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Abstract

The main aim of thiswork is to improve the accuracy of Ju-
rie’shyperplanetracker for real-time template matching. As
the computation time of the initialization of the algorithm
depends on the number of points used for estimating the mo-
tion of the template, only a subset of points in the tracked
template is considered. Traditionally, this subset is deter-
mined by random. We present three different methods for
selecting points better suited for the hyperplane tracker. We
also propose to incorporate color information by working
with eigenintensitiesinstead of gray-level intensities, which
can greatly improve the estimation accuracy, but only en-
tails a slight increase in computation time. e have care-
fully evaluated the performance of the proposed methodsin
experiments with real image sequences.

1. Introduction

In current research, template matching approaches ar
widely used for tracking objects in video sequences.
They are very robust and have the ability to estimate dif-
ferent transformations like translation, rotation, scaling
or perspective transformation. Black and Jepson pre-
sented an approach based on the eigenspace represent
tion of an image, which can handle partial occlusions [2].

One disadvantage of this approach is the high computa-

tional cost, as an eigenspace with at least 50 dimensions;[3

has to be applied. Another problem is that the computa-
tion of the eigenspace takes very long and has to be don
in an offline step. Zobel et al. proposed a different so-
lution, combining a condensation-based approach with
lightfield object models [8].

One shortcoming of such model-based approachesis thatt

they cannot be used when dealing with unknown or unrec-
ognized objects. In this case, data-driven tracking is the only
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viable alternative. The template matching algorithm pro-
posed by Hager and Belhumeur approximates the relation
between variations in intensities and variations in pose by
computing the Jacobian matrix of the initial template [5].
Recently, Jurie and Dhome have improved the basin of con-
vergence of Hager'’s algorithm by replacing the Jacobian ap-
proximation with a hyperplane approximation [6]. As both
algorithms directly operate on image intensities, they are
inherently sensitive to changes in illumination. Belhumeur
and Kriegman have shown that the image of an object can be
reconstructed under arbitrary lighting conditions if a small
number of base images is available [1]. Hager incorporated
this method into his algorithm, basically transforming it into
a model-based algorithm and thus losing the possibility of
working with unknown objects. In [4], the robustness of
the hyperplane tracker against illumination changes is im-
proved by using a linear illumination model, while preserv-
ing the data-driven nature of the algorithm.

One disadvantage of the hyperplane tracker is that a short
raining has to be performed after an object has been se-
lected. The duration of this training strongly depends on the
number of pixels which have to be taken into account. In or-
der to reduce the training time, Jurie and Dhome randomly
selected a small number of points in the template [6]. In
H]is paper, we present three different methods for the selec
tion of points which are better suited for hyperplane track-
ing than selecting by random. We also show how to incorpo-
ate color information without changing the basic algorithm
Y using eigenintensities. In experiments with real images,
e demonstrate that the tracking accuracy is improved by
our enhancements.
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Our paper is structured as follows. In the next section,
we shortly summarize the basic principles of the hyperplane
racker. We present three different methods for intelligently
selecting points in the template in Sect. 3. Using eigenin-
tensities for incorporating color information is detailed in
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IST Programme under grant IST-2001-34401 (project VAMPIRE). in Sect. 5. After a summary of our work, possible future ex-
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2. Template matching with hyperplanes

Template matching algorithms for data-driven track-
ing work on a sequence of images. After the specifi-
cation of areference template in the first image of the

sequence, the pose of this template is successively com-

puted in the following images. We represent the images
as vectors of gray-level intensities, and define the refer-
ence template by a vector = (xq,...,zx)7, which
contains the 2-D coordinates; = (z;,y;)? of the tem-
plate points. The gray-level intensity of a poinf at time

t is given by f(x;,t). Consequently, vectof(r,t) con-
tains the intensities of templateat timet.

The transformation of the reference templatat timet
can be modeled by, = g (r, u(t)), where vectopu(t) =
(1), ..., un(t))” contains themotion parameters. It is
possible to parameterize different kinds of motions in the
image plane like pure translation, rotation, scale, affine and
perspective deformation. Examples for these motion types
are shown in Fig. 1. Consequently, template matching can
be described as computing the motion parameiét$ that
minimize the least-squares intensity difference between the
reference template and the current template.

