleγ1 = 0.0025 ≪ γ2 is used to demonstrate

the effect of two heavily different covariances. A comparison of the two Gaussian distributions

p(u|α1 = 1.5, γ1 = 0.0025) andp(u|α2 = 4, γ2 = 1.304) is shown in figure 5.3.

It can be seen that close tou = 1.5 the probability of state 1 is much larger than of state

2. Figure 5.4 (which shows the same two probability density functions) however, exhibits the

problem that the probability of state 2 is larger than for state 1 if the input is smaller than 1.25.

Thus the model will fail to make predictions for values smaller than 1.25.
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Figure 5.2: Example for a threshold function

There are two possible solutions for the problems just discussed. The first is to use an ad-

ditional state with a similar variance, so that state one is responsible for small inputs, state 2

models inputs close to the threshold and state three is used for inputs beyond the threshold. An

example is the model for the calibration process, treated insection 7.1.1.

The second solution is to tie the covariances for different states, that is to change the maxi-

mization step of the EM algorithm, so thatγi = γj for different statesi 6= j.

Simplification of linear approximation

In the last section the approximation of an arbitrary function by several Taylor series is discussed.

This pattern is successfully applied to model preforming and calibration, discussed in section

7.1.1. Figure 5.1 shows that an extra nodeEQ for the quantification of the error is used. To

simplify this model the approximation of a functionf at a pointua

f̀(u) = f(ua) + f ′(ua)(u− ua) (5.8)

= f(ua)− f ′(ua)ua + f ′(ua)u (5.9)

is split in a constant termf(ua) − f ′(ua)ua and a second termf ′(ua)u depending onu. Setting

the offset of the output nodef(U) to

αf(U) = f(ua)− f ′(ua)ua (5.10)
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Figure 5.5: Simplified linear approximation

and the weight to

βf(U) = f ′(ua) (5.11)

shows that a continuous node with a discrete parent is able toapproximate a functionf . The

used model is depicted in figure 5.5.

A precondition is that the statesud are triggered so that the probability of one state is usually

much higher than the probability of the remaining states. This is again achieved by setting

αU(ud = a) = ua (5.12)

the mean for nodeU close to the selected operating pointsua. The number of states ofUd is of

course equal to the number of operating points. The standarddeviation
√

γU should be selected

similar to the distance between two neighbored operating points. Usually it is sufficient to select
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a suitable value as initialization to start the training process. During the training process the value

for γU is improved by the EM algorithm.

Saturation

One of the nonlinearities discussed in section 3.2 is the saturationfsat that is described by equa-

tion (3.48). This function can be modeled by three straight lines. For the first one, a point

u1 < usat has to be selected which models the regionu ≤ usat. Thereforefsat(u1) = −ym
max.

The derivative in that region vanishes (f ′
sat(u1) = 0) as the output does not depend on the input.

To model the second region a pointu2 obeying−usat ≤ u2 ≤ usat is selected. The slope

f ′
sat(u2) = ym

max

usat
is equal to the quotient of the maximal outputym

max by the inputusat. Provided

thatu2 is in the center of the regionu2 = 0, the function valuefsat(u2) = 0.

Similar tou1, a pointu3 with u3 > usat is selected withfsat(u3) = ym
max andf ′

sat(u3) = 0.

The consideration above results in the following means

αU(Ud = 1) = u1 (5.13)

αU(Ud = 2) = u2 (5.14)

αU(Ud = 3) = u3 (5.15)

for the input nodeU . These settings, abbreviated byαU = {u1 u2 u3}, represent the centers

of the piecewise approximation. The parameters of the output node are according to equation

(5.10)

αf(U) = {−ym
max 0 ym

max} . (5.16)

The weights of the output nodef(U)

βf(U) = {0 ym
max

usat
0} (5.17)

contain the derivatives at different pointsui, 1 ≤ i ≤ 3.

There are only two different parameters which determine thesaturation curve, the minimal

and maximal outputym
max, andusat. For the training of the model it is assumed that all states of

the input nodeUd have the same probability. Additionally the saturation model implemented in

Simulink has as single parameter the lower and upper limit, the maximal outputym
max is therefore

equal tousat. As a consequence the weight of the output node is clamped to

βf(U) = {0 1 0} . (5.18)
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As training input 600 examples are taken that are uniformly distributed between -12 and 12.

After the training the saturation is modeled with a maximal error of 0.10 and relative error of

2.27%. A comparison of the saturation curve with the prediction is given in figure 5.6.
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Figure 5.6: Comparison of model and real signals for saturation

Hysteresis

The hysteresis curve depends not only on the inputu, but also on the sign of the first derivative.

The sign of the first derivative is calculated by

sign(u̇) = sign(ut+1 − ut) . (5.19)

The difference betweenut+1−ut is calculated by the Bayesian network depicted in figure 5.7(a).

The problem is to detect the sign of the differenceut+1 − ut = ∆u. Adding a discrete parent

to node∆U does not work. The usage of different offsetsα∆u is not suitable to distinguish

between different signs, because the mean depends on the weights and the evidence of the nodes

Ut+1 andUt.

The trick is to use a nodeCH with a constant evidencec > 0 and a discrete parentXsign of

nodeCH which switches between different weights ofCH (confer figure 5.7(b)).

Assume thatβCH
(sign(u̇) = −1) = wβ[−1 1]; i.e., the nodeCH calculatesut − ut+1 given

that sign(u̇) = −1 and the weightwβ is set to one. The appropriate setting ofwβ is discussed
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Figure 5.7: Parts of the hysteresis model

later. Forsign(u̇) = 1 the weights

βCH
(sign(u̇) = 1) = wβ[1 − 1] (5.20)

are set the other way round. Given that the evidence for nodeCH is always a positive constant

c the Bayesian network works as follows. Ifut+1 > ut the differenceut+1 − ut is positive, the

difference−ut+1 + ut is negative. Asc is positive, it is more likely thatxsign = 1.

When ut > ut+1, the difference−ut+1 + ut is positive. Thus the likelihood ofc being

positive is increased byxsign = −1. Therefore the Bayesian network depicted in figure 5.7(b) is

able to approximate the sign function. To be sure that the sign-function switches fast when the

relationship betweenut+1 andut changes, the weightswβ of the linksUt → CH andUt+1 → CH,

the variance of nodeCH and the constantc have to be selected carefully. If∆u = ut+1 − ut the

two distributions forsign(u̇) = ±1 are

p(∆u|sign(u̇) = 1) =
1

2π
√

γ
exp−(c−∆uwβ)2

2γ
(5.21)

p(∆u|sign(u̇) = −1) =
1

2π
√

γ
exp−(c + ∆uwβ)

2

2γ
(5.22)

To be sure that the probabilityP (xsign = 1) switches fast from 0 to 1 if the differenceut+1 − ut
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changes its sign, the quotientp(∆u|sign(u̇) = 1)/p(∆u|sign(u̇) = −1) needs to be maximal.

This quotient is

p(∆u|sign(u̇) = 1)

p(∆u|sign(u̇) = −1)
=

exp− (c−∆uwβ)2

2γ

exp− (c+∆uwβ)2

2γ

(5.23)

= exp
2∆uwβc

γ
. (5.24)

In order to maximize this quotient,wβ or c have to take on large values, the variance has to be

very small. For our experimentsγ = 0.2, wβ = 4, andc = 10.

After the sign is detected, it is easy to expand figure 5.7(b) so that the hysteresis curve is

modeled. Only one output node has to be added. Additionally,a link betweenUt+1 andXsign is

added to decide whether the current input is below or beyond the thresholduΘ (confer equation

(3.58)). ThusXsign has four states, two states are used to encode whether the current input

exceeds the thresholduΘ, two of them are used to represent the signsign(u̇).

Figure 5.9 shows that the Bayesian network depicted in figure5.8 is able to model the hys-

teresis curve. Note that figure 5.9 is based on a Bayesian network with calculated weights.

ut ut+1

xsign

ym

c

Figure 5.8: Bayesian model for hysteresis

The training of the Bayesian network is not successful, an example of a failed trial is shown

in figure 5.10.

It can be seen that the thresholduΘ is estimated incorrectly . The problem is that there is no

single parameter responsible for the encoding ofuΘ. The threshold is encoded by the selection
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Figure 5.9: Comparison of model and real signals for hysteresis

of the four different offsets

αUt+1 = {u1 u2 u3 u4} . (5.25)

Assuming thatu3 < −uΘ < u1 ≈ u4 < uΘ < u2 the threshold is determined by

−ûΘ =
u3 + u1

2
(5.26)

and

ûΘ =
u2 + u4

2
. (5.27)

Asu2 andu3 are only determined by the mean of the training data below (beyond )the lower(upper)

thresholduΘ,and not on the hysteresis curve, the result of the training depends heavily on the

selected training data.

5.2 Control of non-linear systems

In the last section the approach of piecewise linear approximation of nonlinear functions is dis-

cussed. Good results are obtained if the curve to be modeled can be divided in several straight

lines which are selected according to the inputu.

If the straight lines, approximating the curve, depend not solely on the input, but for instance

on a hidden state or on the sign of the first derivative of the input u, this approach is no longer

applicable. Therefore, a nonlinearity applied directly tothe input is regarded in the next section.
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Figure 5.10: Failed trial to train the network of figure 5.8

5.2.1 Expansion of difference equation model

A frequently occurring nonlinearity is saturation. Two examples are an amplifier and a valve.

If the output of an amplifier has reached the supply voltage, further increasing the input has no

effect. When a valve is completely closed, a further reduction of the flow rate is not possible.

Therefore a serial connection of saturation and a dynamic system of second order is discussed in

this section as an example to analyze the usage of hybrid dynamic Bayesian networks.

As a starting point the difference equation model (confer equation (4.19)) is combined with

the saturation model (confer figure 5.5 for the used saturation model). The resulting dynamic

Bayesian network is displayed in figure 5.11, the Simulink model in figure 5.12. The difference

equation model is used for first tests, because it provides more stable results in the linear case.

In comparison to the saturation model two changes are made, indicated in figure 5.13.

1. The nodes in the layer, denoted withud, have two states instead of three. In first trials it

is observed that a mean input is achieved when all three states have equal probabilities,

instead of one state having probability 1. Thus one of the three states is superfluous.

To save one state it is assumed that the nodes representing the observed input, denoted

by Uc, and the hidden output of the saturation unitUh are only connected by the discrete

nodeUd. That is the link betweenUc andUh is also saved, and that the hidden nodeUh

is regarded as conditionally independent fromUc given Ud. To coupleUc andUh, the

minimal and maximal output of the saturation element is assigned as means

αUc = αUh
= {0 ym

max} (5.28)
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Figure 5.11: Modeling a saturation at the input

to both nodes. To obtain a tight link, the variance ofUh is set to a low valueγUh
= 0.01.

Intermediate outputs between 0 andym
max are achieved by different probabilities forUd’s

states. For example,P (ud = 2) = 0.8 would result in an output close to0.2·0+0.8·ym
max if

all other influences are neglected. The reduction of the number of states has also a positive

influence on the runtime which is proportional to2tmax instead of3tmax .

2. A link Ud,t → Ud,t+1 is added. In the control of linear systems any a-priori knowledge for

the input nodes is avoided, by setting the varianceγU to a maximal value. If there were no

links Ud,t → Ud,t+1, the probability distribution ofUd,t would have a severe influence on

the calculation of the manipulated value. By adding a linkUd,t → Ud,t+1 this influence is

reduced, as the conditional probability of the states ofUd,t+1 depends on the probability of

the previous time-slice. Therefore there are more time-slices used to estimate the desired

distribution.

In a first step a controller is used whose weights are calculated analytically. The result of a

controller with 6 nodes used for the representation of the past and 3 nodes for the future is
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Figure 5.12: Simulink model of test system

displayed in figure 5.14.

Table 5.1: Results of experiments with expansion of difference equation model
Experiment number 1

Id(zd = 0) 20.11
e∞(zd = 0) -0.02
Overshoot 0.26
Id(zd = 1) 0.18
e∞(zd = 1) -0.05
ts(z

d = 0, 1%) 2.65
ts(z

d = 0, 3%) 0.85
ts(z

d = 1, 1%) 1.20
ts(z

d = 1, 3%) 0.3
Evaltime 32.11

At the beginning of the test shown in figure 5.14 (t < 2.9 s), the desired valuew is equal to

zero. The observed outputq after convergenceq is 1.26, that is the steady state errore∞ for a

desired value ofw = 0 is e∞ = 1.26. The reason is that the distribution ofUd,t does not only

depend onUc, which represents the required control signal, but also on previous probabilities

of Ud,t−1. During design, some constants, e.g. the means ofUc and Uh, and the probability

distribution ofUd,1, are selected so that the controller shows the best performance forw = 10.

At t = 2.95 s, the desired value is changed tow = 10. Figure 5.14 shows that the controller

operates as intended in this case. After a short time the desired value is reached nearly without

deviation (compare table 5.1). The maximal input of the manipulated variable is approximately

8.45 which is lower than the maximal input used for the lineardynamic system with the same

dynamic. But it is also lower than the maximal output of the saturation; i.e., the settling timets
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Figure 5.13: Changes of links at the input

is longer than necessary. It could be shortened by a larger input.

The overshoot of the system is larger than for the linear system (compare table 4.3, system

1). The reason are the linksUd,t−1 → Ud,t which increase the sluggishness, but are necessary to

decrease the steady state error.

At t = 13.75 s the disturbancezd is changed to 1, once again the controller reacts as intended;

i.e., after0.3 s the largest part of the disturbance is eliminated and the steady state error is nearly

zero.

The training of the model is more complicated than in the linear case. In the linear case it

is assumed thatzd = 0 during training, thus no hidden nodes are left. In the nonlinear case the

evidence of the nodesUh,t is not given. The missing evidence for nodesUh,t leads to problems to

adapt the weight of the nodes representing the model outputY m. Training with a fixed variance

γUh
= {0.01 0.01} fails, the controller shows no reaction when the desired value is changed.

Figures 5.15(a) and 5.15(b) shows the result of two trials totrain the controller with the

variance of the hidden input nodeγUh
= {16 16} set to 16. For both trials the same set of

parameters are used.

At the beginning the desired value is set to zero. In both figures a large steady state error

is observed (compare figure 5.15(a) fort < 6 s and figure 5.15(b) fort < 9 s). Afterwards

the desired value is set to 10. In figure 5.15(a) the desired value is reached with low deviation,

figure 5.15(b) shows a complete failure of training. A comparison of these two figures shows

that the training of the difference equation model is unstable. The most probable reason is that
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Figure 5.14: Reference and disturbance reaction of saturation model

the intended relation betweenUc andUh is not learnt correctly despite a-priori knowledge about

saturation.

The next section shows that the problems discussed in this section are overcome with an

extension of the state-space model.

