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Abstract

In recent years, template matching approaches for
object tracking in real-time have become more
and more popular, mainly due to the increase in
available computational power and the advent of
very efficient algorithms. Particularly, data-driven
methods based on first order approximations have
shown very promising results. If the object to be
tracked is known, a model-based tracking algorithm
is preferable, because available knowledge of the
appearence of the object from different views can
be used to improve the robustness of the track-
ing. In this paper, we enhance the well-known
hyperplane tracker with a probabilistic tracking
framework using the CONDENSATION algorithm,
which is noted for its robustness and efficiency. Fur-
thermore, we put forward a subspace method for
improving the tracker’s robustness against illumi-
nation variations. We prove the efficiency of our
proposed methods with experiments on video se-
quences of real scenes.

1 Introduction

Object tracking is used as a low-level component of
many different vison-based applications like medi-
cal imaging [10] and video surveillance [15]. The
main aim of visual object tracking is to estimate the
position of an object in a sequence of consecutive
images. As a precondition it is assumed that the im-
ages are captured in short time intervals.

A well established route toward efficient track-
ing is to use color-histogram features for matching
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a region in the current frame with a reference re-
gion. For this optimization problem, an analytical
approach using the meanshift algorithm has been
presented by [3] and a probabilistic approach us-
ing the CONDENSATION algorithm has been de-
veloped by [14]. Both approaches assume that the
histogram of the object remains constant in all im-
ages. However, this precondition does not hold in
case of strong appearence changes, which can be
caused by relative motion between object and cam-
era, for example. These approaches also suffer from
their inability to estimate the object’s rotation.

On the other hand, the template matching ap-
proaches presented by Hager [6] and Jurie [8] are
very promising because of their accuracy and their
capability to compute additional motion parameters
in the 2-D image plane, like rotation or perspec-
tive distortion. Both approaches use a first order
approximation, which results in high computational
efficiency and facilitates template matching in real-
time. For improving the robustness of the tracking
algorithm, a linear illumination model to cope with
strong illumination changes can be used [6, 4]. Due
to their data-driven nature, these approaches cannot
handle strong viewpoint changes.

Jurie captured 250 views of the object on a hemi-
sphere, and improved his approach with the result-
ing appearence-based object model [9]. He trains
a separate hyperplane tracker for every view, and
during tracking, chooses the motion parameters es-
timated by the tracker yielding the lowest error. To
improve the speed, he uses only a fixed number of
trackers, which were trained for views similar to
that of the best tracker of the previous frame. Al-
though a method for illumination compensation by
estimating an affine transformation of the gray-level
intensities is proposed, our experiments show that a
change of the relative position of the light source
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Figure 1: Three examples for tracking with different
motion parameterizations. The reference template
was taken from the initial image.

leads to bad results if the object is not planar.

In this paper, we use the idea of [9] to build an ob-
ject model by training a separate hyperplane tracker
for each of a large number of viewpoints. But in-
stead of using a fixed number of trackers for each
frame, we employ a particle filter approach based
on the CONDENSATION algorithm [7] for the se-
lection of the tracker. Particle filters are very popu-
lar for object tracking because they have proven to
be very robust and efficient.

In our work, there are two main advantages of us-
ing a particle filter approach. If the prediction of a
viewpoint is very certain, the particles are concen-
trating on a small neighborhood of possible view-
points. Thus only a small number of hypotheses has
to be taken into account, which saves computational
resources. On the other hand, if the predictions are
very uncertain, especially in the case of ambiguities,
the fixed number of trackers as proposed in [9] may
be too small. The properties of the particle filter en-
sure that even viewpoints which are far away from
the currently estimated viewpoint are taken into ac-
count if their probability is high enough. Addition-
ally, we show how to use the silhouette of the ob-
ject for a very precise segmentation of the object.
In contrast to this, [9] uses only an elliptical region.

