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Abstract. This work is concerned with real-time feature tracking for
long video sequences. In order to achieve efficient and robust tracking,
we propose two interrelated enhancements to the well-known Shi-Tomasi-
Kanade tracker. Our first contribution is the integration of a linear illumi-
nation compensation method into the inverse compositional approach for
affine motion estimation. The resulting algorithm combines the strengths
of both components and achieves strong robustness and high efficiency
at the same time. Our second enhancement copes with the feature drift
problem, which is of special concern in long video sequences. Refining
the initial frame-to-frame estimate of the feature position, our approach
relies on the ability to robustly estimate the affine motion of every fea-
ture in every frame in real-time. We demonstrate the performance of our
enhancements with experiments on real video sequences.

1 Introduction

Feature tracking provides essential input data for a wide range of computer vision
algorithms, including most structure-from-motion algorithms [1]. Other impor-
tant applications that depend on successful feature tracking are, for example,
camera self-calibration [2] and pose estimation for augmented reality [3].

The well-known Shi-Tomasi-Kanade tracker has a long history of evolutionary
development. Its basic tracking principle was first proposed by Lucas and Kanade
in [4]. For tracking a feature from one frame to the next, the sum of squared
differences of the feature intensities is iteratively minimized with a gradient
descent method. The important aspect of automatic feature detection was added
by Tomasi and Kanade in [5].

Shi and Tomasi introduced feature monitoring for detecting occlusions and
false correspondences [6]. They measure the feature dissimilarity between the
first and the current frame, after estimating an affine transformation to correct
distortions. If the dissimilarity exceeds a fixed threshold, the feature is discarded.
This method was further refined in [7], where the X84 rejection rule is used to
automatically determine a suitable threshold.
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Baker and Matthews propose a comprehensive framework for template align-
ment using gradient descent [8], as employed by the Shi-Tomasi-Kanade tracker.
In contrast to the algorithm of Lucas and Kanade, they suggest estimating the
inverse motion parameters and updating them with incremental warps. Their
inverse compositional approach facilitates the precomputing of essential opera-
tions, considerably increasing the speed of the algorithm.

As its motion estimation is completely intensity-based, the feature tracker is
very sensitive to illumination changes. Jin et al. developed a method for simul-
taneous estimation of affine motion and linear illumination compensation [9].
Our first contribution is the combination of Jin’s method with Baker’s inverse
compositional approach. We evaluate our new algorithm by comparing it with
the intensity distribution normalization approach suggested in [7].

Due to small parameter estimation errors, features tracked from frame to
frame will slowly drift away from their correct position. We propose to solve the
feature drift problem by incorporating the results of the affine motion estimation.
Another solution with respect to the tracking of larger templates is put forward
by Matthews et al. in [10].

After a short overview of our tracking system in the next section, we present
the combined motion estimation and illumination compensation algorithm in
Sect. 3. Our approach for solving the feature drift problem is detailed in Sect. 4.
Finally, we demonstrate experimental results in Sect. 5.

2 Tracking system overview

Our goal of real-time feature tracking for long video sequences not only led to
the enhancement of key components of the Shi-Tomasi-Kanade tracker, but also
required a careful arrangement of the remaining components. In this section, we
will shortly explain these additional design considerations.

We employ the feature detector derived in [5]. It was designed to find opti-
mal features for the translation estimation algorithm of the tracker. Tomasi and
Kanade also discovered that detected corners are often positioned at the edge of
the feature window [5]. As this phenomenon can lead to suboptimal tracking per-
formance, we use smaller windows for feature detection than for feature tracking.
Consequently, even if a corner lies at the edge of the detection window, it is well
inside the actual tracking window. Another possibility is to emphasize the inner
pixels of the detection window by applying Gaussian weights. Unfortunately, this
method did not further improve the tracking in our experiments.

When feature tracking is performed on long video sequences, losing features
is inevitable. As we want to keep the number of features approximately con-
stant, lost features have to be replaced regularly. In order to retain the desired
real-time performance, we devised a hierarchical algorithm which successively
selects the best features according to the ranking provided by the interest im-
age. After the selection of one feature, only a local update of the algorithm’s
data structure is required. Additionally, the algorithm is able to enforce a mini-



Fig. 1. In the top row, five instances of a feature that was tracked with the proposed
algorithm are shown. The respective reconstructions in the bottom row illustrate the
performance of the affine motion estimation and the linear illumination compensation.

mum distance between each new feature and all other features, which prevents
wasting computational resources on tracking highly overlapping features.

