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Abstract

In this paper we present a statistical, appearance-based
approach for localization and classification of 3-D objects
in 2-D gray level images, in which the number of objects in
a scene is unknown. First the statistical models of all possi-
ble object classes are created separately. The local feature
vectors that we use are computed based on wavelet transfor-
mation and modeled using a normal distribution. Further,
we describe a new approach for the recognition in the case
of multi-object scenes. Besides the localization and classi-
fication problem, we have to estimate the number of objects
in the image. For this purpose we have developed a serial
search algorithm with a robust abort criterion. The experi-
ments made on a large sample set with more than 9000 test
images show that the approach is well suited for this recog-
nition task.

1. Introduction

The automatic recognition of objects in real environment
scenes is becoming more important lately. There exist two
main approaches to solve this problem: the model- and
appearance-based methods. The model-based algorithms
use a segmentation step to extract the features of objects [5],
the appearance-based methods determine the feature vec-
tors directly from the image data [8, 3]. Segmentation oper-
ations detect geometric features such as lines or corners and
use relations between them. But all the segmentation ap-
proaches suffer from two disadvantages: segmentation er-
rors, and loss of information contained in the image caused
by segmentation.
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We chose the appearance-based approach, because we do
not have any information about the shape of the objects, and
the segmentation step would not work acceptably. It uses
the image data, i.e. the pixel intensities, directly without a
previous segmentation process. The simplest method is the
correlation of an image with an object template [1]. Another
method is the eigenspace approach that was introduced in
[7]. There are appearance-based algorithms that use one
global feature vector for the whole image (e.g. eigenspace
approach), and those that use more local feature vectors
(e.g. neural networks [11]). In this work, local feature vec-
tors with two components are applied. They are derived by
multi-resolution-analysis [2, 6] and modeled statistically by
density functions.

In real world environments it is possible that more than
one object from a sample set appears in the scene. This
is the reason why we developed a new serial search algo-
rithm for multi-object scenes. The starting point of the algo-
rithm is the approach for appearance-based statistical object
recognition by heterogeneous background and occlusions in
scenes with individual objects. We use it to search for sin-
gle objects in the multi-object scene. The serial search al-
gorithm is stopped if our abort criterion is fulfilled. There
are some publications about object recognition that do not
exclude the case of multi-object scenes, but they are based
on other approaches [4].

In section 2, the statistical object model and its compo-
nents are presented. Section 2.1 describes how we compute
the local feature vectors. In section 2.2, the so called region
of interest (region of object in the image) is defined. Section
2.3 shows how the statistical parameters are modeled and
the object density computed, and section 2.4 describes the
separate model for the background. The algorithm for the
recognition in the case of multi-object scenes is described
in section 3. There we shortly review the well-known like-
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Figure 1. Computation of a feature vector at a grid point xm with a Haar wavelet (scale s = −2). In the first step the local

neighborhood of xm is divided into four squares and low-pass coefficients bi,j = 0.25 ·
∑1

k=0

∑1
l=0 ak+2i−1,l+2j−1

are computed from the gray values aij . After the second step b2 is the low-pass coefficient and is calculated using 0.25 ·∑2
k=1

∑2
l=1 bkl. The other coefficients result from combinations of low-pas s and high-pass filtering ( d0 = 0.25 · [−(b11 +

b12) + (b21 + b22)], d1 = 0.25 · [−(−b11 + b12) + (−b21 + b22)], d2 = 0.25 · [(−b11 + b12) + (−b21 + b22)]).

lihood estimation (section 3.1). In section 3.2 the global as-
signment function is defined and the serial search algorithm
for recognition in multi-object scenes is presented. The ex-
periments and results can be found in section 4. Section 5
will close this paper with a conclusion and a short outlook
to further investigations.