Furthermore, we will detail how to use a linear
subspace method (proposed by [1]) to model im-
age variations due to illumination changes. Some
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other methods for dealing with variations of the
lighting conditions have been shown in [4], but
these approaches only work well with planar ob-
ject. Throughout, we present experimental results
performed on live video sequences demonstrating
the performance of our methods.

The paper is structured as follows. In Sect. 2, we
will give a review of Jurie’s 2-D template match-
ing algorithm. This algorithm is used in a proba-
bilistic model-based framework, which is presented
in Sect. 3. Sect. 4 details an subspace approach
for dealing with illumination variations. The ex-
periments we have conducted are documented in
Sect. 5. After a summary of our work, possible fu-
ture extensions are discussed in Sect. 6.

2 2-D Template Matching

Our method for model-based object tracking is
based on a data-driven 2-D template matching tech-
nique, the hyperplane approach from Frederic Jurie
[8]. Template matching algorithms for data-driven
tracking work on a sequence of gray-level images
f, captured at time ¢. We have shown that using
color information can lead to better accuracy [5],
but for the sake of simplicity we will only use gray-
level data throughout the rest of this paper.

The object to be tracked is specified by a ref-
erence template in the reference image f, . The
reference template is defined by vector »
(x1,x2,...,xN,)T, which contains the 2-D coor-
dinates of the template points. The gray-level inten-
sity of a point &; = (x;,y:)” at time ¢ is given by
f(z,t). Consequently, vector f(r,t) contains the
intensities of template r at time ¢.

The transformation of the reference template » at
time ¢ can be modelled by . = g (7, u(t)), where
vector p(t) = (p1(t), ua(t), . .., un(t))" contains
the motion parameters. Sample images of tracking
with different motion parametrizations are shown in
Fig. 1. Template matching can now be described as
computing the motion parameters g(t) that mini-
mize the least-square intensity difference between
the reference template and the current template:

u(t) = argmin || f (v, t0) — f (g (r, u(t)) , D)l -

©
(@)
Non-linear minimization of Eq. (1) involves ex-
tremely high computational cost [2], which is dis-
advantageous for real-time applications. It is more



efficient to approximate p by a linear system

pt+1)=pn(t)+ A+ 1)e;
e:=f(r,to) — f(g(r,n(t)),t+1)

@

as presented in [6, 8]. There are two approaches for
computing matrix A(t) from equation (2). Hager
and Belhumeur [6] propose using a Taylor approx-
imation. The hyperplane approach presented in [8]
acquires matrix A by a least-square estimation. In
the latter approach, matrix A can be expressed in-
dependent from time ¢, but has to be computed in a
separate training step when the initial image and the
reference template are available. As the hyperplane
approach has a superior basin of convergence, we
will use it throughout the rest of this paper.

Eq. (2) clearly illustrates that appearence changes
due to varying illumination lead to estimation er-
rors, because the motion parameters directly depend
on the gray-level intensities. [4] compared different
methods for dealing with these illumination varia-
tions and suggests the use of a linear illumination
model, which compensates for changes of bright-
ness and contrast.

3 Probabilistic Viewpoint Estimation

After the review of Jurie’s template matching algo-
rithm for data-driven object tracking, we show how
this approach can be used in a model-based frame-
work. Our goal is not only to estimate the object’s
2-D position, scale and in-plane rotation, but also
to determine the current viewpoint of the object,
which facilitates a highly accurate segmentation of
the object from the background.

3.1 Object Model

Usually, sample images of the object from different
viewpoints are needed for model-based algorithms.
For our experiments, we used a Santa Claus made
of clay and put it on a turn table, where sample
images were captured with a camera mounted on
a robot arm (illustrated in Fig. 2).

The main idea of model-based hyperplane track-
ing [9] is to train an update matrix Ay for the refer-
ence template rp of every sample image f,, with
viewpoint v = (vr,vr)”, where v is the turn ta-
ble angle and v is the angle of the robot arm. For
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tracking at time ¢, each matrix Ay is used to esti-
mate the motion parameter vector

pyE+1) =p(t) + Av(t+1)e:(v) (3)
ei(v)=f (rv,to)—f (g (rv, pu(t) , t+1).