Because non-linear minimization in a high-dimensional
parameter space involves extremely high computational
cost, it is more efficient to use a first order approxima-
tion

ult) + At + De(t + 1) (1)
Frto)— Fg(rn(t),t+1) ()

as presented in [5, 6]. There are two approaches for com-
puting matrixA(t) in Equ. (1). Hager and Belhumeur pro-
posed using a Taylor approximation [5]. For the hyperplane
approach presented in [6], mattik can be made indepen-
dent of timet. Accordingly, it has to be estimated only once
in an initial training stage where a number of random mo-
tions are simulated and are used to calculate matrby a
least-squares estimation. As the hyperplane approach has
superior basin of convergence, we will use it throughout the
rest of this paper.

p(t+1)
e(t+1)

3. Intelligent selection of regions

In the last section, we showed in Equ. (2) that an error vec-
tor e(¢) is used for the estimation of the motion parameters.
Obviously, pixels which lie in regions without perceivable
intensity variations contribute almost no information for the
motion estimation, because the value of the according com-
ponent of the error vector contains mainly noise. Examples
of some of those regions are illustrated in Fig. 2. As [6] se-
lects the points of region by random — the pixels are only
restricted to lie inside a user-defined arear-ay contain

a lot of useless points.
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Initial image Translation and rotation

Affine motion

Translation, rotation and scale

Figure 1. Three examples for tracking with
different motion parameterizations. The ref-
erence template was taken from the initial im-
age.

To find out which points of an object should be used, we
defineg(x) as the measure of the quality of pointFor es-
timatingq(x) only a quadratic regiom () with the center
x is taken into account. The size of this square can be cho-
sen according to the strength of the movements during the
training.

We analyzed three different criteria for rating potential
region points based on their contribution to the motion esti-
mation.

e Variance criterion (v): As areas with no or little in-
tensity variation do not contain much information, the
variance of intensities in the neighborhood is used for
rating the points. Therefore, the quality of a point us-
ing the variance criterion is defined as

a

qv(x) = var(f(x1), f(xz2),...), x; € w(x). (3)
Corner criterion (c): The Shi-Tomasi-Kanade point
tracker [7] uses the condition of its estimation ma-
trix for determining the quality of a feature point. It
is conceivable that points which can be tracked well
by a point tracker can also be tracked well by a region
tracker. Consequently, the first step for calculating the
quality of a point using the corner criterion is comput-
ing the matrix sum
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Figure 3. In the left picture, a standard gray-
level image of a blue and a green lotion flask
Figure 2. Examples of regions which are well is shown. Theright gray-level image was gen-
suited or ineligible for template matching erated using eigenintensities. Here, the ob-
with hyperplanes jects can be easily distinguished.

wheref, (&) and f, (&) are the derivatives im andy 4. Including color information by eigeninten-

direction respectively. The quality is defined as sities
ge(z) = min(A (z), A2(x)) (4)  For performance reasons, a lot of real-time tracking sys-
where); (z) and),(z) are the eigenvalues & (z). tems only use gray-level images instead of color images.

. L . In this case, only one entry per pixel ji(r,t) is needed

* G_radlent crlter_lon (g)_: Ano'thr way of fmd|_ng aréas  for the region-based hyperplane tracker. This technique can
with adequate mten_s ity var.latlc_)n 1S tq conIS|d.er the ab- be devastating in scenarios where color information is the
solute \_/alue of the flrst derivative. This criterion is not only possibility to distinguish regions (an example is shown
well suited for a p0|_nt trackgr, becau_se of the aperture in Fig. 3). But the incorporation of all three color intensities
problem. However, in a region tracking approach, the results in three components per pixelfitv, ¢), which leads

used points are not tracked ind_epe_ndently. Par_ticularly, to significantly longer computation time of the approxima-
a planar appearance of the object is assumed in the hy'tion matrix A in Equ. (1)

perplane aproaCh- Instead of_usmg a Sobel f!lter, WE  fthe performance penalty of using multiple color chan-
generat_e a filter kernel .by derivating a Gaussian .ker- nels is too large, at least the mapping of the color values to
nel, which allows for a finer control of the mask size a one-dimensional intensity can be improved. We propose
by parameted,,: to project the RGB color vector onto the axis of the high-

22 412 est intensity variance of the RGB distribution of the image

G(z,y) = exp <— 5 ) ; area which includes the object. The color distribution and
x v the principal axis of the object in Fig. 3 are presented in

Gu(z,y) = _d_G(x’ Y) Fig. 4 The projection can easily be determined by a princi-

©
Y al components analysis [3] of the color distribution, where
Gy(z,y) = —-G(z,y). P P ysis 3]

d, first the mean RGB vector and the covariance matrix
The quality of a point using the gradient is calculated r 1 x
by the convolutions fo N zw: fol=)
1 - _
gg(x) = |f(w) ® Go| + | f(w) @Gy . (5) Yo = mZ(fc_fc)(fc_fc)T

xr
When the v, ¢, or g-criterion has been computed for every

pixel in the template, the points in regiencan be deter- have to be estimated. Vectgt(x) consists of the three
mined. Choosing th&' pixels with the highest rating is sub- RGB color intensities of point. The dimension reduction
optimal, because the resulting region often comprises only °f @ RGB color intensity vector to a one dimensional eigen-
some insular parts of the template. Our experiments showintensity value is done by

that this phenomenon will degrade the performance of the _ 7

tracker. We propose to use a threshfdr the feature qual- fo(@)=a (fC(w) fc) ©)
ity in order to excluddad areas. The region points willthen  wherea is the eigenvector ok~ with the largest eigen-

be selected randomly from the points which have not beenvalue. Obviously, the calculation of an eigenintensity re-
ruled out. quires only a small amount of computational cost, because
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Figure 4. The color distribution of the image