2. Statistical Object Model

During the training phase statistical modelsMκ of all
possible object classesΩκ (κ = 1, 2, . . . , k) are learned.
First we define a set of all possible object classesΩ =
{Ω1, . . . , Ωκ, . . . , Ωk} and take training images of them
with a dark background, whereby positions of objects in
all images are known. Then we set one of the images for
each object class as a reference image. With position of an
object in the imagefi we denote the transformation (trans-
lation and rotation) that maps the object in the reference
image to the object infi. In the next step the sample set of
training images is preprocessed and we get square gray level
images. In the following subsections we explain about the
components of the modelMκ and the means to get them.
The class indexκ is omitted in the equations of the cur-
rent section, because the modeling is identical for all object
classes.

2.1 Feature Vectors

In all of the gray level images local feature vectors using
a wavelet transformation are computed [2, 6]. A grid with
the size∆r = 2−s, wheres is the scale of the wavelet
transformation, is laid over each training image. At each
grid point a vectorcm with two components is calculated:

cm =

(
ln(2s |bs,m|)
ln[2s (|d0,s,m| + |d1,s,m| + |d2,s,m|)]

)
(1)

The valuebs,m is the low-pass coefficient andd0...2,s,m re-
sult from combinations of low-pass and high-pass filtering.
An illustration for the computation of a feature vector can
be seen in figure 1. Using the local feature vectors has a
very important advantage, namely if only one pixel changes
its value in the image, e.g. by noise or occlusion, only local
feature vectors in a small region vary.

2.2 Region of Interest

Usually, only a part of the image pixels belong to objects.
The rest is background. It is not necessary to consider all
feature vectors in the whole image. That is why we define
for each object class in each training position the region of
interest (bounding region). A close non-rectangular bound-
ary is laid around the object. The feature vectors inside
this bounding region belong to the object and those outside
to the background. The decision is made due to a simple
threshold approach, because the training images are taken
on a dark background. If there are only internal transfor-
mations in the sample set (translations in the image plane,
rotation about the orthographic axis to the image plane) the
appearance and size of the object do not change. In this case
we need only one image to train one object class. The new
positions in the object gridx′

m are calculated from the old
grid pointsxm with following equation:

x′
m = R(Φint)xm + tint (2)

whereΦint denotes the internal rotation angle,tint are the
internal translations, andR(Φint) describes the rotation ma-
trix. For the external transformations (rotations about two
orthographic axes in the image plane and scaling) the size
and appearance of the object in the image vary. In this case
many training imagesfi for many different external param-
eters (Φext,i, text,i) are needed. For each feature vectorcm



Figure 2. The global assignment function assigns the featur e vectors to the objects in the multi-object scene, whereby o ne

feature vector can be assigned maximal to one object in the sc ene. After a vector was assigned to an object, it is not taken

into account in the next steps of the serial search algorithm .

we define a function that assigns it to the object or to the
background [10]:

ξm(Φext, text) =

{
1 if cm ∈ O

0 if cm 6∈ O
(3)

This function is interpolated using (Φext,i, text,i), and de-
fined on a continuous domain (Φext, text). O denotes the
bounding region. The internal and external transforma-
tions can be written together:Φ = (Φint, Φext)

T and
t = (tint, text)

T .

2.3 Object Density

After we defined the assignment function, we can sepa-
rately model the object feature vectors and the background
feature vectors. The components of the object feature vec-
tors are statistically modeled using a normal distribution.
It means that we compute for each object feature vector
cm = (cm1, cm2)

T a corresponding mean value vector
µm = (µm1, µm2)

T and a standard deviation vectorσm =
(σm1, σm2)

T . For internal transformations the mean val-
ues are constant. Under external transformations the mean
values vary and can be written as functions of these trans-
formationsµm = µm(Φext, text). Standard deviations are
constant in both cases [8]. We assume that the object fea-
ture vectors are statistically independent of the background
features. The statistical independence of the single feature
vectors and their components is also assumed. The density
function for the object features can be described with the
following equation:

p(C|B, Φ, t) =
∏

{m|ξm=1}

p(cm|µm, σm, Φ, t) (4)

whereC denotes the set of all object feature vectors,B

comprehends the trained mean vectors and standard devia-
tion vectors, and(Φ, t) are the transformation parameters.