Thus, the motion parameter of the motion in the im-
age plane and the most similar viewpoint can be re-
trieved by

(u(t), v(t)) = (4)

argmin || f (rv,to) — f (g(rv, py (1)), 1)l ,
by v

where g(rwv, py,) transforms the reference tem-
plate 72, of sample image f,,. Although [8, 4] use
a motion parameterization which allows the estima-
tion of perspective distortions, a parameterization
which allows for 2-D translation, in-plane rotation,
and scale is absolutely sufficient. Thus, the trans-
formation of one point  of vector ry is given by

g, p) = ®)
Ccos U3 sin pg
cos p3 _Smnp3 11
et T \ oy ( ) .
sin p, COS [,

( Ha : Ha - ) K2

In contrast to the work of [9], we use a sepa-
rate template, which is exactly aligned to the ob-
ject’s appearence, for every viewpoint of the sam-
ple set. This is not difficult as the sample images
can be taken in a controlled environment (i.e. black
background and good lighting conditions) and ob-
ject segmentation can be done by simple threshold-
ing. The points of ry are restricted to be placed
inside the object and enforced to have a certain dis-
tance to the border, which increases the robustness
of the tracking. In addition, we propose to extract
N points on the border of the object to retain a sil-
houette region wy = (x, @5, ... @y )" of the
object, which enables a very precise segmentation
of the object and also supports a meaningful visual-
ization of the tracking result. The silhouette of the
object with respect to the current motion parameter
vector and viewpoint is given by

w(t) = g(wy), u(t)). (6)

3.2 Probabilistic Framework

In principle, the viewpoint selection can easily be
performed by testing the whole sample set and us-
ing the motion estimation of the matrix Ay that
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Figure 2: Left: A turntable and a robotarm for capturing object images on a hemisphere around the object.
Right: Different object images from a Santa Claus made of clay.

gives the best result (cf. Eq. (1)). As testing all pos-
sible hypotheses takes a lot of computation time, [9]
uses only a neighborhood of sample images whose
viewpoint is similar to the viewpoint estimated for
the previous frame. This approach works well under
the assumptions that changes of viewpoint do not
occur too rapidly and that the viewpoint estimation
in the previous frame was correct. The disadvan-
tage is that too small a set of hypotheses will lead
to bad estimation results, especially if some of the
viewpoint estimations are wrong or very uncertain
(e.g. in case of ambiguities). But on the other hand,
too big a set will require an unnecessary amount of
computational resources, especially if the hypothe-
sis are very certain. We propose to use a dynamic
framework based on the particle filter approach, the
CONDENSATION algorithm [7], as it has proven
to be a very robust technique during its widespread
use in the area of object tracking.

Particle filters for tracking generally estimate the
location of an object in which the posterior den-
sity p(s:|O+) and the observation density p(O|s:)
are often of non-Gaussian nature. The vector O
denotes all observations o, 0:—1, ..., 0t,. Differ-
ent representation of vector s; containing position,
scale, rotation, speed, and/or acceleration are pre-
sented in [14, 13, 16]. In our case, the state s; con-
tains the two parameters of the viewpoint v, as all
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other relevant parameters are estimated by the hy-
perplane tracker.

The principle of particle filtering is to ap-
proximate the probability distribution of the ob-
ject’s state by a weighted particle set C
{(ss,m:) ]t =1,2,...,N}, where each particle
consists of a hypothetical state of the object and
a discrete probability 7; for this hypothesis with

Zi T — 1.

One cycle of the CONDENSATION algorithm is
presented in Fig. 3. At first, a sample set is cal-
culated using the estimated probability distribution
from the last step. In the drift-phase, all particles
change in a deterministic way. For object track-
ing, the state transition is used for a linear predic-
tion of the position of the object. In the diffuse-
phase, Gaussian noise is added to all particles in
order to model the uncertainty. A second reason
is that states with high probability are usually rep-
resented by several particles, which are scattered
after the diffusion. After this, the new states are
measured using the current image, new weights are
assigned to the particles, and a new distribution is
represented by the new particle set.