5.2.2 State-space model

The model introduced in the last section shows unsatisfactory training results. The problem

consists of learning the relationship between the inputuc anduh. The latter is the estimated

output after saturation has taken place. Additionally, theperformance depends on the selected

desired valuew.

In this section it is tested how this problem is overcome witha state-space model with three

different operating points. The operating points are triggered by the inputu. As in the piecewise

approximation, discussed at the beginning of this chapter,different inputsu result in different

probabilities for the statesud. The states ofUd switch between different means and weights of

the state nodes. Switching between different weights meansthat the input matrix is changed

depending on the input, whereas the transfer matrix is not changed.

The first operating point represents the lower saturation. The weight betweenUd andXs in

that case is 0, the mean is equal to the product of the input vector bBN and the lower saturation

level. In our experiments the lower saturation was set to zero, not to−ym
max as indicated by

equation (3.48), so that the mean is also zero in that case.

The second point represents the usual operation mode, the mean ofXs is zero as in the linear
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Figure 5.15: Signals of trained difference equation model

case, the weight is equal tobBN.

The third state ofUd represents the upper saturation level. As in the lower saturation the input

has no effect on the state; i.e. the weight betweenUd andXs is zero. The mean results from the

productbBNym
max of the input vectorbBN and the upper outputym

max. This discussion results in

the means of the input nodeU

αU = {u1 u2 u3} (5.29)

where the operating points are sorted according to unequation u1 < 0 < u2 < usat < u3. The

means and weights of the state nodes are

αXs = {0 0 bBNym
max} (5.30)

βXs = {0 bBN 0} . (5.31)

The remaining parameters of the disturbance layer, designated withzd, and the output layer,

with the nodes for the observed outputq and the desired valuew, remain unchanged.

For the trainingαU is clamped; i.e., the intended operating points are preselected, so that only

the dynamic of the system has to be learnt. After training with 40 data sets and 3*5 iterations the

results listed in table 5.2 are obtained.

In contrast to the experiments discussed in chapter 4, the number of nodes for the represen-

tation of the past is reduced to 5, the nodes used for the representation of the future are restricted
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Table 5.2: Results of experiments with state space
Experiment number 1 2 3 mean

Id(zd = 0) 21.6964 20.7516 21.3030 21.2504
e∞(zd = 0) 0.0691 -0.0426 0.0449 0.0522
Overshoot 0.0894 0.0013 0.1510 0.0806
Id(zd = 1) 0.1128 0.1105 0.1105 0.1113
e∞(zd = 1) 0.0973 -0.0127 0.0843 0.0647
ts(z

d = 0, 1%) 1.3000 1.0500 1.2500 1.2000
ts(z

d = 0, 3%) 0.7000 0.7000 0.7000 0.7000
ts(z

d = 1, 1%) 3.2500 0.3000 0.7000 1.4167
ts(z

d = 1, 3%) 0.2000 0.2000 0.2000 0.2000
Traintime 32827 29251 29345 30474
Evaltime 37 38 45 40

to 2. According to the discussion in chapter 8, this has only aslight impact on the result. But

the reader should keep in mind that the experiments in chapter 8 are executed with a difference

equation model.

Table 5.2 shows that good results are obtained in all cases. Convergence is achieved in all

experiments, and the steady state errore∞ is below 1% of the desired value.

The squared error is larger than the squared error of system 1that has the same dynamic

as the test-system in this section, but no saturation at the input (For a description of system 1

see table 4.1, for the results obtained with a linear state-space system see table 4.4). The larger

squared error is due to the the connection of the discrete input nodesUd,t which is again necessary

to reduce the influence of the a-priori knowledge, but cuts the input peak (confer figure 5.17).

The settling time has increased, particularly for the reference reaction, which is partially due to

saturation. The input exceeds the upper threshold for more than half a second.

For the disturbance reaction, neither the lower nor the upper threshold are reached. Thus,

the longer settling time indicated by table 5.2 in comparison to table 4.4 is due to the Bayesian

controller. The main problem is the run-time. The evaluation time of 40 s exceeds the threshold

for real-time operation. One reason for the large run-time is that the experiments in this section

are done with the inference algorithm introduced by [LJ99] which is slower than the older one

[Lau92]. For a comparison of runtime see chapter 8. But the usage is essential as the former

inference algorithms lacks numerical stability.

The second reason is that the run-time increases exponentially with the number of time-slices

if exact inference is required.
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Chapter 6

Modeled manufacturing processes

The experiments in chapters 4 and 5 are done with data obtained by simulations with Simulink.

The advantages of simulations are that a large amount of datacan be collected in a controlled

environment. This is of importance particularly to test theapproach under circumstances which

are rarely observed in reality.

In this chapter modeling with Bayesian networks is applied to process data, collected by

cooperating institutes within the frame of SFB 396 (Collaborative Research Center, number 396)

“Robust shortened process sequences for lightweight sheetparts”.

The first process, hydroforming, is divided into the steps preforming, hydrocalibration, weld-

ing and trimming. The second modeled process is injection moulding which consists of the steps

preheating, handling, and injection of the plastic.

6.1 Hydroforming

6.1.1 Preforming and calibration

Preforming

During hydroforming tubes or blanks are formed by high internal pressure. At the chair of man-

ufacturing technology two blanks are formed at the same time. In a first step, both blanks are

pressed on top of each other at the flange by different clamping forces applied by a hydroform

press (see table 6.1 for a list of the parameters, measured during preforming). During the hydro-

forming process, fluid is pressed between the two blanks. As aresult, the pressure between the

blanks increases and the blanks are formed into a tool. Figures 6.1 and 6.2 show the dependency

of the pressure on the volume of the hydroforming fluid between the blanks. Both figures show

115
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Figure 6.1: Preforming with a force of 200 kN
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Figure 6.2: Preforming with a force of 300 kN

Table 6.1: Parameters for preforming

Variable Min Max Unit Remarks

Force 200 500 kN Increased in steps of 100 kN.
Volume 0.1 7.01 dl Volume is increased, until first leaks occur.
Pressure 1.04 137.35bar

the results of three experiments with equal clamping forces. With increasing pressure more and

more leaks occur, resulting in a smaller slope of the pressure. The curve progression depends

on the clamping force. Small clamping forces lead to a betterflow of material into the die, but

the process is stopped at a lower pressure due to occurring leaks. When less material is drawn

into the form, this might lead to failures during calibration, caused by lower tension. There are

two possible steps after preforming. The first possibility is that preforming is directly followed

by hydrocalibration. That means that clamping forces are increased to a maximal value, so that

the leaks are sealed. Afterwards, more hydroforming fluid ispressed between the blanks to form

the edges. The second possibility is that a welding process takes place to seal the leaks observed

at the end of preforming. In the next paragraph calibration is discussed. The welding process is

discussed later in section 6.1.3.
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Figure 6.3: Calibration, preforming done with
a force of 200 kN
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Figure 6.4: Calibration, preforming done with
a force of 300 kN

Table 6.2: Parameters for calibration
Variable Min Max Unit Remarks

Force 200 500 kN During calibration the force is increased to a maximum.
But the force used during preforming has an influence on
the calibration process, so the preforming forces are used
as an additional parameter for calibration.

Volume 5.33 12.12 dl Volume is increased, until the blanks burst. After bursting
the pressure drops nearly to zero.

Pressure 1.212 203.38bar

Calibration

The data to model hydrocalibration (confer table 6.2) are collected at an early phase of the “Col-

laborative Research Center”. That means calibration follows directly after preforming. In the

current version calibration is followed by laser beam welding.

No more fluid is pressed between the blanks after preforming is finished. When the press

is prepared to finish hydrocalibration in one step, the pressure drops nearly to zero, but the

hydroforming fluid remains between the blanks. Thus the initial volume for hydrocalibration is

not zero, but equal to the volume at the end of preforming (confer figures 6.3 and 6.4). A steep

increase of pressure is observed first, until the pressure atthe end of preforming is reached. Then

the slope changes, increasing the volume has a smaller effect on the pressure. The most important
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Figure 6.5: Picture of the hydroforming tool, source LFT

point, which is of course avoided in production, is the bursting of the blanks. The bursting point

in figures 6.3 and 6.4 is situated betweenV = 10 dl andV = 11 dl. Our data are collected

during material tests, so that this effect is included in ourdata. That means that the function to be

modeled is not only non-linear, but has even a non-continuous point. The exact prediction of the

bursting-point would be helpful to increase the volume during calibration as much as possible

without risking to loose the component. A comparison between figure 6.3 and 6.4 shows that

the clamping force has an influence on the curve. Thus different models are trained for different

clamping forces used during preforming.

Modeling only one global clamping force is a simplification as four different clamping forces

effect at different points. It is the aim that the clamping forces at the flange are equal, so that the

flow of material is independent of the position. This point isdiscussed in the next section.

6.1.2 Modeling the forces of the press

Figure 6.5 shows the construction of the hydroforming tool.At the top of the tool the forces of

four different cylinders have an effect on the plate in the ram. The force of each of these cylinders

is controlled individually. The cylinders are situated at the rear, left and right hand side, and at

the front at the left and right hand side. The forces at the cylinders are therefore denoted by

Frl, Frr, Ffl, andFfr. From the plate on the top the forces act on four different pillars mounted

on three plates. Via twelve pillars the original forces affect the blank holder. The positions of
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Table 6.3: Parameters to model the forces
Variable Min Max Unit Remarks

Forces at cylinder
Frl, Frr, Ffl, Ffr

50 400 kN There are four different cylinders which
provide the necessary forces to press the
blanks on each other. Two of them are
placed at the rear, left and right. The
other two are placed at the front.

Forces at the blank holder,
FA, FC, · · · , FM

16.9 292.30 kN It is usually not possible to calculate the
standard deviation, as the experiments
are not repeated in most of the cases. The
only exception is given in table 6.4. The
six places of measurement are given in
figure 6.5.

the twelve pillars A - N is described at the right hand side of figure 6.5. It is the aim to get equal

forcesFA, FC, · · · , FM at positions A - M to guarantee an optimal flow of material. A Bayesian

controller requires therefore knowledge about the dependency between the forces adjusted at the

top of the hydroforming press and the forces measured at the positions A, C, E, H, K, and M.

For the exploration of the dependency, 69 tests with 37 different settings are executed at the

chair of manufacturing technology. One experiment (Frl = Frr = Ffl = Ffr = 225 kN) is

repeated six times and is used to examine the dispersion of the experiments. Table 6.3 gives a

coarse overview about the test data used for examination, table 6.4 shows the dispersion of one

test.

For most of the data the results are reproducible with high accuracy. A numerical calculation

makes no sense in most of the cases, as usually the experiments are only repeated twice.

An analytical model, a neural network and a Bayesian networkare trained using the 69 data

sets . Now predictions are figured out for 14, yet un-presented, settings and compared to reality.

The results are discussed in section 7.1.2 (compare also [WBS+01]).

6.1.3 Laser beam welding

After preforming and cutting, welding takes place. Two types of joints are examined, the lap

seam joint and the lap edge joint. Several adjustments of theparameters in tables 6.5 and 6.6 are

tested to get an impression of optimal process parameters.

The laser beam is driven with a velocityv around the component. At the end a small part is
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Table 6.4: Mean and Dispersion for the experiment withFrl = Frr = Ffl = Ffr = 225 kN

Variable/Position Standard deviation Mean

FA 2.7 kN 155.9 kN
FC 11.4 kN 141.1 kN
FE 0.4 kN 124.0 kN
FH 5.7 kN 171.3 kN
FK 3.6 kN 101.9 kN
FM 0.7 kN 150.3 kN

Table 6.5: Continuous Parameters for laser-beam welding

Variable Min Max Unit Standard deviation Remarks

Defocussing -6 6 mm — Tested in steps of 2mm, when the
laser is out of focus for less then
-3 mm, the quality of the joint is
decreasing.

Offset 0 6 mm —
Velocity 2 7 m/min —
Tensile force 0 5370 N 1460.1 Output variable, representing the

quality of the weld.

welded a second time to be sure that the component is tight after welding.

During the welding process the laser might be out of focus, inboth thex or z-axis. This

is described by the offset or defocussing of the laser beam (see figure 6.6). At the edges of

the component it is difficult to guarantee that the angle between thex-axis and the laser beam

(lap edge joint) is0◦ (For the lap seam joint the angle between thez-axis and the laser beam is

regarded). The tensile force is the measured output of the process and should be maximized.

When looking at the data, three parts can be distinguished. In the main part the number of

joints is kept constant, defocussing and the offset are set to zero. In this part of the data the setting

angle, the joint type and the velocity are changed. The results of these experiments are shown in

table 6.7 and figure 6.7. The result is that a velocity of approximately 4m/min is nearly optimal

for the lap edge joint.

In the second part the influence of the velocity and the numberof joints on the quality of

the joint is tested. The rest of the parameters is not changed. Table 6.8 shows the mean of 6

experiments per line. It indicates that a second joint results in a large difference of the tensile
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Figure 6.6: Difference between lap edge and lap seam joint, picture taken from [Kre02]
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Figure 6.9: Component produced by injection moulding

force for a velocity of 4m/min.

The third part explores the influence of the offset and defocussing. Figure 6.8 indicates that

there are two thresholds for the offset and defocussing. If these thresholds are exceeded, the

quality of the weld decreases. According to figure 6.8 the threshold for the offset is somewhere

between 0.3 and 0.6mm, the threshold for the admitted defocussing between -4 and -2 mm.

6.2 Injection moulding

At the experiments, carried out at the Institute of Polymer Technology, composite components,

consisting of a blank and plastic are insert moulded. The resulting component that is depicted in

figure 6.9 has the form of a T.

The plastic is injection-moulded around a blank, having a geometry of 249.3mm × 73.7mm

× 1.0 mm [EZ98]. At the beginning of the production process the cleaned blank is preheated.

Preheating is done first by an infrared heater, to shorten theprocess cycle, and afterwards by a

convection oven. After preheating the blank is carried automatically into the cavity. There is no

Table 6.6: Discrete Parameters for laser-beam welding

Variable Possible Values Remarks

Type of joint {Lap edge joint, lap seam joint}
Number of weldings {1 2} The effect on the force is only tested

for different velocities.
Setting angle {-30◦ 0◦ +30◦}
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Table 6.7: Force depending on type of weld, angle and velocity

Type of weld Angle Velocity [m/min] Tensile forceF [N] σF

Lap edge joint 0◦ 2 4378 180
Lap edge joint 0◦ 3 4418 185
Lap edge joint 0◦ 4 4436 111
Lap edge joint 0◦ 5 4258 156
Lap edge joint −30◦ 2 4162 249
Lap edge joint −30◦ 4 4266 280
Lap edge joint −30◦ 5 4213 192
Lap edge joint +30◦ 2 3760 466
Lap edge joint +30◦ 4 4361 168
Lap edge joint +30◦ 5 4182 95
Lap seam joint 0◦ 4 3905 180
Lap seam joint 0◦ 5 3648 185
Lap seam joint 0◦ 6 4689 111
Lap seam joint 0◦ 7 4258 156

Table 6.8: Influence of the number of joints

Velocity Tensile force for one joint [N] σF Tensile force for two joints [N] σF

3 4380 104 4451 116
4 4438 120 4657 243
5 4362 135 4379 234

control whether the blank has reached the desired preheating temperatureτp. During transport

the blank cools off. This cooling process is not modeled. It is assumed that this factor is constant

due to the automatic transport.