2.4 Background Density

To solve the problem with the heterogeneous background
in the recognition phase we introduce also a separate model
for background feature vectors. The components of these
vectors are modeled using a uniform distribution. There-
fore, a priori, nothing has to be known about the background
in the recognition phase. All possible backgrounds can be
handled by the same model. The background density for
a feature vectorcm 6∈ O is constant for all positions and
independent of the transformation parameters (Φ, t).

3. Localization and Classification

After for each Object classΩκ the corresponding model
Mκ was created, objects can be localized and classified.
At the beginning an image is taken, preprocessed and fea-
ture vectors are computed with the same method as in the
training phase. For the recognition in multi-object scenesa
serial search algorithm is applied. This means that we look
for the first object in the scene, then for the second, etc. un-
til an abort criterion is fulfilled. The results do not depend
on the order in which the objects are searched. In the fol-
lowing section 3.1 we briefly present a modified maximum
likelihood estimation algorithm for recognition of individ-
ual objects in the scene.

3.1 Modified Maximum Likelihood Estimation

The recognition (localization and classification) with the
standard maximum likelihood estimation can be written as
follows:

(κ̂, Φ̂κ, t̂κ) = argmax
κ

{argmax
(Φ,t)

p(COκ
|Bκ, Φ, t)} (5)
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Figure 3. A - battery, B - car, C - cup, D - eraser, E - mouse, F - pe n, G - puncher, H - sharpener, I - stapler, J - two object scene,

K - three object scene, L - four object scene

For each position hypothesis (Φ, t) we first determine the
set of feature vectorsCOκ

that have to be taken into ac-
count (belonging to the bounding region).Bκ contains the
statistical parameters of the object classκ. Some feature
vectors on the border of the bounding region depend also
on the background pixels. Their values are random, because
the background is heterogeneous and unknown, and they do
not describe the object. Although such feature vectors be-
long to the region of interest, they should not be taken into
account by the evaluation of the object densities. Therefore
we defined a new assignment functionζ that modifies the
set of feature vectorsCOκ

. The componentsζm of the func-
tion assign the feature vectorscm ∈ COκ

to the background
or to the object again.ζ is determined in the maximization
process and the whole recognition is described by:

(κ̂, Φ̂κ, t̂κ, ζ̂κ) = argmax
κ

{argmax
(Φ,t,ζκ)

p(COκ
|Bκ, Φ, t)}

(6)

3.2 Serial Search Algorithm

In order to recognize objects in a multi-object scene we
introduced a global assignment function. This function as-
signs the feature vectors in the image to the objects as can
be seen in the Figure 2. The feature vectorcm is assigned
at most one object in the scene. The already assigned fea-
ture vectors are labeled and not used in the next steps of a
serial search algorithm. At the beginning the serial search
algorithm estimates for all possible object classesΩκ the
best position hypothesis (1φ̂κ, 1t̂κ). The prefix ”1” in the
expression (1φ̂κ, 1t̂κ) means that the algorithm looks for
the first object in the scene. According to the equation (6)
the object with the highest probability is recognized. The
feature vectors, that belong to the object, are marked in the

global assignment function. Subsequently, the search for
the second object in the scene is started. The feature vectors
mentioned in the global assignment function are not taken
into account in the following steps. The searching process
is repeated until an abort criterion is fulfilled. The abort cri-
terion tells the system that there are no more valid object
hypotheses in the image. For the scene model (heteroge-
neous background) it is defined as:

NCO,κ − NH,κ

NCO,κ

{
< Sp ⇒ hypothesis not valid
≥ Sp ⇒ hypothesis valid

(7)
NCO,κ is the number of feature vectors from the bounding
region that really belong to the object, andNH,κ is the num-
ber of feature vectors from the bounding region assigned
to the background with the functionζκ. It means that if
Sp · 100% of the object is visible in the image, the position
hypothesis is valid. If for the object classΩκ there are no
valid bounding regionsCO,κ, so this object can not appear
in the image. If there are no valid bounding regions for all
object classes, there are no more objects in the scene, and
the serial search algorithm ends.