One possibility for measuring the states is to
compare color histograms of the reference window
with the window represented by the particle [14].
Another possibility is to directly compare the in-
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Figure 4: The upper left image can be transformed

Figure 3: The CONDENSATION algorithm [7] to the upper right image by an intensity distribu-

tion normalization, because the images differ only

in brightness and contrast. However, the lower im-

tensities in the reference template with the inten-  ages cannot be transformed into one another in this

sities of the template represented by the particle us- WAy, because the differences are caused by a change
ing correlation-based techniques [12, 16]. We are  Of the position of the light source.

using the mean square difference e; of the intensi-

ties which has been optimized according to Eq. 4.

o with illumination compensation parameters 3 and
Then, we compute a probability P P 8

~, which represent variations of contrast an bright-
—oe; (7)  ness. Experimental results in [4] showed that these
parameter can be retrieved by a normalization of
for every particle, where 7 is a normalization co-  distributions of the template intensities. This model
efficient for ensuring Zl m; = 1. In our experi-  becomes inadequate when considering non-planar
ments, we found out that the strictness parameter  surfaces and a changing relative position of the light
o = 0.0005 leads to good results. There are dif-  source, which is illustrated in Fig. 4.
ferent techniques for retrieving the maximum of the For dealing with such illumination changes, we
approximation of the probability distribution of the  propose to use a subspace method based on the
object’s state. Usually, the maximum is estimated  work of [1], which has already been successfully
by an optimization of a parzen density distribution,  adapted to a tracking approach [6]. It was shown
but as this technique is computationally expensive,  that a small number (at least three) of images of
we propose to use the state of the particle with the  the object, all captured from the same viewpoint
highest probability. but under different illumination conditions, are suf-
ficient to reconstruct object images under different
illumination conditions, as far as a lambertian re-
flection model, monochrom images, and a convex

It was already mentioned in chapter 2 that ap-  CPi€ct can be assumed.
pearence variations due to illumination changes The key idea is to compute an orthogonal base
must not be ignored, because the estimation of mo-  Using images of the object, all captured from the
tion directly depends on gray-level intensities. As- ~ Same viewpoint but under dlffe_rent |IIu_m|nat|on,
suming a planar surface, the intensity of a pixel can ~ With a singular value decomposition. As illustrated
be adjusted with a linear model in Fig 5, for our experiments we used six images for
every viewpoint under different illumination condi-
Sfoew(x) = Bf(x)+~v Ve er (8)  tions and computed N = 4 basis images b;,i =

T, = TE

4 1llumination Variations
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Figure 5: Images of the Santa Claus figurine cap-
tured from one viewpoint but under different illu-
mination conditions, which were used for estimat-
ing the basis images [1]

1,..., Np. Instead of the whole image, only the in-
tensities of the template are used. For simplicity, we
demonstrate this technique for one viewpoint. An
image can be reconstructed with the linear model

Np
f= Z Aibi,
=1

where )\; are the corresponding illumination param-
eters for basis image b;. The estimation of the illu-
mination parameters of an image f is given by the
solution of the overdetermined system

f
A

©)

B,
B*f,

(10)
(11)

where matrix B = (b1, b2, ...,bny), vector A =
(A1, A2,...,Ang)T, and B# denotes the pseu-
doinverse of matrix B.

During tracking, an illumination change can be
compensated by using the following equation de-
rived from Eq. (2)

R(t+1) = u(t)+ A(t+1)(e,— BA(t—1)), (12)

where the basis images only contain values for the
corresponding template, not for the whole image.
The illumination parameters for time step ¢ can be
computed by

A(t) = B (f(r.to) = f (g (v, (1) 1),
(13)
which is computationally efficient, because B¥
only has to be estimated once in an offline stage.
The efficiency of this method can be improved by
appending a unit vecor to B to model changes of
brightness [6].