Also the cavity is preheated, its temperature is denoted byτc. The melted plastic, whose

temperature is denoted byτm, is injected by high pressure and a constant velocityv = 10 mm/s

into the cavity. The curve of the pressure is depicted in figure 6.10. After injection the pressure

is kept constant for a short time to reduce the warpage. This pressure is called holding pressure

Ph. Note that an index “h” is used to distinguish the holding pressurePh from the probabilityP .

A list of the input parameters is given in table 6.9.

It is the aim of the production process that the resulting composite has a minimal warpage

and that the take-off tensionF , to separate the plastic from the blank, is maximal. To test the

impact of the input parameters on the quality parameters, listed in table 6.10, each input pa-
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Figure 6.10: Pressure used for injection

rameter is tested at five different levels. As this would result in 54 experiments, a statistical

test plan, discussed in [EZ98], is employed. In24 settings (outer experiments) all combina-

tions of τp ∈ {80, 260}◦C, τm ∈ {260, 280}◦C, τc ∈ {80, 120}◦C, andPh ∈ {30, 70}bar

are tested. The next 16 experiment (inner experiments) are carried out with all combinations of

τp ∈ {125, 215}◦C, τm ∈ {265, 275}◦C, τc ∈ {90, 110}◦C, andPh ∈ {40, 60}bar. As last ex-

periment the result for the central pointτp = 175◦C, τm = 270◦C, τc = 100◦C, andPh = 50 bar

is measured. According to the results in [EZ98] the preheating temperature and the holding pres-

sure have a large impact on the warpage. The take-off tensionF is mostly influenced by the

preheating temperatureτp, the melt temperatureτm and the holding pressurePh. These results

coincide with the first Bayesian models, discussed in the report of project part C1 [KN98] for

the years 96 - 98. Beside the input values, additional parameters are measured. Of course these

values are strongly correlated to the input values listed intable 6.9. So all of them have an in-

fluence on the quality parameters. A selection, according tothe correlation between the selected

parameter and the take-off tension, is made to reduce the number of models to be analyzed. The

selected values, together with a short explanation, are listed in table 6.11.

In the first period of the Collaborative Research Center onlythe input values are used in the

model. In section 7.2 it is discussed whether the additionalmeasurements listed in table 6.11 are

suited to improve the prediction of the take-off tension.
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Table 6.9: Input parameters for injection moulding

Variable Min Max Unit Remarks

Preheating temperatureτp 80 260 ◦C Temperature of the metal. During han-
dling the metal is moved from preheat-
ing to the tool, and thus cooling takes
place. Five different settingsτp ∈
{80, 125, 170, 215, 260} are tested.

Melt temperatureτm 260 280 ◦C Five different settings are tested
for the temperature of plastic
τm ∈ {260, 265, 270, 275, 280}.

Temperature of cavityτc 80 120 ◦C Five different settings τc ∈
{80, 90, 100, 110, 120}.

Holding pressurePh 30 70 bar PressurePh ∈ {30, 40, 50, 60, 70} which
is used for the injection of the plastic.

Velocity v 10 10 mm/s The velocity is kept constant for all exper-
iments.

Table 6.10: Quality parameters for injection moulding

Variable Min Max Unit Remarks

Take-off tensionF 3130 5920 N Force needed to divide the metal from the plastic.
Warpage -0.04 0.68 mm Warpage of the product.

Table 6.11: Additional measurements for injection moulding

Variable Min Max Unit Remarks

CushionC 0.4 19.1 mm Length proportional to the amount
of plastic, which is not pressed in
the tool.

Plasticizing strokespl 67.4 71.0 mm
Maximal cavity temperatureτc,max 88 132 ◦C Maximal temperature of the cav-

ity.
Work for injectionWinj 1960 3380 Nm Energy needed for filling the form.
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Chapter 7

Process models

This chapter discusses the developed models for the manufacturing processes, discussed in chap-

ter 6. Most of the models use both discrete and continuous nodes to model nonlinearities. The

applied technique is discussed in section 5.1. Only the distribution of forces is modeled by a pure

linear model.

To judge the quality of the developed model the relative error

er =
abs(yp − y)

abs(y)
, (7.1)

is used, i.e. the deviation of the predicted valueyp from the actual valuey is divided by the actual

valuey. Equation (7.1) is only applied for continuous random variablesy.

For discrete random variables, either the percentage of misclassifications is given or contin-

uous values are assigned to each discrete value. In the latter case equation (7.1) is used again.

The selected possibility is listed together with the model.If possible, the obtained relative error

er is compared to the dispersion of the data to estimate whetherthe error is due to scattering in

the data or caused by the model.

To assess a model, it is also necessary to test its ability to make predictions for yet un-

presented examples. Thus, the model is usually trained with90% of the data, the relative error

er is calculated based on the predictions for the remaining 10%of the data. This procedure is

employed to judge the models for preforming, calibration, and for the distribution of forces.

The data of the welding process can be divided into 48 blocks with equal input data within the

block. Here, the relative error is measured by training with47 blocks and figuring out predictions

for the remaining block. Using this mechanism, it is guaranteed that the Bayesian network has

never seen the example before.

127
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Pihu

Vd V

eQ

F

Figure 7.1: Model for preforming

Models are developed for two manufacturing processes. First, hydroforming is modeled,

containing the subprocesses preforming, calibration and welding. The second process is injection

moulding.

7.1 Hydroforming

7.1.1 Preforming and calibration

Preforming

In preforming there are two different input variables, the volumeV of the hydroforming medium,

pressed between the blanks and the clamping forcesF , used to press together the two blanks.

The output variable is the inner pressurePihu.

Having a look at figure 6.1 and 6.2 indicates that the curve canbe modeled by two straight

lines for each clamping force. Hence, linear approximation, as discussed in section 5.1, is appli-

cable. Thus the pressure is approximated by

P̀ihu(V ) ≈ Pihu(Vk) + P ′
ihu(Vk)(V − Vk) , (7.2)

wherek is the configuration used for the approximation. The valuesPihu(Vk) and P ′
ihu(Vk)

correspond to parameters of the output node. Thus the pressure has the discrete nodeVd andF

as parents. The forceF has four different states. The node representing the volumeVd has two

states, used to distinguish the two lines before and after the occurrence of leaks. A comparison of

model 7.1 with figure 5.1 shows that the principle of linear approximation is used nearly without

any changes. To improve the training results, the weight forthe link V → eQ is fixed to -1.

Additionally, some examples are removed from the training set, to ensure that both lines have

approximately the same number of examples in the data set. The following initializations are
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Table 7.1: Accuracy obtained with preforming model

Variable F V Pihu

Relative Error 6.9% 4.5% 2.3%
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Figure 7.2: Preforming withF = 200 kN
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Figure 7.3: Preforming withF = 300 kN

used:

αPihu
= {0.4 0.45 0.5 0.5 0.92 0.86 1 1.14} (7.3)

γPihu
= {0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1} (7.4)

αeQ
= {2 2 2 2 5 5 5 5} . (7.5)

The meansαPihu
of the nodePihu are chosen approximately equal to the pressurePihu(Vk) at the

pointsVk. The pointsVk are defined byαeQ
andαV = [2 5]. The selections are obtained directly

from figures 6.1 and 6.2.

After training with the EM-algorithm (approximately 20 iterations), cross validation is exe-

cuted with the results specified in table 7.1.

For evaluation the clamping forcesF = 200 kN · · ·500 kN are assigned to the different

states ofF .

Assuming that there is an equal number of examples for all clamping forces, the mean of

the forces is 350kN. A relative error of 6.9% corresponds to an error of 24.15 kN. Moreover the

volume and the pressure are modeled with high accuracy. Figures 7.2 to 7.5 depict the prediction

of the pressure for different clamping forcesF = 200 kN · · · 500 kN. There is almost no

difference between the predictions, indicated by dotted lines and the three actual data sets (solid
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Figure 7.4: Preforming withF = 400 kN
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Figure 7.5: Preforming withF = 500 kN

lines). The points are closer for high volumes. This is caused by the fact that not all points are

used for training to guarantee a similar number of data points before and after the occurrence

of first leaks. Similar results are obtained with variational approximation, a method which uses

continuous nodes as parents of a binary, discrete node. Thisbinary node is used to distinguish

between the two lines, before and after occurring of leaks, for each clamping force. This model

is discussed in [DDN00b], but has the drawback of slower training.

Calibration

Directly after preforming the calibration takes place1. Figures 6.3 and 6.4, which show the

relationship between the volume and the pressure, illustrate that a nonlinear curve has to be

modeled. Additionally, a non-continuous point, caused by bursting, has to be modeled (Compare

figure 6.3 atV = 10.5 dl to figure 6.4,V = 10.2 dl).

As in preforming, the technique of linear approximation is used. In comparison to preforming

the clamping forces are fixed, so thatF is no longer used as input node. But different models are

used for different clamping forces, as the result of calibration depends on the forces used during

preforming.

As a result of this consideration, the principle model of figure 5.1 can be used without any

changes. Care should be taken when selecting the number of states for nodeVd (see figure

7.6). The non-continuous point requires a small covariance. To ensure that the pressure for high

volumes is also predicted correctly, the region after bursting is modeled by two different states.
1The data to be modeled are gathered in the second phase of the special research center 396. In the meantime

the preforming process is followed by the welding process. Calibration is executed after welding.
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Pihu

Vd

V

eQ

Figure 7.6: Model of the calibration process

One is responsible for the abrupt change, when bursting takes place, and one is used to keep the

predictions low for high volumes.

A very important point, when using a linear approximation, is the correct initialization of the

model. For example, the experiments discussed later on are carried out with 6 different states for

nodeVd and the following initializations forF = 200 kN (for each force a model with different

initializations is trained).

αV = {6.2± 0.1 6.5± 0.1 9.0± 0.1 10.0± 0.1 11.0± 0.1 11.5± 0.1} (7.6)

γV = {0+10 0+10 0+10 0+10 0+10 0+10} (7.7)

αPihu
= {200± 2 100± 5 150± 5 170± 5 10± 1 10± 1} . (7.8)

The notation6.2±0.1 means that the parameter is initialized with 6.2 plus a normally distributed

(mean set to zero, standard deviation to one) random variable multiplied by 0.1.

To test the model, the data, discussed in subsection 6.1.1, is divided in a training set, con-

taining 90% of the data, and a validation set with 10% of the data. Afterwards predictions are

calculated for the validation set. The results plus the standard deviation are itemized in table 7.2.

The first impression is that the prediction of the pressure isinaccurate, which is misleading in

most of the cases. As figures 7.7 till 7.10 indicate; the dotted line, representing the prediction of

the Bayesian network, is close to the original data, depicted by a solid line.

The high error is caused by predictions close to the burstingpoint. Here, an accurate predic-

tion is nearly impossible due to scattering in the data.
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Table 7.2: Relative error plus standard deviation for prediction of the volume and the pressure

ForceF 200 kN 300 kN 400 kN 500 kN

V 5.43 ± 6.80% 4.65± 9.43 % 4.83± 8.41% 3.02± 5.15 %
Pihu 53.38 ± 136.66% 38.97± 96.47 % 31.45± 86.22% 36.62± 95.16 %
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Figure 7.7: Prediction of the calibration pres-
sure,F = 200 kN
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Figure 7.8: Prediction of the calibration pres-
sure,F = 300 kN
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Figure 7.9: Prediction of the calibration pres-
sure,F = 400 kN
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Figure 7.10: Prediction of the calibration pres-
sure,F = 500 kN
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Table 7.3: Control points, forces given in kN

Number Ffl Frl Frr Ffr FA FC FE FH FK FM

1 50 50 50 50 41 43 34 49 21 34
2 94 113 94 87 63 67 52 76 41 61
3 100 100 100 100 66 65 52 72 36 59
4 150 150 150 150 108 102 83 109 64 96
5 73 241 200 50 87 75 61 103 69 99
6 200 200 200 200 139 132 108 143 87 126
7 260 262 139 193 129 150 126 173 106 133
8 250 250 250 250 179 169 135 173 112 161
9 300 300 300 300 216 206 165 211 139 195
10 335 300 300 150 171 180 150 213 144 182
11 350 350 350 350 249 237 191 242 163 224
12 365 319 227 358 209 226 184 236 154 195
13 392 396 305 396 237 250 201 258 173 223
14 400 400 400 400 280 264 210 266 183 253

High differences between the actual values and the prediction take place for very small vol-

umes. In all cases, the predicted values are too high (compare the solid and the dotted lines in

figures 7.7 to 7.10). The reason might be a low number of data for that section of the curve. A

changed initialization is not expected to lead to an improvement, since the selected values are at

the lower end.

In the next section the distribution of the forces occurringin the press are modeled. This

process is of great importance for control.

7.1.2 Modeling the forces of the press

An important point in hydroforming, having a major influenceon the result, are the forces found

at the load cells. It is the aim to have similar or equal forcesat all points. This results in an

equal movement of the blank in the form. Then the thickness ofthe blanks remains more or less

equal which helps to avoid bursting during calibration. Therelationship between the forces at

the cylinderFrl, Frr, Ffl, Ffr and at the load cellsFA · · ·FM (compare figure 6.5) is modeled to

support the control. In a first step 69 experiments are executed to gather training data for the

Bayesian network. Afterwards, the model is used to make predictions for 14 yet un-presented

points listed in table 7.3. The results are compared with reality.

Given the forces at the load cellsFA · · ·FM, predictions for the inputsFrl, Frr, Ffl, Ffr are also

calculated. For further judgment cross-validation is applied.
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Ffl Frl Frr Ffr

FA FC FE FH FK FM

Figure 7.11: Bayesian network for modeling the forces of thehydroforming press

The used model is depicted in figure 7.11. Each cylinder forceFrl, Frr, Ffl, Ffr is connected

with each output forceFA · · ·FM. All nodes are continuous ones, that is the model is purely

linear with no hidden nodes. Thus the initialization is unimportant, the EM-algorithm used to

train the 44 parameters (4 means and dispersions for the input nodes,6×4 weights, 6 means and

dispersions for the output nodes) converges immediately. That is the EM algorithm calculates the

correct parameters in the first iteration. the second iteration is used to calculate the log-likelihood

of the model, the third iteration detects convergence.