LS : o . Figure 5. Experimental setup: An object is
in Fig. 3 and its principal axis 'gu xpert up ) !

moved horizontally. The rectangle describes
the area from which the points of the regions
are taken which should be tracked. The envi-
ronment is very natural with cluttered back-
ground

it takes three subtractions and three multiplications per pixel
and only the eigenintensities of the pointsriphave to be
computed. Another advantage is that the internal structure
of the tracking system does not have to be changed. The ef-

fect of our technique is illustrated in Fig. 3, where a color r0f

image has been converted to a gray-level (left) and an eigen- 1 y R 2
intensity image (right). Obviously, the bottles can be distin- €= Ng Z (pa(t) = fra(1))™
guished easily in the right image.

t=1

whereNy is the number of images in one sequence
First, we present results on experiments of tracking on
. eigenintensity images. We have done experiments on dif-
5. Experimental results ferent objects, but due to lack of space and the fact that
the results are very similar, we present the evaluation of
The following experiments with real image sequences one object only. Altogether, the object has been tracked 50
demonstrate that our proposed methods significantly in- times with different initializations of the region using the
crease the approximation accuracy of Jurie's hyper- traditional approach and using eigenintensities. For every
plane tracker. Our experimental setup is shown in Fig. 5, tracked sequence the mean square ertoas been calcu-
where the object is moved by seven pixels horizon- lated, ordered ascendingly and plotted in the graph of Fig. 6.
tally. The acquired image sequence contains about 200lt is clearly visible that using eigenintensities leads to a
frames, has a resolution 6fl0 x 480 pixels and was cap- much higher estimation accuracy of the hyperplane tracker.
tured with a Sony DFW-VL500 firewire camera. In order At this point it should be mentioned that noise effects can
to retrieve aground truth value 1% (¢) for the motion pa- decrease the efficiency of the eigenintensities.
rameters, the hyperplane tracker has been especially con- For comparison of the different criteria for selecting
figured for extremely high accuracy. We used a region points of regionr, a suitable threshol@lis needed for every
consisting of 250 points, five hierarchy levels (more in- method. Therefore we used the same experimental frame-
formation about hierarchy levels can be found in [6]) and work as presented at the experiments with eigenintensities
a motion parameterization which only estimates transla- to test different thresholds. Values 6f = 144, 6. = 3
tion. For the evaluation of our proposed enhancements,andf, = 70 have proven to be well suited for our pur-
a tracker has been configured for much lower accu- pose. We tested the v-, c- and g-criterion on various ob-
racy (region of 100 points, affine motion parameterization, jects. The results are presented in Fig. 7, where the image
one hierarchy level, and 7 pixel translation). For ev- sequence has been tracked 200 times for each method. It is
ery framet in the image sequence, this tracker is newly clearly visible that the proposed methods improve the ac-
initialized using the first image and has to estimate the cur- curacy of the hyperplane tracker compared to the tradition-
rent position which is denoted g5, (¢). The quality of ally method, where points are selected by random. In exper-
a tracker can then be expressed by the mean square eriments with other objects, we discovered that the corner cri-



terion, which clearly outperform the traditional random se-

E S lection technique.
12\- m 1 As using gray-level intensities can lead to bad estima-
tion accuracy, we proposed to use eigenintensities. The ad-

vantage of this approach is that important color information

8l ----- gray-level intensities ; i can be used without a significant increase of the computa-
tion time. Furthermore, the internal structure of the hyper-

i eigenintensities | plane tracker does not have to be changed. We experimen-
4+ g . tally verified the benefits of the eigenintensities in compar-

ison to gray-level intensities.
Our further work will concentrate on dealing with par-
0 —10 20 30 40 tial occlusions and highlights. For this purpose, iteratively
sequence reweighing least-squares techniques as shown in [5] seem
to be very promising.

Figure 6. Comparison of tracking on eigenin-
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Figure 7. Comparison of the v-, g- and c-
criterion for selecting points of the region. All (6]
three proposed methods beat the traditional
random selection technique.

6. Conclusion and outlook

We presented three approaches for enhancing the estima-
tion accuracy of Jurie’s hyperplane tracker by a new method
for selecting suitable points. Consequently, areas of high
variance, areas with large gradients, and areas with cor-
ners were used for point selection. In quantitative experi-
ments with real images, it could be shown that the best re-
sults can be achieved using the variance or the gradient cri-