5 Experimental Results

The following experiments with image sequences
of real scenes demonstrate the efficiency of our pro-
posed methods. We used the setup presented in
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Figure 6: If the estimation of the viewpoint is uncer-
tain (e.g. caused by partial occlusion), the number
of processed viewpoints will increase

Fig. 2 to capture 5400 images of one object for 900
different poses and 6 different illumination condi-
tions with a Sony DFW-VL 500 firewire camera at
a resolution of 640 x 480 pixels. Masks for the seg-
mentation of the object were created for 900 images
captured with one fixed illumination by threshold-
ing. All mask images, which were applied to all
images of the object, were manually verified and
corrected in case of segmentation errors.

In the first experiment, we tested the quality of
the particle filter in case of uncertainty. As dis-
cussed in Sect. 3, most of the particles should con-
centrate on one viewpoint if the estimation is very
certain (i.e. the error minimized in Eq. (4) is small).
This improves the computation speed of the system,
because only a small number of viewpoints has to
be processed. In our experimental setup, we tracked
the Santa Claus using the proposed particle filter
approach with 100 particles. In the diffuse phase
(cf. Fig. 3), we added Gaussian noise with a vari-
ance of 5 degrees. The sample video sequence with
148 images shows an object that becomes partially
occluded by a pen, which increases the uncertainty
of the viewpoint estimation. As a result, the parti-
cles immediately spread out, which is illustrated in
Fig. 6.

In Sect. 4, we presented an approach for reduc-
ing the illumination sensitivity of the hyperplane
approach for model-based object tracking by using



Figure 7: The upper images show results of tracking
without basis images and the lower images show re-
sults using basis images. The benefits of the basis
image approach is clearly visible.

illumination basis images. In our experiments, we
created four basis images from six images of the
object for every viewpoint . For testing our meth-
ods, we compared the basis image approach with
tracking without basis images. We illuminated the
object from different directions and also shadowed
the object. The tracker was trained with a region
size of N, = 150 pixels and 2000 random warp-
ings for the estimation of matrix A. A coarse-to-
fine strategy with three 2-D trackers was employed
to improve the estimation accuracy as proposed in
[8]. In Fig. 7, some sample images of the described
video sequence are presented. It is clearly visible
that using illumination basis images leads to better
tracking results than using no basis images. Some
sample images of another long tracking sequence
with 863 frames are shown in Fig. 8.

It is obvious that a template consisting of a high
number of points leads to a higher accuracy than a
low number, but for many tracking applications, the
computation time of the algorithms is an important
issue. In order to illustrate the interdependency of
the region size N, and the tracking time, we present
the according values for different configurations in
Tab. 1. The values were acquired on a Pentium 4

basis » = 150 » =300 » =700
images

applied 267 325 XXX
not applied 260 320 XXX
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Table 1: Computation time in milliseconds for one
frame depending on the region size N, of the tem-
plate

PC with 2.4GHz and 1GB main memory.

6 Conclusion and Outlook

We presented a probabilistic method for model-
based object tracking based on the CONDENSA-
TION algorithm and the hyperplane approach. For
reducing the illumination sensitivity, we used a lin-
ear subspace method for reconstructing images un-
der variable lighting conditions using illumination
basis images. Experiments conducted with real im-
age sequences prove the efficiency of our proposed
methods. We showed that our probabilistic ap-
proach flexibly adapts to the uncertainty of the es-
timations, which improves both computation time
and robustness.

One drawback of this approach is the laborious
initialization of the tracking system. In the first
frame of a sequence, the best fitting model is esti-
mated with an exhaustive search using a template
matching technique. This is computationally ex-
pensive and not very robust. For dealing with this
problem, local features like Lowe’s SIFT key points
[11] seem to be very promising. Using this methods
also enables a reinitialization when the tracking sys-
tem loses the object. Another improvement would
be the use of a more robust technique for measuring
the states of the particle filter.
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