To test the model, predictions for 14 control points are made. The relative error of the predic-

tions is listed in table 7.4 in the columnsFA · · ·FM. The result for the best and the worst position

is depicted in figures 7.12 and 7.13.
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Figure 7.12: Prediction of the used force at the
cylinder at the front, left hand side (best result)
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Figure 7.13: Prediction of the used force at the
cylinder at the rear, left hand side (worst result)

The bar at the left hand side represents the prediction of theBayesian network, the bar at

the right hand side the reality. The same experiments are also executed with neural networks
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Table 7.4: Relative error for control experiment

Ffl Frl Frr Ffr FA FC FE FH FK FM

5.6% 16.8% 9.7% 10.9% 4.7% 5.8% 4.9% 9.6% 5.0% 5.9%

and regression polynomials. As discussed in [WBS+01] all three techniques are well suited for

prediction of the forcesFA · · ·FM.

In contrast to regression polynomials and neural networks2, Bayesian networks are also

able to predict a required input to get a desired output. Thisis possible as Bayesian networks

model a distribution of all variables. The model itself doesnot distinguish between in and output

variables, even if in most of the cases the links are directedfrom the input to the output. To

examine, whether the trained model could also act as a controller, the six output forces measured

for the points listed in table 7.3 are entered as evidence andpredictions for the forces at the

cylindersFrl, Frr, Ffl, Ffr are calculated. The relative error of the prediction is listed in table

7.4. In comparison to the prediction of the forces at the loadcellsFA · · ·FM, the results are less

accurate. A possible reason is that there might be no unique input which leads to the desired

output. It is unlikely that the model is inadequate, as the output forces are predicted with high

accuracy. To increase the quality of control additional nodes for an occurring error might be

used, as done in the difference equation model in section 4.3. The results forFA andFH are

depicted in figures 7.14 and 7.15. The prediction of the Bayesian network is at the left hand side,

the observations at the right.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

50

100

150

200

250

300

F
o

rc
e

in
kN

Number of control experiment

Figure 7.14: Prediction for force at load cell A

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

50

100

150

200

250

300

F
o

rc
e

in
kN

Number of control experiment

Figure 7.15: Prediction for force at load cell H

2The experiments concerning neural networks are done with a feedforward net, trained with backpropagation.
Other topologies, e.g. Boltzmann machines or Hopfield net are also able to act as associative memory.
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Figure 7.16: Results of cross validation

Table 7.5: Standard deviation of relative error
σ(Ffl) σ(Frl) σ(Frr) σ(Ffr) σ(FA) σ(FC) σ(FE) σ(FH) σ(FK) σ(FM)

11.3% 14.5 % 11.0% 12.3% 3.0% 5.1% 2.9% 2.7% 3.2% 3.1%

For further validation of the model, cross-validation is used. That is the union of the former

training and control-data is split arbitrarily in a training set, containing 90% of the data, and

a validation set. This procedure is repeated 10 times with arbitrarily generated training and

validation sets. The relative error of the results is displayed in figure 7.16, the standard deviation

of the relative error is given in table 7.5.

A comparison with table 6.4, indicating the standard deviation of six measurements for the

forcesFrl = Ffl = Frr = Ffr = 225 kN, shows a strong correlation between the relative error

and the reproducibility of the experiments. For example, the best results are obtained forFE,FA,

andFM with an error of approximately between 1.8 and 2.5%. The standard deviation of the

experiments is 0.3 and 1.7% of the used forces.

Worst results are observed whenFC is predicted. The relative error in this cases is more than

6%. At this point the error seems to be caused by the low reproducibility. The standard deviation

at pointC is approximately 8% of the used forces.

The discussion shows that a linear model is suited to model the forces of the press. For

control without feedback an accuracy of 12% can be expected,the error can be further reduced
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Figure 7.17: Example for Bayesian network with untrainableparameters (left hand side) and
model based on Bayesian regression

when the deviation between current and desired forces is used for further corrections.

In the next subsection a model for the welding process is discussed. The main problems to be

solved are occurring nonlinearities and the fact that not all configurations for the discrete nodes

are observed.

7.1.3 Laser beam welding

The process of laser beam welding takes place directly afterpreforming. One of its effects is that

the leaks, occurring at the end of preforming, are sealed, sothat calibration can be started. The

parameters are discussed in section 6.1.3, a good overview is given by figure 6.6.

When looking at the data three parts can be distinguished. Inthe main part the number of

joints is kept constant, defocussing and the joint-offset are set to zero. In this part of the data

the angle, the joint type (Either lap edge joint or lap seam joint), and the velocity are changed.

Additionally, some of the blanks are contaminated by hydroforming medium, and some are not.

In the second part the influence of the velocity and the numberof joints on the quality of the

joint is tested. The rest of the parameters is not changed.

In the third part the influence of defocussing and offset is tested.

It is important to map the different parts of the data also to the model. If that is not done,

this might lead to un-trainable parts of the Bayesian networks which can easily be identified.

Imagine, for example, that the influence of three binary parametersX1 · · ·X3 on a continuous

parameterY or on a binary parameterX4 is tested. The idea of the test is to keep two parameters

constant, e.g. fix their value to 1, and change the remaining parameter. This would result in a test

similar to table 7.6.

Even if all three parametersX1 · · ·X3 have an crucial impact onY , a model as shown on

the left hand side of figure 7.17 contains un-trainable parameters. The reason is that nodeY has
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Table 7.6: Example for training data

X1 X2 X3 Y

1 1 1 y1
...

...
1 1 1 yn

0 1 1 yn+1
...

...
0 1 1 y2n

1 0 1 y2n+1
...

...
1 0 1 y3n

1 1 0 y3n+1
...

...
1 1 0 y4n

three discrete parents. Thus, it has 8 different parametersfor the mean and covariance, one set of

parameters for each possible configuration. Since only 4 of them are present in the training set,

the parameter belonging to the remaining 4 configurations will remain more or less untrained.

Thus the model will show an arbitrary response when one of theun-presented configurations is

tested.

The model on the right hand side avoids this disadvantage. The effect of each variable is

trained independently. The price is that the model is unableto learn interactions between two or

more variables. Similar effects occur when the influence on adiscrete variable has to be learnt.

In this case a table with the conditional probabilitiesP(x4|x1, x2, x3) is assigned to the nodeX4.

Once again the entries for unseen configuration cannot be trained.

It should be mentioned, that the example presented above is not pathological. In product

engineering a common problem is to find out the influence of several factors on the quality

of the product. Particularly, if many factors have to be tested, it is too expensive to test all

configurations. In many cases it is reasonable to assume thatinteractions between three and more

variables have no significant influence on the result (see introductions to quality management,

e.g. [Pfe93; Mar94] ). This leads to the idea of test plans. Suppose that two settings per parameter

are sufficient for the test plan and that the engineer assumesthat the combination ofX1 · · ·X3

has no effect on the result. In this case it is possible to set aforth parameterX4 equal to the

product· of X1, X2, X3.

The product· is defined as a commutative and associative operation with+ · + = +,
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Table 7.7: Example for a test plan

X1 X2 X3 X4 = X1 ·X2 ·X3 Y

+ + + + y1
...

...
+ + + + yn

- + + - yn+1
...

...
- + + - y2n

+ - + - y2n+1
...

...
+ - + y3n

- - + + y3n+1
...

...
- - + + y4n

+ + - - y4n+1
...

...

+ · − = −, and− · − = +. This results in the test plan outlined in table 7.7 where the

effects ofX4 andX1 · X2 · X3 cannot be distinguished. This example should reveal two main

points. First, that missing configuration might result fromwell defined test plans, and second

that according to the test plan the effect of special interactions cannot be identified and therefore

it is not worthwhile modeling them.

In the process of laser beam welding it is therefore necessary to model the influence of the

three data parts independently. In the first part the influence of the velocity, the angle and the

type of joint on the force is modeled. An F-test [Rin97] showsthat the combination of the angle

and the type of joint is significant. Thus it is necessary to combine the influence even if not all

configurations are tested. To avoid the problem of un-trainable parameters the deterministic node

H2 (confer figure 7.18), which has four different states, is introduced. Its conditional probabilities

are defined according to table 7.8 and are not changed during training. The idea is that each of

the four observed configurations is mapped to an own state ofH2. The two unobserved states, a

setting angle of plus and minus 30◦ together with the lap edge joint, are mapped with a probability

of 0.48 to the observation made for plus/minus 30◦ for the lap seam edge and with a probability

of 0.48 to the observations made for an angle of 0 together with the lap edge joint. It is not proven

that this mapping is correct, but the results are in a reasonable order of magnitude, that is a tensile

force of approximately 4000N is predicted. The influence of the velocity is not linear, as figure
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Table 7.8: Probability of nodeH2

Angle Type of joint StateH2 Probability

0 Lap edge joint 1 0.97
-30◦ Lap edge joint 1 0.01
+30◦ Lap edge joint 1 0.01

0 Lap seam joint 1 0.01
-30◦ Lap seam joint 1 0.01
+30◦ Lap seam joint 1 0.01

0 Lap edge joint 2 0.01
-30◦ Lap edge joint 2 0.97
+30◦ Lap edge joint 2 0.01

0 Lap seam joint 2 0.01
-30◦ Lap seam joint 2 0.48
+30◦ Lap seam joint 2 0.01

0 Lap edge joint 3 0.01
-30◦ Lap edge joint 3 0.01
+30◦ Lap edge joint 3 0.97

0 Lap seam joint 3 0.01
-30◦ Lap seam joint 3 0.01
+30◦ Lap seam joint 3 0.48

0 Lap edge joint 4 0.97
-30◦ Lap edge joint 4 0.01
+30◦ Lap edge joint 4 0.01

0 Lap seam joint 4 0.01
-30◦ Lap seam joint 4 0.48
+30◦ Lap seam joint 4 0.48
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6.7 shows. There is a maximum of the forceF , if the velocityv is approximately 4m/min. For

high velocities the weld penetration is too low, which results in a lower tensile-strength. If the

velocity is too small the weld penetration for the lap edge joint gets too high. That means that

also in this case a low tensile-strength is obtained. For a velocity of approximately 4m/min an

optimal value is reached. Hence a simple connection betweena nodev to FH1 is not sufficient.

Thus an additional node forv2 is used, so that a polynomial is used for modeling the relationship

betweenv andF .

The relationship between the number of joints and the tensile force is tested only for the lap

edge joint for a constant angle of 0. The results are shown in table 6.8.

As there is again a maximum of the tensile-strength for a velocity of about 4m/min, the

applied modeling technique is the same as for the influence ofthe angle and the type of joint.

NodeH1 is used to calculate the difference between one and two joints. The difference is added

to FH1 and assigned to nodeFH2. Assignment means that the initialization of the parameters of

nodeH1 andFH2 is done, so thatFH2 ∼ H1 + FH1. For example the initial weight vector for

FH2 is equal to[1 1].

The third part models the influence of the offset and defocussing. Regarding figure 6.8, it

turns out that this influence can be modeled more or less as a binary process. The idea is to

compare both offset and defocussing with a threshold. If theinput value, e.g. the offset, exceeds

the threshold the quality of the joint decreases dramatically. According to figure 6.8 the threshold

for the offset is somewhere between 0.3 and 0.6mm, the threshold for the admitted defocussing

between -4 and -2mm. The threshold is controlled by the two binary discrete nodes offsetd

anddefocussingd. The binary, discrete nodeH3 combines the two values. If one threshold is

exceeded, the welding might fail. This combination is realised deterministically to avoid wrong

predictions if both thresholds are exceeded.

It was mentioned that some of the parameters of the introduced model are not trained. There

are two reasons. First, the parameters of the input nodes arenot trained at all. The main reason

is that the test data are not uniformly distributed. Thus, a training of the input nodes would lead

to predictions being equal to the value mostly seen during training. Thus the prediction of values

for the input nodes would strongly depend on the selected training examples of the test plan.

Sometimes the parameters of hidden nodes are also clamped toachieve a special behavior of the

model. This helps to reduce the overall number of parameter to 44. In the following, the results

of the model are discussed.

The process of laser-beam welding is tested with 48 different configurations, whereas the

tests for each configuration are repeated six times. To test the model, training took place with 47
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Table 7.9: Relative error
Offset Defocussing Nb. of joints Velocity Angle Joint type Tensile strength

66.4% 84.6% 38.7% 22.1% 50.4% 15.5% 17.04%

configurations. Predictions are figured out for the remaining configuration.

Table 7.9 shows the relative error, but the results are sometimes misleading. To avoid division

by zero only cases with a current value not equal to zero are included.

Prediction of the tensile strengthThe classification into good and defective joints using

defocussing and offset works as intended. Only for two configurations (Offset = 0 respectively

0.3 mm, defocussing = -2mm) strong deviations are observable. The prediction of the tensile

strengthF is 2985N (3007N) instead ofF = 4876 N (4384N). The main reason is the lack

of data. To test the ability to make predictions for unknown data the tested data sets are not used

for training. As there are only three blocks with defocussing = -2 mm, two of them are used for

training. One of them leads to a proper joint, the other fails. This leads to a too low prediction.

The correct classification of the joint does not mean that an exact prediction of the force

is possible. The first reason is the great dispersion (σ = 506 N) of the data used to test the

influence of the defocussing and the offset. Together with the mean force of 2710N this results

in an unavoidable error of approximately 18%. Another source of error is that the failure of the

joint is modeled as a binary event.

Data to explore the influence of the angle, the velocity, and the number of joints are modeled

with greater accuracy. First there is less dispersion in thedata (σ = 144 N), which results in a

lower unavoidable error of 3.39% (in relation to a mean forceF̄ = 4247 N for good joints). In

a comparative model, where defocussing and offset are disregarded, the force is modeled with a

relative error of 5.37%.

Prediction of the offsetTable 7.9 shows a relative error of 66.4% when predicting theoffset.

It should be noticed that all cases with an offset of 0mm are not part of this calculation to avoid

division by zero. In 31 of 48 blocks the tensile strength is explored for both defocussing and

offset = 0mm. The predicted offset for these cases is 0.04mm. If a Bayesian network would be

used to control laser beam welding this would not lead to a decreasing quality.

Since an offset of less than 0.3mm does not lead to a decreased quality and an offset larger

than 0.6mm results in a faulty joint (Its not possible to make a statement for the interval between

0.3 and 0.6mm as the offset was only tested for 0, 0.3 and 0.6mm), the offset can be divided

into equivalence classes. The first class includes all values between 0.0 and 0.3mm, the second

one all values larger than 0.6mm. Using these equivalence classes there are only two wrong and
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Table 7.10: Misclassifications, number of joints

Velocity Misclassifications Number of examples Remarks

2 3 6 No data for different angles
3 7 20
4 2 9
5 3 9
6 0 2 No data for different angles
7 1 2 No data for different angles

one questionable prediction. The first wrong prediction is made for an offset of 0.6mm and a

defocussing of -4mm. As the defocussing is a sufficient reason for a defective joint, the model

has no possibility to distinguish between different offsets. The second failure occurs for an offset

of 0.6mm and a defocussing of -2mm. In this case a value of 0.2mm is predicted which would

lead to a joint in best order. The problem might be caused by anextrapolation, as an offset of

0.6mm is an extremal value and all other examples with a defocussing of -2 mm lead to a proper

joint. For a offset of 0.6mm and a defocussing of 4.0mm an offset of 0.39mm is predicted.