4. Experiments and Results

For the training and recognition we used nine objects
from the common office environment (figure 3A-I). The po-
sition of objects in our sample set is defined with one exter-
nal rotation. We took 60 images for the training of each ob-
ject class. The viewpoints are uniformly distributed on a cir-
cle and the angle between two adjacent viewpoints amounts
6◦. All training positions can be written as the following se-
quence: (0◦, 6◦, 12◦, . . . , 354◦). Since the training images
were taken on a dark background, the bounding regions (ob-
ject areas) were trained with a simple threshold approach.
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Figure 4. A - localization rate depending on the evaluation c riterion for the external rotation (— 20 training images for each

class, · · · 40 training images for each class, +++ 60 training images for each class); B - mean localization error depending on

the number of best localizations (— 20 training images for ea ch class, · · · 40 training images for each class, +++ 60 training

images for each class); C - classification rate depending on t he number of training images; D - execution time depending

on the number of training images (— creation of one object mod el with the preprocessing step, · · · recognition in 500 test

images).

We created 6 object models for each object class using 10,
20, 30, 40, 50, and 60 training images. In this way we can
show how the recognition rate depends on the number of
training images.

In the recognition phase images with one, two, three
or four objects on heterogeneous background were used.
Three example test images can be seen in the figure 3J, 3K,
3L. We took36 test images of each object class separately
from one another. Then we created for each of the 36 po-
sitions

(
9
1

)
= 9 scenes with one object,

(
9
2

)
= 36 scenes

with two objects,
(
9
3

)
= 84 scenes with three objects, and(

9
4

)
= 126 scenes with four objects. We used altogether

9180 multi-object scenes with heterogeneous background.
The images used in the recognition phase and the training
images were disjunctive. The positions of objects in the test
images were not the same as in the training phase. In our

experiments the illumination conditions were not constant,
which proves the illumination independency of our system.

The robustness of the system was evaluated in many
ways. First it was analyzed in how many cases the number
of objects in the images was correctly estimated depending
on the abort criterion (table 1). We can generally say that
the smaller the criterion is, the more frequently too many
objects in a scene are found. The higher the criterion is, the
more frequently too few objects in a scene are found. Then
we computed the classification rates only in the images with
correctly estimated number of objects. In figure 4C the clas-
sification rate depending on the number of training images
can be seen. In 82,7% of the cases the classification was
correct using 60 training images for each object class. The
localization rate is presented as a function of the evaluation
criterion for the localization (maximum allowed deviation
of the angle). Figure 4A shows that the more training im-



Sp -2 obj. -1 obj. OK +1 obj. +2 obj.

0.40 0% 0% 82% 14% 4%
0.45 0% 0% 85% 12% 3%
0.50 0% 0% 91% 7% 2%
0.55 0% 0% 95% 3% 2%
0.60 0% 3% 97% 0% 0%
0.65 1% 5% 94% 0% 0%
0.70 3% 13% 84% 0% 0%

Table 1. Estimation of number of objects in recognition scen es depending on the abort criterion Sp.”+1 obj.” means that one

object too much in the scene was found.

ages are used, the better the localization works. In the figure
4B the mean localization error depending on the number of
best localizations is depicted. We evaluated also the ex-
ecution time of the training and recognition phase (figure
4D). The preprocessing of 60 training images and creation
of one object model takes 67s on a pentium 4, 2.66 GHz.
The recognition in 500 test images takes 70s on the same
machine.

5. Conclusions

In this paper, we presented an approach for the statisti-
cal, appearance-based object recognition of 3-D objects in
2-D gray level images with multi-objects. At the beginning,
we described the whole training phase with all its compo-
nents. The most important innovation compared to [9] is
the serial search algorithm for statistical object recognition
in 3-D multi-object scenes. The algorithm is able to classify,
localize and estimate the number of objects in the scene.

In the future we will extend this approach and combine
it with the context modeling of object correspondences in
multi-object images (e.g. with Bayesian networks). We will
also evaluate our algorithm with partly occluded objects and
accelerate the serial search algorithm in some places.
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