The main task of feature tracking is to estimate the translation of a feature
from one frame to the next. Lucas and Kanade observed that the basin of con-
vergence of their gradient descent algorithm can be increased by suppressing
high spatial frequencies [4]. The amount of smoothing is bounded by the size of
the feature windows, because at least some structure has to remain visible for
a meaningful registration. In order to increase the maximum displacement that
can be tolerated by the tracker, we employ a Gaussian image pyramid coupled
with a coarse-to-fine strategy for translation estimation. Usually working with
three levels of downsampled images, we can considerably extend the basin of con-
vergence. Another important addition is the linear motion prediction, which is
especially beneficial when a feature moves with approximately constant velocity.

After the affine motion estimation, which is discussed in the next section,
outliers have to be detected and rejected. Although the dynamic threshold com-
putation in [7] is promising, we rely on a fixed threshold for the maximum SSD
error. In our experience, the gap between correctly tracked features and out-
liers is sufficiently large when illumination compensation is performed. Jin et

al. discard features whose area falls below a given threshold [9]. We extend this
method by observing the singular values of the affine transformation matrix,
which represent the scale of the feature window along the principal axes of the
affine transformation. This way, we can also reject features that are extremely
distorted, but have approximately retained their original area.

3 Efficient feature tracking

After estimating the translation of a feature from one frame to the next, we
compute its affine motion and the illumination compensation parameters with
respect to the frame of its first appearance. By continually updating these pa-
rameters in every frame, we are able to successfully track features undergoing
strong distortions and intensity changes, as illustrated in Fig. 1. In addition, this
approach allows us to discard erroneous features as early as possible.



In order to achieve real-time performance, we adopt the inverse compositional
approach for motion estimation proposed in [8]. The traditional error function
is

∑

x

(f(x) − ft(g(x, p + ∆p)))
2

, (1)

where f(x) and ft(x) denote the intensity values of the first frame and the
current frame, respectively. In our case, the parameterized warp function g is
the affine warp
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where x represents 2-D image coordinates and p contains the six affine motion
parameters. By swapping the role of the frames, we get the new error function
of the inverse compositional algorithm

∑
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2

. (3)

Solving for ∆p after a first-order Taylor expansion yields
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The increased efficiency of the inverse compositional approach is due to the fact
that matrix H−1 can be precomputed, as it does not depend on the current
frame or the current motion parameters. The new rule for updating the motion
parameters is

g(x, pnew) = g(g(x, ∆p)−1, p) . (5)

We combine the efficient inverse compositional approach with the illumi-
nation compensation algorithm presented in [9], in order to cope with intensity
changes, which are common in video sequences of real scenes. They can be caused
by automatic exposure correction of the camera, changing illumination condi-
tions, and even movements of the captured objects.

The linear model αf (x)+ β, where α adjusts contrast and β adjusts bright-
ness, has proven to be sufficient for our application (compare Fig. 1). With this
illumination compensation model, our cost function becomes

∑

x

(αf(g(x, ∆p)) + β − ft(g(x, p)))
2
. (6)

Computing the first-order Taylor expansion around the identity warp g(x,0)
gives us

∑

x
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αf(x) + α∇f (x)
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. (7)



With the introduction of the new vectors

q = (α∆p1 α∆p2 α∆p3 α∆p4 α∆p5 α∆p6 α β)T
, (8)

h(x) = ( xfx(x) yfx(x) xfy(x) yfy(x) fx(x) fy(x) f(x) 1 )T , (9)

we can rewrite Equation (7) as

∑

x

(

h(x)T q − ft(g(x, p))
)2

. (10)

Solving this least-squares problem finally results in

q =

(

∑

x

h(x)h(x)T

)

−1(

∑

x

h(x)ft(g(x, p))

)

. (11)

As can easily be seen, the 8×8 matrix composed of dyadic products of vector
h(x) is still independent of the current frame and the current motion parameters.
Therefore, it only has to be computed and inverted once for each feature, which
saves a considerable amount of computation time. Additionally, the simultaneous
estimation of motion and illumination parameters promises faster convergence.