There is no mean to decide whether the predicted value is in the correct equivalence class.

Prediction of defocussingFor the discussion of the result it makes sense to distinguish be-

tween two equivalence classes again. The first class contains defective joints with defocussing

of less than -4mm. The second equivalence class contains examples with a defocussing larger

than -2mm. According to these equivalence classes, there is one misclassification for an offset

of 0.6 mm and defocussing of -4mm. As the given offset is sufficient to explain the defective

joint the model has no means to distinguish the two differentequivalence classes.

A questionable prediction is made for a defocussing of -4mm and an offset of 0.3mm. In

this case a defocussing of -2.72mm is predicted. This might be a wrong prediction (it is not

possible to determine the exact position of the threshold),caused by a high force for a defective

joint.

Number of joints As already seen in table 6.8, the difference between the forces for one or

two joints is smaller than0.5σ for v = 3 or v = 5m/min. Thus, for these velocities it is nearly

impossible to distinguish between different number of joints. The results are itemized in table

7.10 which shows the number of misclassification for different velocities.

Prediction of the velocity For the node, representing the velocity, only the mean is trained.

The variance is fixed to ten which is approximately three times of the estimation. So the disper-

sion is large enough to guarantee prediction in the tested range and to avoid a strong influence of

the examples on the prediction.
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Table 7.11: Classifications of angle

Predicted angle
0◦ -30◦ 30◦

0◦ 20 8 8
Correct Angle -30◦ 0 4 2

+30◦ 0 1 5

Jointtyp Angle Offset

F

DefocussingNb. Joints V 2 V

H1 H2 H3

FH1

FH2

Od Dd

Figure 7.18: Model of laser beam welding

For the tested 48 blocks there are 8 cases with a prediction error larger than 1m/min. Two

of them are cases with a defective joint where the velocity has no influence on the force. Three

wrong predictions are made for lap seam joints which shows a very unregular dependency be-

tween velocity and force. For the remaining three cases the deviation is less than twom/min,

but there is no apparent reason for the deviation in these three cases.

Prediction of the angleFor the angle misclassifications can be observed in 19 of 48 blocks.

In most of the cases an angle of -30◦ (8 cases) or 30◦ (8 cases) is predicted instead of an angle

of 0◦. In four of these 16 misclassifications, predictions are made for a deficient joint, so that the

angle has no influence on the joint. In four other cases, predictions are made for a velocity of 6

or 7m/min, so that a lack of data might be the cause of the error. A complete overview is given

in table 7.11
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Figure 7.19: Standard deviation of take-off tensionF

7.2 Injection moulding

In chapter 6.2 the executed test-plan is shortly discussed.Due to this test-plan only 34 configu-

ration (15 inner experiments, 16 outer experiments, one central point and two possible operating

points) are tested. Usually each setting is repeated 6 times(for some configurations outliers are

removed, so that only four or five data sets are available), the experiments for the operating points

are repeated 60 times. The standard deviation of the take-off tension is depicted in figure 7.19,

points 1-15 are taken from the inner experiments, 16 – 31 are collected executing the outer ex-

periments. The standard deviation of the operating points is given by bars 32 and 33, bar number

34 represents the standard deviation of the central point. The mean of the standard deviation is

223.2 N. In the calculation of the mean standard deviation, the values in figure 7.19 are weighted

according to the number of experiments.

From54 = 625 possible configurations only 34 are observed. A comparison with a fraction

of the test-plan for two arbitrary variables shows that evenfor a subset of two variables (compare

table 7.12) only 11 (2 combinations for the operating point has to be added) from 25 configura-

tions are observed. Thus the suggestion of subsection 7.1.3to combine only variables if all of

their configurations are observed is not applicable.

For most of the presented models in this subsection it cannotbe expected that correct pre-

dictions are made for yet un-presented combinations (compare [DN01]). The model evaluation
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Table 7.12: Fraction of executed test plan

Var1 Var2 F

2 2
2 4
4 2
4 4
1 1
1 5
5 1
5 5
3 3

τm τp Ph τc

Fd

Fc

Figure 7.20: Discrete model of injection moulding

discussed in this section is therefore done on the training-set. In section 7.2.2 a new test plan is

suggested. This test-plan restricts the number of different settings for each variable to three to

reduce the number of experiments. The second principle is touse fully factorized test plans for a

subset of the variables and to keep the rest of the variables unchanged.

7.2.1 Results

In a first experiment a model with only discrete input nodes (compare figure 7.20) is used. The

results of the experiments with this model are listed in table 7.13 (compare also [EAD+03]).

The temperature of the plastic is predicted with an relativeerror of 0.85%. In comparison to

the mean melt temperature of269.16◦C, this corresponds to an average deviation of2.3◦C, 46%

of the difference between two neighbored settings. The meanrelative error of the preheating

temperature is 11.82%, which means (τp = 171.04◦C) an average error of approximately20.2◦C.
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Table 7.13: Relative error of different models for injection moulding

Model τm τp τc Ph F Var1 Var2

Model figure 7.20 0.85% 11.82% 8.73% 12.27% 4.22%
Linear model 2.31% 42.18% 14.93% 32.59% 10.25%
Hybrid model figure 7.21 1.92% 40.46% 12.44% 28.45% 6.94%
Work for injection 0.50% 13.57% 6.41% 7.63% 4.20% 6.79%
Cushion 0.84% 11.92% 8.65% 11.82% 4.25% 57.49%
Cushion and plasticizing 0.88% 11.85% 8.62% 12.00% 4.12% 57.04% 0.18%
Max cavity temperature 0.87% 12.49% 12.83% 4.04% 9.43%

This is approximately 45% of the difference between two neighbored settings. The relative error

of the cavity temperature is 8.73%, comparable to approximately 8.9◦C (τc = 102.15◦C). This

error is equal to 89% of the difference between two neighbored settings. This result indicates

that the temperature of the cavity has only a minor influence on the tensile strengthF (compare

[ZE98]). The error for the prediction of the holding pressure is 12.27% or approximately 5.95

bar. This error is equal to 59% of the difference between to neighbored settings for the holding

pressure. That is all the input variables are predicted withan accuracy smaller than the difference

between two neighbored settings.

The relative error when predicting the tensile strength is 4.22%. In comparison to the mean

forceF̄ = 3846 N , this error is approximately 162.3 N, which is smaller than the mean standard

deviation within the data blocks.

A comparison of the discrete model to the linear model (see table 7.13), shows that a linear

model is not adequate for the manufacturing process. The reason is that a manufacturing process,

considered non-linear by the engineers, cannot be modeled by a pure linear model.

Also the hybrid model, depicted in figure 7.21, shows worse results than the discrete model.

Thus the discrete model is used as base for the expansion. To enhance the prediction of the

τmd τmc τpd τpc Phd Phcτcd τcc

Fc

Figure 7.21: Hybrid model of injection moulding
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tensile strength by additional measurements several variables are available. To keep the number

of models to be tested small, a first selection is made, according to the correlation between the

tensile strength and the measurements (see table 6.11 for the selected variables). In a first attempt

the maximal cavity temperature is added. The used model is displayed in figure 7.22, the error

is reduced by 0.18%. amount of additional information is relatively small. This is only a slight

τm τp Ph τc

Fc

Fd

τc,max

Figure 7.22: Model including the influence of the feed temperature

reduction, but the reader should keep in mind that the discrete model already uses all available

input variables, so that the amount of additional information is relatively small. Additionally the

error produced by the discrete model is smaller than the standard deviation, so that a great part of

the error is due to scattering. The problem is that no predictions for un-presented data are made

for validation, so that there is a large risk that over-adaptation to the training data has happened.

When exact prediction of the input variables is required, the work needed for injection should

be added (see figure 7.23). The model including the cushion isbest for the prediction of the

preheating temperature, the model is similar to the one usedfor adding the injection work, only

the injection work is replaced by the cushion. The results intable 7.13 show that all variables

might be used to improve predictions, but the difference to the discrete model is small in most

of the cases. The main problem is that due to the test plan a large part of the parameters are

untrained. The hybrid model and the linear model might avoidthis problem. But these two

models provide the worst results; it is not tested whether these two models provide similar results

when tested with cross validation.
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τm τp Ph τc

Fc

Fd

Winj,cWinj,d

Figure 7.23: Model including the influence of the feed temperature

7.2.2 Test plan for injection moulding

The last section has revealed that the suggested models lackrobustness. A fully factorized test

plan would solve the problem, but this would severely increase the costs. To keep the experimen-

tal costs low, it is suggested to pick three variables and execute a fully factorized test plan for

those three variables. The rest of the variables is kept constant. For an example see table 7.14.

Value 2, used in this table, should be close to the operating point. Testing only three settings for

Table 7.14: Fraction of executed test plan

τp τm Ph v τc F

1 1 1 2 2
1 1 2 2 2
1 1 3 2 2
1 2 1 2 2
...

...
3 3 3 2 2

each variable is forced by cost-pressure. On the one hand picking more than three variables for a

test plan is very expensive. On the other hand it makes sense only in very rare cases as the com-

bined influence of more than three variables can be neglectedin most of the cases. Neglecting

some of the possible combinations of three variables could further reduce the cost. This type of

tests is closely related to the Bayesian network, so that thetest plan results also in valuable hints

for the structure to be used.
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Chapter 8

Real-time

A controller has to react in real-time. That is the response time is limited by the sampling period

∆T . Particularly for nonlinear models as discussed in chapter5 real-time requirement is hard to

meet. In this chapter the reduction of time-slices is discussed which is one important step toward

real-time. But further steps are necessary, e.g. the usage of approximate inference.

The run-time used for inference in a Bayesian network depends on the number of nodesnN

of the Bayesian network. For a dynamic Bayesian network, thenumber of nodesnN is a multiple

of the number of time-slicestmax, and hence it is desirable to reduce the number of time-slices.

The experiments, discussed in the previous chapters, are performed with 10 time-slices for

the representation of the past and 15 time-slices for present and future. The large number of

time-slices has an effect on the run-time as well as on the time used for training. In particular for

hybrid, dynamic Bayesian networks the time needed for inference

Tinf ≈ ntmax
s (8.1)

depends on the number of statesns per time-slice and on the number of time-slicestmax. Even if

a reduction of the number of statesns has a large effect on the run-time, this parameter is more

or less dependent on the model and on the required accuracy. Hence there seems to be no general

way to speed up the controller by reducing the number of statesns. This remark does not mean

that a reduction ofns makes no sense in special cases, for an example see section 5.2. Reducing

the number of time-slicestmax is much more promising. In the next two sections it is shown that

the number of time-slices, needed for the representation ofthe past and future, can be severely

reduced.

Another promising approach would be the usage of approximations, as discussed e.g. in

151
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[BK98a]. It is not discussed in this thesis.

8.1 Number of time-slices

8.1.1 Dependency on the number of nodes used for the future

The number of time-slices is an important influencing factoron the run-time of the inference

algorithm. The nodes, representing the future, have two main tasks.

First, the estimated inputsut+i are part of the calculation of the new inputunew, as described

by equation (4.11). Sometimes it makes sense to use more thanone inputut+i for the calculation

of the input to damp the control inputunew. Signals as displayed in figure 4.10(a) usually make

no sense. The reason is that the actuator is not able to followsuch high frequencies. A suitable

number of estimated input signals is application dependent. The reader should keep in mind that

there might be other methods to dampunew than the usage of additional signals for the calculation

of unew.

The second function of the future nodes is the storage of the desired valuew. It has to be

tested whether a reduction of the number of time-slices has anegative influence on the results.

Therefore the same experiments as in chapter 4 are executed.The only difference is the number

of nodesnfuture used for the representation of the future. No further reduction is possible at the

limit nfuture = 2. No evidence is given for the first time-slice of the future, as it is determined by

the past (things might be different for jump Markov systems). The second time-slice of the future

is needed to store the desired valuew. Thus it is not possible to use less than two time-slices for

the future.

The number of time-slices for the past is fixed to 10, the number of estimated signalsut+i

for the calculation ofunew is fixed to four. It is therefore possible to compare the results with the

results of chapter 4.

Additionally, to the criteria discussed in chapter 4, the time for the training and the time for

one inference step is listed. In our experiments the training is executed with 40 examples and 5

iterations of the EM-algorithm. The measurement of the evaluation-time includes the following

steps:

1. Entering all observations for in- and output to a dynamic Bayesian network withnpast +

nfuture nodes. This net contains no information about the desired value and is used for the

estimation of the disturbance.

2. Estimation of the disturbance.
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3. Entering the lastnpast observations as the observed past and the desired value as the ob-

served value in the future. To make the estimation of input signals more robust the estima-

tion of the disturbance, obtained at step one, is used as additional evidence.

4. Estimation of signalsut+i for the calculation ofunew.

The evaluation-time thus contains all measurements necessary for the calculation of the new

signal. The measurings are done on a PC triggered with 2.4 GHz.

The results for system 2 (see table 4.1 for a definition of the test-systems and table 4.2 for

an explanation of the criteria used to evaluate the systems)are listed in table 8.1. For the experi-

ments, described by the last two columns, the number of signals used for the calculation ofunew

is reduced to two respectively one. They only show that the controller works as intended for a

low number of time-slices, e.g. the differences in the squared error sum are caused by the low

number of signalsut+i used for the calculation ofunew.

Table 8.1: Results of experiments with difference equation(system 2), 10 nodes used for the past
Number of future nodes 13 11 9 7 5 3 2

Id(zd = 0) 9.6685 9.6741 9.6785 9.6815 9.6800 8.5862 4.9942
e∞(zd = 0) 0.0205 0.0172 0.0139 0.0106 0.0071 0.0033 0.0083
Overshoot 0.5405 0.5442 0.5482 0.5525 0.5584 0.1300 0.1203
Id(zd = 1) 0.1500 0.1500 0.1497 0.1493 0.1493 0.1404 0.1032
e∞(zd = 1) 0.0244 0.0212 0.0173 0.0130 0.0095 0.0110 0.0170
ts(z

d = 0, 1%) [s] 0.4500 0.4500 0.4500 0.4500 0.4500 0.3500 0.1500
ts(z

d = 0, 3%) [s] 0.4000 0.4000 0.4000 0.4000 0.4000 0.2000 0.0500
ts(z

d = 1, 1%) [s] 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.1500
ts(z

d = 1, 3%) [s] 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.1500
Traintime [s] 279.6955 254.1279 230.0103 207.1388 181.9450 155.0763 143.4986
Evaltime [s] 0.6007 0.5503 0.4942 0.4428 0.3889 0.3332 0.3051

The effect ofnfuture on the run-time and training-time is depicted in figures 8.1 and 8.2. As

the experiments are done for networks without discrete nodes, only a linear effect is observed.

For hybrid dynamic Bayesian networks with discrete nodes a larger effect is expected.

The effect on the accuracy of the controller is depicted in figures 8.3 and 8.4. The results

for nfuture < 4 are omitted as the number of nodes that are used for the calculation ofunew is

decreased in comparison to the other examples. Figure 8.3 shows the effect on the squared error

sum. At a first glance, the reduction ofnfuture seems to have a negative effect, but the effect is

only visible at the second position after decimal point.

Figure 8.4 depicts the effect of reducingnfuture on the steady state errore∞. Decreasing

nfuture has a positive effect on the steady state error. A further reduction untilnfuture = 3 has
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Figure 8.1: Time for the generation of the new input signal
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Figure 8.2: Time for training depending onnfuture
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Figure 8.3: Squared error sum depending on number of time-slices
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Table 8.2: Dependency of the accuracy on the number of nodes used for the future
Number of future nodes 13 11 9 7 5 3 2

Id(zd = 0) 9.8833 9.8842 9.8838 9.8843 9.8829 8.9384 4.9675
e∞(zd = 0) 0.0007 0.0010 0.0009 0.0005 0.0000 0.0007 0.0011
Overshoot 1.1388 1.1403 1.1402 1.1406 1.1403 0.2144 0.0040
Id(zd = 1) 0.1575 0.1583 0.1578 0.1556 0.1522 0.1511 0.1133
e∞(zd = 1) 0.0199 0.0215 0.0190 0.0111 0.0028 0.0110 0.0185
ts(z

d = 0, 1%) [s] 0.6500 0.6500 0.6500 0.6500 0.6500 0.4000 0.0500
ts(z

d = 0, 3%) [s] 0.4500 0.4500 0.4500 0.4500 0.4500 0.2000 0.0500
ts(z

d = 1, 1%) [s] 0.5500 0.5500 0.5500 0.8500 0.8500 0.7500 0.6500
ts(z

d = 1, 3%) [s] 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.1500
Traintime [s] 280.9525 255.7706 239.2738 281.2450 209.0050 157.5998 158.9270
Evaltime [s] 0.6029 0.5502 0.5092 0.9710 0.5654 0.3379 0.3317

the same effect. Settingnfuture to the theoretical limitnfuture = 2 makes no sense, the steady

state error increases toe∞ = 0.0083. Whennfuture is set to two, there is only one node left for

encoding the desired value. As a result the information might be missing that the desired value

has to be kept constant.

Similar results are obtained for the experiments with system 3, listed in table 8.2. Also

for system 3 a reduction of the number of nodes has nearly no impact on the accuracy. As a

consequence of the discussion in this sectionnfuture is set to five, the number of signals for the

calculation ofunew is fixed to four. This setting enables a comparison between the results in this

and the following section, and chapter 4.

8.1.2 Dependency on the number of nodes used for the past

The firstnpast time-slices are used for the estimation of the past and the disturbance. Before

the experiments are discussed, the lower limit for a SISO-system from the theoretical point of

view is deduced. For the state space model, a dynamic Bayesian network to model a third order

system is depicted in figure 8.5. Note that the number of state-nodes is equal to the order of

the system. The structure is based on the assumption that thenormal form, described in section

3.1.1, is used. The reason is that normal forms are essentially for good training results.

Provided that the in- and outputs are known for all time-slices, the third stateXs
3,t can be

estimated at timet based on the measurement of the outputY m
t . For time-slicet + 1 the first and

the third state,Xs
1,t+1 andXs

3,t+1, are assessable accurately. For the estimation of the second state

Xs
2,t+1 information about the first stateXs

1,t is missing. Att + 2 enough information is available

for the estimation of all states.

For higher order systems similar considerations lead to theresult that at the first time-slice
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Figure 8.5: State space model of third order

only the last state can be estimated, for the second time-slice the first and the last one. For the

estimation of all states of a system ofn-th ordern time-slices are needed.

If the structure of the DBN is based on the difference equation approach, the same result

is obtained. To figure out the minimal number of time-slices equation (3.34) is helpful. It is

necessary to have access to all signalsut−1 · · ·ut−n andym
t−1 · · ·ym

t−n to make a prediction for

Y m
t . That is also for the difference equationn time-slices are necessary to make exact predictions

for a system ofn-th order.

The results of the experiments with system 2 are itemized in table 8.3. The first line shows

that reducingnpast has nearly no effect on the squared error sum. The relationship between the

number of time-slices for the past and the squared error sumId(z
d = 0) is displayed in figure

8.6. But a reduction also has drawbacks. The steady state error e∞(zd = 0) raises from 0.0071

to 0.0105 fornpast = 3. If the steady state-errore∞(zd = 1) for the disturbance reaction is

observed, it gets obvious that the controller is not workingproperly fornpast = 3. The steady

state error fornpast = 3 raises to 0.0347. This value is 3 to 18 times larger than the steady state

error for more time-slices. The results obtained for system3, listed in table 8.4, agree with the

results for system 2.

Reducing the number of nodes leads to nearly no changes in thesquared error sum, but to a

larger steady state error. However, a reduction tonpast = 4 seems possible, particularly when

the run-time is taken into account The results discussed so far are obtained with the inference
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Table 8.3: Dependency of the results on the number of nodes used for the past, system 2
Number of past nodes 10 8 6 5 4 3

Id(zd = 0) 9.6800 9.6832 9.6836 9.6842 9.6861 9.7001
e∞(zd = 0) 0.0071 0.0075 0.0080 0.0079 0.0084 0.0105
Overshoot 0.5584 0.5578 0.5574 0.5567 0.5566 0.5523
Id(zd = 1) 0.1493 0.1444 0.1426 0.1432 0.1380 0.1217
e∞(zd = 1) 0.0095 0.0045 0.0022 0.0019 0.0079 0.0347
ts(z

d = 0, 1%) [s] 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500
ts(z

d = 0, 3%) [s] 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000
ts(z

d = 1, 1%) [s] 0.3000 0.3000 0.5500 0.5500 0.5500 0.5500
ts(z

d = 1, 3%) [s] 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500
Traintime [s] 181.9450 157.2597 132.0516 119.3287 106.6231 94.1040
Evaltime [s] 0.3889 0.3359 0.2846 0.2557 0.2291 0.2021

Table 8.4: Dependency of the results on the number of nodes used for the past, system 3
Number of past nodes 10 8 6 5 4 3

Id(zd = 0) 9.8853 9.8815 9.8792 9.8813 9.8824 9.8796
e∞(zd = 0) 0.0005 0.0007 0.0024 0.0016 0.0013 0.0032
Overshoot 1.1435 1.1401 1.1424 1.1439 1.1439 1.1439
Id(zd = 1) 0.1556 0.1445 0.1373 0.1465 0.1481 0.1301
e∞(zd = 1) 0.0111 0.0052 0.0286 0.0203 0.0163 0.0410
ts(z

d = 0, 1%) [s] 0.6500 0.6500 0.6500 0.6500 0.6500 0.6500
ts(z

d = 0, 3%) [s] 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500
ts(z

d = 1, 1%) [s] 0.8500 0.8000 0.6000 0.6000 0.6000 0.6000
ts(z

d = 1, 3%) [s] 0.2500 0.2500 0.2500 0.5000 0.5000 0.5000
Traintime [s] 282.0064 162.3054 136.7756 123.4775 112.0902 98.5522
Evaltime [s] 0.5778 0.3556 0.2992 0.2703 0.2433 0.2142

algorithm discussed in section 2.3.2. The drawback of this algorithm are numerical instabilities

[LJ99]. It is not possible to use this algorithm for dynamic Bayesian networks with both discrete

and continuous nodes. For networks with more than 5 time-slices the result of inference is Not a

Number (NaN). As a consequence the stable algorithm, discussed in [LJ99], is examined in the

next section.

8.2 Stable Inference algorithm

The stable inference algorithm avoids switching between the moment and canonical character-

istic so that the matrix inversion in this step is avoided. Additionally the representation of a

potential is changed. In the stable algorithm the continuous nodes are divided in head and tail

nodes, the potential represents a distribution of the head nodes given the tail nodes, so that the

dimension of the covariance matrix gets smaller.
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Figure 8.6: Squared error sum depending on number of time-slices

In this section the measurements for system 2, withnpast = 6 andnfuture = 5 is repeated with

the new inference algorithm to get an impression whether changing the inference algorithm has

an impact on the run-time. A comparison between table 8.5 andtable 8.3 shows that the usage

of the stable inference algorithm has nearly no impact on thequality of the controller defined by

the squared error sum, overshoot and steady state error. This coincides with the expectation as

the used inference algorithm should have no impact on the calculated distribution. Comparing

Table 8.5: Runtime of the stable inference algorithm
Experiment number 1 2 3 4 5 6 7 8 9 10 Mean

Id(zd = 0) 9.68 9.68 9.68 9.68 9.68 9.68 9.68 9.68 9.69 9.68 9.68
e∞(zd = 0) -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 0.01
Overshoot 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56
Id(zd = 1) 0.14 0.15 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14
e∞(zd = 1) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ts(z

d = 0, 1%) [s] 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45
ts(z

d = 0, 3%) [s] 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40
ts(z

d = 1, 1%) [s] 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55
ts(z

d = 1, 3%) [s] 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
Traintime [s] 726 736 754 699 698 698 697 697 700 696 710
Evaltime [s] 4.13 4.13 3.89 3.89 3.90 3.90 3.89 3.89 3.93 3.893.94

the time used for the training of the Bayesian network and thetime for evaluation shows that

the (current) implementation of the inference algorithm described in [LJ99] is approximately 14
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Figure 8.7: Steady state error depending on the number of nodes for the past

times slower (comparison of the evaluation time) than the implementation of the former algo-

rithm [Lau92]. Therefore, it is advantageous to use the former version as long as no warnings (a

warning is given e.g. when the matrix to be inverted is badly conditioned) are displayed during

runtime.



Chapter 9

Outlook and Summary

9.1 Outlook

The thesis is divided into two main parts. The first part dealswith the application of Bayesian

networks as a controller. In chapter 4 and section 5.2 preconditions and suitable models are

discussed that enable a dynamic Bayesian network to act as controller. Chapter 8 examines the

run-time and simple means for its reduction.

The second part addresses modeling of manufacturing processes like hydroforming and in-

jection moulding. In both areas large progress is achieved,yet there are still a lot of possibilities

for further optimization. Section 9.1.1 analyzes methods to improve the Bayesian controller. An

additional subject is the usage of alternative approaches to extend the possibilities of stochastic

control.

9.1.1 Usage of Bayesian networks as a controller

In this section three different aspects are discussed. First, the Bayesian controller is regarded

from the practical point of view. Problems which might occurdue to differences between simu-

lation and possible application are covered. The second paragraph deals with possible extensions

of the system so that as many systems as possible can be controlled. Finally, alternative stochastic

approaches are discussed.

Practical application The Bayesian controller is examined with simulated dynamicsystems

of second and third order. Astraining signalsthe impulse-, step-, and sine-responses (different

frequencies are used) are applied. Using a broad range of frequencies simplifies the adaptation of

the parameters. But signals collected during practical employment of the system have a different

161
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characteristic. Usually a controller keeps the output constant. Provided that no disturbance

occurs, the input signal is also constant. It is not possibleto learn the dynamic of the system

using constant signals. As long as only constant in- and output signals are collected, a dynamic

system can be characterized by its gain. Possible solutionsmight be to store signals which are

gathered during the occurrence of a disturbance or when the plant is started up.

A second point to be discussed is the robustness of the training process facing differences

between thestructure of the Bayesian networkand the plant to be modeled. To explore the

feasibility of Bayesian control, it was assumed that the order of the system and, as a result, the

structure of the dynamic Bayesian network is known. Structure means either the number of state

nodes or the order of the applied Markov model. To determine the order of the system several

points of view are important. Control theory offers different methods to estimate the order of

the system (see [Unb00], chapter 4.3). Some of them are applied before system identification

takes place. Additionally it might make sense to simplify the model, for example to use a model

of smaller order than the plant (see [Unb97a], chapter 9 for regularly used simplifications). The

smaller number of state nodes results in less nodes. Therefore training and evaluation time is

shortened. Assuming the equality of some time constants is another possibility to reduce the

search-space and simplify system identification.

The application of structure learning algorithms comprises some open questions. It is not

known how the special requirements of the manufacturing domain are taken into account. Partic-

ularly adding additional hidden nodes or learning a hybrid Bayesian network can be considered

as a complex problem.

Before the EM-algorithm is applied, a suitablesampling ratehas to be set. In this thesis

the sampling rate is deduced from the natural angular frequency of the system and the sampling

theorem. But this is no final solution as the formula given forthe calculation of the natural an-

gular frequency requires the knowledge of the time-constants of the system and is restricted to

systems of second order. Both conditions are usually not met. A minimization of the sampling

period does not solve the problem as it complicates the system identification and shortens the

maximal inference time (The reader should keep in mind that,in order to meet real-time require-

ments,∆T is the maximal inference time). Unbehauen suggests (confer[Unb00], section 4.4.2)

to approximate the transition function by theoretical considerations or deterministic test-signals

to figure outT63, the time when the output has reached 63% of its maximal value. A sampling

period between∆T = 1/6 T63 and∆T = 1/10 T63 is proposed.

At last therun-timehas to be discussed. In chapter 8 it is shown that run-time canbe reduced

by decreasing the number of time-slices. For hybrid Bayesian networks the number of mixture
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components is proportional tontmax
s . That is the reduction of the number of time-slices is an

effective means to reduce run-time. But as time-measurements in chapter 5 show, solely cut-

ting down the number of time-slices is not sufficient. For discrete dynamic Bayesian networks a

possible approach is discussed in [BK98a; BK98b]. A more promising approach might be mo-

ment matching. The idea is to reduce the number of componentsby approximating a mixture of

Gaussians by a mixture of Gaussians with a lower number of mixture components. This seems

to be promising particularly for the state-space model introduced in section 5.2. In the dynamic

Bayesian model depicted in figure 5.16 the discrete nodes represent different operating points.

Usually one state is much more probable than the remaining states. When the system changes

from one operating point to the next only two states are more likely than the others. Thus it is ex-

pected that the reduction of mixture components results only in a low error. A similar principle is

applied in the modeling of possible failures within a systemof 5 tubes [KL00]. The main idea is

that the states representing none or only one error are more probable than the states representing

the occurrence of multiple errors at the same time. That means that the idea that some states are

unlikely is used to reduce the number of mixture components.

Four different problems

• Usage of real training signals.

• Identification of the structure of the system.

• Identification of the sampling rate

• Real-time inference

are discussed which might cause problems when transferringthe theoretical approach in this

thesis to a practical application. For all of them possible approaches to solve them are discussed,

therefore it is worthwhile to continue research in the domain of Bayesian control.

Improvements of the systemAs test systems only SISO systems were employed. But in

reality also a lot of MIMO systems have to be controlled. Schulz [Sch02] discusses as example

a helicopter, a hydraulic cascade, a distillation column, and a steam generator. That isMIMO

systemsare an important extension. At least the state-space approach is also used for MIMO

systems, but in reality some problems can occur. One possible source of problems is the infer-

ence algorithm. Using the inference algorithm introduced in [Lau92] might result in numerical

problems. The matrixK occurring in the canonical characteristics is initialized, so that it has

rank one (“Note thatK has rank one and is therefore typically not positive definite[Lau92]”).

But when the canonical characteristics is transformed to moment characteristics an inversion of
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K is required. Furthermore the calculation of marginal potentials is only guaranteed to be finite

if the according sub-matrix ofK is positive definite. Thus numerical problems are expected.

The implementation of the recent inference algorithm [LJ99] in the BN-toolbox is slower than

the implementation of the former one. Thus it is advisable touse the former algorithm as long

as it provides numerical stable results. The second problemis the training process. For the state-

space model some weights are clamped; i.e, they are excludedfrom training. As a result the

search-space is narrowed which leads to a faster and more stable training. For MIMO systems

the normal form which is used to restrict the search-space can no longer be used. Thus it has

to be checked whether the normal forms available for MIMO systems [Sch02] can be used in a

similar way.

The application of normal forms is one way of introducing a-priori knowledge into the model.

A second source of information is an analytical descriptionof the plant. But usually a complete

analytical description of the system to be controlled is notgiven. Therefore an automatic way to

include partial or qualitative [Kui94] knowledge about thesystem is needed. Possible approaches

are:

• Imprecise or incomplete knowledge might be used for a better initialization and a refined

training process. For example the weight of a linkYi → Z might be known exactly. But

in the current implementation of the BN-toolbox it is only possible to clamp a complete

weight-vector of a nodeZ. That is the weights of all linksY → Z must be known.

• Fixing a set of parameters, e.g. variance or weights of somenodes.

• When structure learning is applied a-priori knowledge might be used to include or exclude

some edges from the search process or to provide a node ordering for the learning process.

• For overdamped systems the number of nodes included in the calculation ofunew can be

reduced.

A main point of control isstability of the controlled system. For linear SISO systems good

results are obtained by using a difference equation model. But for the state-space approach the

training failed in one case, i.e. convergence was not achieved (see table 4.4). As the suggested

model for nonlinear systems are based on a state-space modela guarantee for convergence is

still of importance, particularly for the nonlinear case. Similarly a guarantee is missing that the

steady state error is reduced to zero.

Alternative approachesThere are other means for stochastic inference beside Bayesian net-

works. Well known inference algorithms are differentsamplingprocedures, e.g. Gibbs sampling.
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Gibbs sampling is implemented for example in BUGS. In [DDN00b] it is shown that BUGS is

also suitable for modeling of preforming and calibration. There are three advantages in compar-

ison to the inference process used for the Bayesian network.

• The inference process is not restricted to conditional Gaussian distributions.

• Usage of deterministic nodes which are helpful to model nonlinearities.

• Run-time can be reduced by reducing the number of iterations.

The last item raises the question how many iterations are necessary before convergence is reached.

Brooks and Roberts [BR97] write: “Ideally we would like to analytically compute or estimate

a convergence rate and then take sufficient iterations for any particular desired accuracy but this

is not possible in general. In fact for Markov chains it is extremely difficult to prove even the

existence of a geometric rate of convergence to stationarity.”

Closer to Bayesian networks aredecision networks, introduced e.g. in [CDLS99]. In decision

networks two types of nodes are added. First decision nodes that have no parents are added. The

decision nodes have an influence on the utility nodes which represent the utility of each state; i.e.,

the utility nodes depend on the states and on the decision nodes. In [CDLS99] the decision nodes

are defined to be discrete. Before the approach can be appliedto control problems an extension

to continuous decision nodes is necessary.

9.1.2 Modeling manufacturing processes

There remain several challenges when modeling manufacturing processes. The main problem

is the usage oftest-plans. The problem is clearly identified in section 7.1.3. However, the

suggested solution is only applicable when a fully factorized test-plan is employed to identify

the main influence factors. That means that all configurations of Xi, Xj have to be examined

if the combined influence ofXiXj is considered important. It does not mean that all possible

configurations of all variables have to be examined.

Section 7.2 shows that the idea to identify subsets of variables, where all configurations are

observed, is not applicable to all test plans. For injectionmoulding the restrictions will be taken

into account during the collection of new data. But it remains subject of research whether there

is a general mapping from each test-plan to a structure of a Bayesian network.

The principle ofpiecewise approximationis mostly applied in the approximation of one-

dimensional functions. But, as there are also Taylor seriesfor multi-dimensional functions, it is
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likely that an extension for the multi-dimensional case exists. To apply the suggested approx-

imation to multi-dimensional functions an algorithm is needed to figure out suitable pointsua,

so that the expansion of a functionf at a pointua can be calculated. For the one-dimensional

case visualization is applied. This is no appropriate solution for the multi-dimensional case. The

second problem is to calculate Taylor series at hidden statesxs. This would have a large impact

on hybrid dynamic Bayesian networks used for control. At themoment the selected operating

point depends only on the input. The selection of the operating point depending on the state

would cover a wider range of nonlinearities.

9.2 Summary

This thesis deals with the problem of modeling and control ofstatic and dynamic systems. Thus

it is situated at the intersection of control theory, manufacturing, and stochastic modeling. It is

therefore necessary to give a brief introduction to all domains.

In chapter 2 Bayesian networks that are selected as means forstochastic modeling are intro-

duced. This chapter covers the main aspects of discrete, hybrid, and dynamic Bayesian networks,

including definitions, inference algorithms, and training.

Chapter 3 gives an overview about control theory. Main points are the description of linear,

dynamic systems by difference equations and the state-space description. Later on, in chapter 4,

they are used to deduce the structure of a Bayesian network. Even if linear systems offer a broad

applicability, also nonlinear systems have to be discussed. Typical nonlinearities like saturation,

hysteresis curve, dead-zone and the two-point element thatare introduced in several books about

nonlinear control [LW00; Föl93; Unb97b] are mentioned. The aim is to develop prototypical

models for frequently occurring nonlinear units which can be combined to more complex units.

At the end of chapter 3 two traditional controllers, namely the approach by Ziegler and

Nichols, and the Dead-Beat controller are introduced. Theyare used to compare the new ap-

proach of a Bayesian controller to controllers in practicaluse.

In chapter 4 theBayesian controlleris introduced. As a starting point, both the state-space de-

scription and the difference equation model that are regularly used in control theory are mapped

to dynamic Bayesian networks. These models are also employed for testing the new approach.

The usage of general models has the following advantages

• The approach is independent from the intended application. Even if some domain-knowledge

is used, the models can easily be transferred to other applications.
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• The approach can thoroughly be tested by simulation. This reduces the effort for modeling

as there is no need to start expensive plants. Moreover the risk of failure is reduced when

the solutions are transfered to the final application.

• Knowledge from control theory can easily be incorporated into the Bayesian model.

In control theory dynamic systems are described by differential equations. One mathematical

model is obtained by rewriting the differential equation ton differential equations of first order.

This model is called thestate-space description, the state of the system is represented by hidden

state nodes. The differential equations are transformed toan equivalent description in discrete

time. The obtained model is similar to a Kalman filter; i.e., the statexs
t+1 depends on the former

statexs
t and on the inputut. The output depends on the state, and in special cases also onthe

input. The state-space model is mapped to a structure of a dynamic Bayesian network. The

similarity to the Kalman filter is used to deduce the weights and means of the dynamic Bayesian

network (see section 3.1.2 for Kalman filters and section 4.1which discusses the relation between

Kalman filters and dynamic Bayesian networks).

To get an efficient controller, the first time-slices are usedfor the representation of the past;

i.e., the evidence for the first time-slices comprises in- and output. This information is used to

estimate the disturbance as the difference between the model and the observation. In the state-

space model additionally the state of the system is estimated.

For the future no information but the desired value is given.The desired value is entered as

evidence and afterwards the manipulated value is calculated by marginalization over all variables

except the required input. The estimated disturbance is included in the calculation as its estima-

tion is propagated from the past to the future. This propagation is based on the assumption that

the characteristic of the disturbance changes slowly. To guarantee a good performance a special

relation of the covariances is essentially.

• The variances of the input nodes are set to a large value. This setting reflects the assumption

that the controller must respond to a changed disturbance ordesired value by changing the

input.

• The variance of the nodes representing the disturbance is below the variance of the input

and greater or equal to the variance of the output nodes. Particularly the variance of the

disturbance node in the first time slice is greater than the variance of the output nodes. This

setting enables the estimation or the disturbance when input and output are given.

• The variance of the output is set to a small value, because itis assumed that the model is
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correct. Deviations between the model and the observation are explained by an adequate

estimation of the disturbance.

The relation between the variances is fixed, that is the variances are not adapted during training.

In a first step (see section 4.1) thefeasibility of a Bayesian controlleris tested. To judge the

performance of a controller the sum of the squared error, theovershoot, the steady state error and

the settling time is used (compare table 4.2).

The feasibility test shows that the desired value is reachedin all cases with a deviation smaller

or equal than 2 ‰ of the desired value within a settling time ofsmaller than 0.7 s (Test systems

with a natural angular frequency of 10 s are used).

To come to a self adaptive systemtraining is necessary. It is performed with the EM-

algorithm which is included in the BN-toolbox. The EM-algorithm used for training only guar-

antees that a local maximum of the log-likelihood is reached. To obtain a large accuracy of the

model several measures are taken concerning the training data:

• The time-series used for training are exchanged after five iterations.

• Time-series of different type (step-response, impulse response and sine-response) and fre-

quencies are applied.

In order to obtain an optimal training result the search-space for the state-space model is reduced

by the usage of theobservable canonical formwhich allows to fix the weights from the state

nodesXs to the output nodeQ. As also the weight from the disturbance nodeZd to the outputQ

is fixed, the nodeQ is excluded from training. The parameters of the disturbance node are also

fixed, because it is assumed that the characteristic of the disturbance changes slightly from one

time-slice to the next. Thus two layers are excluded from training.

The overshoot of the trained controller is greater than for the analytical controller. This leads

to a smaller squared error for the reference reaction. However, the less accurate model leads to a

larger squared errorId(z
d = 1) for the disturbance reaction and to a greater settling timets. The

steady state error remains with three (of 30) exceptions below the 1%-level. The most critical

result is the missing convergence in one case.

This severe drawback is remedied by thedifference equationmodel. It is obtained by trans-

forming the differential equation to a difference equation. This is done by approximation of the

derivatives by differences of function values. The state ofthe system is represented by regress

to former function values; i.e., the calculation ofym
t+1 is based on information aboutym

t−i and

ut−i. Thus the usage of difference equations leads to a higher order Markov model. For the

implementation of higher order Markov models two differentmethods are suggested:
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• Expansion of the BN-toolbox, so that also higher order Markov-models can be unrolled to

usual Bayesian networks.

• Adding redundant nodes to the model, so that former inputs and outputs are represented in

two different time-slices.

For the difference equation model it is supposed that there is no disturbance during training.

Thusqt = ym
t , the observed output is entered twice as evidence. Thus no hidden nodes are left

which leads to a stable training result. The steady state error e∞ is in all cases smaller or equal

than 7‰ of the desired value and convergence is achieved in all cases. In comparison to the

state-space system the number of training-iterations is reduced from 20 to 5, but convergence of

the log-likelihood can be observed after the second iteration.

Chapter 4 is restricted to linear systems. This restrictionis eliminated by the usage ofhybrid

Bayesian networksas discussed in chapter 5. The idea is to approximate anonlinear functionby

multiple Taylor series. When the model is employed a discrete node selects the suitable Taylor

series. For test purposes the model is applied to the saturation, and to the hysteresis curve. The

saturation is modeled with a relative error smaller than 3%,the hysteresis is also modeled with

high accuracy, but a training of the hysteresis model is not possible.

The linear approximation is combined with linear dynamic models, both with the difference

equation model and the state-space model. For nonlinear systems the difference equation model

provides no acceptable results, particularly the trainingis unstable. The combination of the

saturation model with the state-space model leads to acceptable results, the steady state error

is between 5 and 6‰ of the desired value. But at the moment a practical employment is not

possible due to the large evaluation time of approximately 40 s to calculate the new input signal.

Most of themanufacturing processesare nonlinear. Chapter 7 discusses the application of

Bayesian networks to several subprocesses of hydroforming, e.g.preformingandcalibration.

For preforming the pressure between the blanks is predictedwith a relative error smaller than

3%, for the calibration the relative error is between 30 and 55%, but the predicted curve is close

to the original data, the error is largest at the bursting point. Another important point is that both

models show generalizability. That is they are able to make predictions for yet unknown data,

a feature which is usually associated with neural networks.But not all of the presented models

offer generalizability.

The counter example is the model for injection moulding. Theanalysis of the data shows

that only 5% of the possible configurations are tested. This low number of examples leads to the

fact that not all configurations of discrete parents are observed. Thus there are parameters in the

conditional probability tables which cannot be trained, asthere are no examples. Literature about
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quality management points out that the missing configurations are due to deliberate test-plans.

For simple test-plans subsets of variables, where all configurations are tested, can be identified

and used as possible parents. Following this instruction a model for thewelding processis

developed (see section 7.1.3 and [DDNK03]). This model is also able to make predictions for

unknown inputs. Thus the aim of generalizability is reachedin almost all cases. The only

exception is the model forinjection mouldingwhich is therefore not suited to deduce a suitable

operating point for injection moulding. The reason for the failure is that there is no set of two

variables where all configurations are observed.

The thesis finishes with a discussion aboutreal-time. The number of time-slices can be

severely reduced which leads both to a reduction of the training and the evaluation time. For

models of second order the number of time-slices used for thefuture can be reduced to two. In

one time-slice no evidence is given for the output node, the second time-slice is used to enter the

desired value as evidence. There is nearly no impact on the steady state error and on the settling

time. Also the number or time-slices used for the representation of the past can be reduced. The

minimal number depends on the order of the system to be modeled. But it seems from advantage

to use one or two additional time-slices to reduce the steadystate error.

As discussed in section 9.1, there are a lot of problems to be solved, but the thesis offers

a stable base for Bayesian control. At the beginning the Bayesian controller might be used for

slow processes with no available mathematical model, so that there is a need for a self-adaptive

controller with no hard real-time requirements.
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[Föl93] O. Föllinger.Nichtlineare Regelungen I. Oldenbourg, München,Wien, 1993.



174 BIBLIOGRAPHY

[Gel94] A. Gelb, editor.Applied optimal estimation. MIT Press, Cambridge, Massacusetts,

USA, 1994.

[GH94] D. Geiger and D. Heckerman. Learning Gaussian Networks. InProceedings of the

Tenth Conference on Uncertainty in Artificial Intelligence, pages 235 – 243, San

Francisco, 1994. Morgan Kaufmann.

[GL99] E. L. Grant and R. S. Leavenworth.Statistical Quality Control. McGraw-Hill,

Boston, 1999.

[Had99] P. Haddawy. An Overview of Some Recent Developmentsin Bayesian Problem

Solving. AI Magazine, Special Issue on Uncertainty in AI, 1999.

[HB95] E. Horvitz and M. Barry. Display of information for Time-Critical Decision Mak-

ing. In Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelli-

gence, pages 296 – 305, 1995.

[Hec97] D. Heckerman. Bayesian Networks for Data Mining.Data Mining and Knowledge

Discovery, pages 79 – 119, 1997.

[HG95] D. Heckerman and D. Geiger. Learning Bayesian Networks. Technical Report

MSR-TR-95-02, Microsoft Research, February 1995.

[HGC95] D. Heckerman, D. Geiger, and D. M. Chickering. Learning Bayesian networks:

The combination of knowledge and statistical data.Machine Learning, 20:197 –

243, 1995.

[HH98] D. Heckerman and E. Horvitz. Inferring Informational Goals from Free-Text

Queries. In Cooper and Moral [CM98], pages 230 – 237.

[HHN91] D. Heckerman, E. J. Horvitz, and B. Nathwani. Towardnormative expert systems

I: The pathfinder project.Methods of Information in Medicine, 31:90 – 105, 1991.

[HJBHR98] E. Horvitz, D. Heckerman J. Breese, D. Hovel, and K. Rommelse. The Lumière

Project: Bayesian User Modeling Inferring the Goals and Needs of Software User.

In Cooper and Moral [CM98], pages 256 – 265.

[HMW95] D. Heckerman, A. Mamdani, and M. P. Wellman. Real-World Applications of

Bayesian networks.Communications of the ACM, 38(3):24 – 26, March 1995.



BIBLIOGRAPHY 175

[HR91] H. Hetzheim and G. Rommel. Fuzzy Logic für die Automatisierungstechnik?

Automatisierungstechnische Praxis, 33(10), 1991.

[HRSB92] E. Horvitz, C. Ruokangas, S. Srinivas, and M. Barry. A decision theoretic approach

to the display of information for time-critical decisions:The Vista project. InPro-

ceedings of the Conference on Space Operations and Automation and Research,

January 1992.

[IB98] M. Isard and A. Blake. Condensation – conditional density propagation for visual

tracking. Int. J. Computer Vision, 29:5 – 28, 1998.

[JdS99] L. C. Jain and C. W. de Silva, editors.Intelligent Adaptive Control, Industrial

Applications. CRC Press, Boca Raton, 1999.

[Jen96] F. V. Jensen.An introduction to Bayesian networks. UCL Press, 1996.

[Jen01] F. V. Jensen.Bayesian Networks and Decision Graphs. Statistics for Engineering

and Information Science. Springer, Berlin, Heidelberg, 2001.

[JJD94] F. Jensen, F. V. Jensen, and S. L. Dittmer. From Influence Diagrams to Junction

Trees. InTenth Conference on Uncertainty in Artificial Intelligence, pages 367 –

373, San Francisco, 1994. Morgan Kaufmann.

[Jor99] M. I. Jordan, editor.Learning in Graphical Models. MIT Press, Cambridge, Mas-

sachusetts, 1999.

[Kit02] E. Kitzelmann. Bayes‘sche Netze, Grundlagen und Anwendungen, Juli 2002.

Seminar Kommunikation und Sicherheit in komplexen soziotechnischen Systemen

SS02, Uni Berlin.

[Kjæ90] U. Kjærulff. Triangulation of Graphs - Algorithms Giving Small Total State Space.

Technical Report R 90-09, Aalborg University, Institute ofElectronic Systems,

Judex Datesystemer A/S, DK-9000 Aalborg, Denmark, March 1990.

[Kjæ92] U. Kjærulff. A computational scheme for reasoning in dynamic probabilistic net-

works. InProceedings of the Eighth Conference of Uncertainty in Artificial Intel-

ligence, pages 121 – 129. Morgan Kaufmann Publishers, San Mateo, California,

1992.



176 BIBLIOGRAPHY

[Kjæ93] U. Kjærulff. Aspects of Efficiency Improvement in Bayesian Networks. PhD thesis,

Aalborg University, Institute of Electronic Systems, 1993.

[KL00] D. Koller and U. Lerner. Sampling in Factored DynamicSystems. In A. Doucet,

J.F.G. de Freitas, and N. Gordon, editors,Sequential Monte Carlo Methods in Prac-

tice, chapter 21, pages 445 – 464. Springer, 2000.

[KN98] B. Kahles and H. Niemann. Arbeits- und Ergebnisbericht SFB 396, 1996 –

1998, C1 Prozessmodellierung. Friedrich-Alexander-Universität Erlangen-Nürn-

berg, 1998.

[Kre02] O. Kreis. Integrierte Fertigung - Verfahrensintegration durch Innenhochdruck-

Umformen, Trennen und Laserstrahlschweißen in einem Werkzeug sowie ihre
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[WBS+01] A. Weckenmann, V. Bettin, R. Stöber, H. Niemann, and R. Deventer. Model-

lierungsverfahren zur Optimierung und Regelung verkürzter Prozessketten. In
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Appendix

Used mathematical symbols for Bayesian networks

Symbol DescriptionC A clique, i.e. a set of random variables used as a node in a junction tree.CJ A set of cliques

dx Expected probability for configurationx

det(M) Determinant of a matrixM

Dom(Xi) Domain of the random variableXi

E[Y ] Expectation of a random variableY

EG Denotes the edges in a graphG
e Evidence entered in a Bayesian network

F Force, variable used e.g. for the tensile strengthF(X) Family of the random variableX, F(X) = {X} ∪ P(X)f(X) Instantiation ofF(X)

G Graph, not necessarily a DAG

g(x) Parameter of the canonical representation, depending on the configurationx

h(x) Vector, parameter of the canonical representation, depending on the configuration

x

Jt Junction tree for time-slicet in a DBN

K(x) Matrix, parameter of the canonical representation, depending on the configuration

x.

L′ Likelihood

L Log-likelihood

MT Transpose of the matrixM

M−1 Inverse of matrixM
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Symbol Description

nc(x) Denotes how often a configurationx is observed

ñc(x) Expectation, how often a configurationx is observed

nN Number of nodes in a Bayesian network

npast Number of time-slices used for the representation of the past

nfuture Number of time-slices used for the representation of the future

ns Number of states per time-slice in a Dynamic Bayesian network

N Number of training examples

nts Number of nodes in a time-slice

N Normal distribution

P Probability (discrete random variables)

p Probability distribution (continuous random variables)P(X) Parents of a node for random variableXp(X) Instantiation of the parents of random variableX

R Strong root in a junction tree

SZY,x ESS for the product of random variablesZ andY given the configurationx and the

observations.S Denotes a separator, i.e. a set of random variables used as a node in a junction tree.

In analogy to the cliquesS denotes a set of separators.

tmax Number of time slices in a DBN

Tinf Inference time for a Bayesian network

V G Vertices of a graphG
X, x X denotes a discrete random variable,x its instantiation

X, x Vector of discrete random variables

Xj j-th training example

Y, y, Z, z Continuous random variables together with their instantiation

α Parameter of a continuous node in a Bayesian network

β Weight of the potential definition in [LJ99]

Γ Covariance matrix, used in the definition of a continuous node in a Bayesian net-

work

Γ G Continuous nodes in a Bayesian network

∆G Discrete nodes in a Bayesian network

θ Parameters of a distribution, e.g mean and dispersion for a Gaussian distribution

ξ Mean of a potential (moment characteristics)
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Symbol Description

Σ Covariance of a potential (moment characteristics)

φ(X) Potential of a set of random variablesX

χ(x) Indicator function being 1 iffP (x) > 0

Ω Set of outcome of an experiment

ωr Result of an experiment

∪̇ Disjoint union

| y | Length of a vectory

X1⊥⊥X3|X2 X1 is conditionally independent fromX3 givenX2

φ↓SC Marginalization of a potential, here marginalization of the potential of a cliqueC to

the separatorS
Symbols used for control theory

Symbol Description

ac
i , ai Output-coefficients for a differential (ac

i ) or difference (ai) equation, describing a

linear dynamic system

bc
j , ai Input-coefficients for a differential (bc

i ) or difference (ai) equation, describing a lin-

ear dynamic system

A, B, C, D Parameters of the state space model, sometimes used together with the indexBN ,

like ABN . In this case these parameters are used to model a time-discrete system.

D Damping of a dynamic system

e(t) Error, difference between desired value and current value

e∞ Steady state error

Fw(s) Desired control transfer function

G(s) Laplace transformed transfer function

Gw(s) Control transfer function

I Designates different quality measures

K Gain of a transfer unit, e.g.Ks denotes the gain of the dynamic system

m Maximal deriviation of the input signal in differential equation 3.4

n Order of the differential or difference equation describing a linear dynamic system

o Dimension ofym of a dynamic system
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Symbol Description

q(t), qt Observed output signal of a dynamic system.q(t) denotes the signal in a continuous

time system,qt signals in a time discrete system

r Dimension of the inputu of a dynamic system

Re(s) Real part of a complex number s

s Complex number, usually used within a Laplace-transformedtransfer function

ϕ Transfer unit

T1, T2 Time constants to describe a dynamic system of second order

ts Settling time

Ta Rise time

Td Dead-time

Tu Delay time

u, u Input to a dynamic system

unew Control input calculated from the estimated input for several points in time.

w Desired value

Xs State in the state-space description

x̌s Operating Point

ym Output of the model, to be distinguished from the observed output q

zd Disturbance input

δ Short time duration

∆T Sampling period

∆u Deviation from the operating point

ε White noise term used to model the disturbance of a system

σ(t) Step-function

Z Z-transformation
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Used symbols in process models

Symbol Description

C Cushion

F Force

Pihu Inner pressure between the blanks

Ph Holding pressure

spl Plasticizing stroke

sW Warpage

τc Cavity temperature

τc,max Maximal cavity temperature

τf Feed temperature

τm Melting temperature

τp Preheating temperature

V Volume

v Velocity

Winj Injection work

Used abbreviations

Abbreviation Explanation

BN Bayesian network

DAG Directed acyclic graph

DBN Dynamic Bayesian network

ESS Essential Sufficient Statistic

MIMO Multiple input, multiple output system

MRAC Model reference adaptive controller

SISO Single input, single output system

STC Self tuning controller
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Bayesian network, 15

hybrid, 29

isomorphic, 16

canonical characteristic, 33

CG distribution, 30

chain rule, 14

characteristic equation, 51

chord, 19

clique, 20

collectEvidence, 24

collider, 17

d-connected, 18

d-separated, 17

damping, 49

dead zone, 59

dead-time, 51

defuzzyfication, 5

difference equation, 55

direct inverse control, 4

discrete

random variable, 13

distributeEvidence, 24

diverging connection, 17

dynamic system, 46

essential sufficient statistics, 40

evidence

hard, 24

soft, 24

evolutionary algorithms, 5

expansion, 34

Fuzzy Control, 5

generalization, 9

global consistency, 22

graph

triangulated, 19

head variables, 39

hysteresis, 60, 103

impulse function, 48

integral of squared error, 62

interface, 42

join tree, 20

junction tree, 18

knowledge absorption, 23

Kohonen network, 4

Laplace transformation, 50

linear approximation, 8

linearity, 45

manipulation reaction, 62

marginal

strong, 36

weak, 36
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marginalization, 18

maximum likelihood, 26

model

control, 1

information technical, 1

process, 1

model-reference adaptive controller, 63

moment characteristic, 33

moral graph, 18

natural angular frequency, 49

neural adaptive control, 4

neural network, 3

normal form, 52

observable canonical form, 52

parents, 14

PID controller, 63

potential

division, 34

multiplication, 34

probability

conditional, 14

probability table, 14

projection, 21

random variable

conditionally independent, 14

continuous, 13

independent, 14

resonance frequency, 49

rule based system, 3

running intersection property, 20

saturation, 58, 102

self tuning controllers, 63

separators, 20

squared error sum, 62

statistical methods, 5

step function, 48

strong root, 31

supervised control, 4

tail variables, 39

three-point controller, 59

time invariant, 45

transfer function, 50

transfer matrix, 53

Z-transformation, 55
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Zusammenfassung

Zielsetzung der vorliegenden Dissertation ist es, dynamische Bayesnetze für die Modellierung

und Regelung von statischen und dynamischen Prozessen zu verwenden, die hauptsächlich aus

der Fertigungstechnologie stammen.

Hierzu werden die Zustandsraumbeschreibung und die Beschreibung dynamischer Systeme

durch Differenzengleichungen auf dynamische Bayesnetze abgebildet. Diese Abbildung liefert

neben der Struktur des Bayesnetzes auch die Mittelwerte undGewichte der Knoten. Dadurch

erhält man ein Modell, das das gleiche Verhalten wie das dynamische System zeigt.

Um zu einem Regler zu kommen, werden die ersten Zeitscheibendes dynamischen Modells

für die Modellierung der Vergangenheit verwendet. Durch die Eingabe ehemaliger Ein- und

Ausgaben kann die Störgröße anhand der Abweichung zwischen Ausgabe des Modells und der

tatsächlich beobachteten Ausgabe geschätzt werden. DerSollwert wird als Beobachtung in der

Zukunft eingegeben. Durch Marginalisierung wird auf eine mögliche Eingabe geschlossen.

Um zusätzlich Nichlinearitäten zu modellieren, werden diese mit hybriden Bayesnetzen mod-

elliert. Dabei wird die Eingabe gleichzeitig durch einen diskreten und einen kontinuierlichen

Knoten modelliert. Die kontinuierlichen Knoten dienen zurApproximation der Nichtlinearität

durch eine Taylorreihe. Der diskrete Knoten schaltet zwischen diesen Taylorreihen um. Dadurch

wird eine Approximation mit mehreren Taylorreihen gleichzeitig vorgenommen. Dieses Prinzip

wird erfolgreich auf die Modellierung der Teilprozesse Vorformen, Kalibrieren und Schweißen

des Innenhochdruckumformens und auf den Spritzguss angewandt.

Anschließend wird die Modellierung der Nichtlinearitäten mit der Modellierung dynamischer

Systeme kombiniert. Bei der Kombination der Nichtlinearitäten mit der Zustandsraumdarstel-

lung wird fast die gleiche Genauigkeit erzielt, wie bei der Modellierung linearer Systeme. Es

bleiben aber Probleme mit der Echtzeitfähigkeit des Systems. Durch Verwendung von weniger

Zeitscheiben wird die Laufzeit zwar stark reduziert, bei nichtlinearen, dynamischen Systemen

läßt sich damit aber keine Echtzeitfähigkeit erreichen.
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