4 Feature drift prevention

There are several reasons why the feature windows in two frames will never be
identical in video sequences of real scenes:

– image noise,
– geometric distortions (rotation, scaling, non-rigid deformation),
– intensity changes (illumination changes, camera exposure correction),
– sampling artefacts of the image sensor.

Although these effects are usually very small in consecutive frames, it is obvious
that frame-to-frame translation estimation can never be absolutely accurate.
Consequently, using only translation estimation will invariably cause the feature
window to drift from its true position when the estimation errors accumulate.

As the feature drift problem only becomes an issue in long video sequences,
it was not considered in early work on feature tracking [4, 5]. Feature monitoring
and outlier rejection as described in [6, 7] can only detect this problem. Once the
feature has drifted too far from its initial position, the affine motion estimation
fails to converge and the feature is discarded. If subsequent algorithms require
highly accurate feature positions, this shortcoming can be problematic. Jin et al.

use affine motion estimation exclusively, thus giving up the much larger basin of
convergence of pure translation estimation [9].

We propose to solve the feature drift problem with a two-stage approach.
First, pure translation estimation is performed from the last frame to the current
frame. Then, the affine motion between the first frame and the current frame



Fig. 2. Illumination compensation test sequence with 100 frames and 200 features.
Left image: frame 0. Right image: frame 50 (lower right) / 99 (upper left).

is estimated. Hereby, the newly computed translation parameters and the four
affine distortion parameters of the preceding frame are used as initialization.
The translation parameters of the new affine motion parameters constitute the
final feature position for the current frame. Our solution requires affine motion
estimation, preferably with illumination compensation, in every frame. This can
now be done in real-time thanks to the efficient algorithm put forward in Sect. 3.
Because the coordinate system for estimating the affine motion is always centered
on the original feature, small errors in the computation of the affine distortion
matrix will not negatively affect the translation parameters in our approach.

5 Experimental evaluation

All experiments in this section were performed on a personal computer with
a Pentium IV 2.4 GHz cpu and 1 GB main memory. The video images were
captured with a digital firewire camera at a resolution of 640× 480. The feature
detector, the translation estimation, and the affine motion estimation worked
with window sizes of 5 × 5, 7 × 7, and 13 × 13, respectively.

We compared our new affine motion and linear illumination compensation
algorithm of Sect. 3 with the photometric normalization approach suggested
by Fusiello et al. [7]. They normalize the intensity distribution of the feature
windows with respect to the mean and the standard deviation of the intensities.
Their approach is limited to alternating estimation of motion and illumination.

The test sequence illustrated in Fig. 2 contains 100 frames and exhibits strong
intensity changes created by small movements of the test object. 200 features had
to be tracked without replacing lost features. The number of successfully tracked
features is 162 for our algorithm and 156 for the distribution normalization
algorithm. Most of the lost features were close to the edge of the object and
left the field of view during the sequence. As confirmed by this experiment, in
general the robustness of both approaches is very similar. The great advantage
of our algorithm is the lower average number of required iterations, which is



Fig. 3. Feature drift prevention test sequence with 220 frames and 10 features. The
upper row shows frames 0, 60, 120, and 150 with feature drift prevention. The lower
row shows frame 219 with (left) and without (right) feature drift prevention.

2.21 iterations compared to 3.58 iterations for the distribution normalization
algorithm. Consequently, with 20.9 ms against 23.9 ms overall computation time
per frame, our tracking algorithm has a notable speed advantage.

The feature drift prevention experiments illustrated in Fig. 3 and Fig. 4 were
performed on a test sequence with 220 frames. 10 features were chosen auto-
matically with the standard feature detector described in Sect. 2. The standard
approach only tracked one feature over the whole sequence, whereas the proposed
feature drift prevention enabled the tracker to successfully track all 10 features.
The close-up views of selected frames shown in Fig. 4 confirm the explanations
given in Sect. 4. The small errors of the frame-to-frame translation estimation
accumulate over time, finally preventing the affine motion estimation used for
feature rejection from converging. On the other hand, using the translation pa-
rameters of the affine motion estimation as final feature positions yields very
accurate and stable results.

6 Conclusion

We proposed and evaluated two enhancements for efficient feature tracking in
long video sequences. First, we integrated a linear illumination compensation
method into the inverse compositional approach for affine motion estimation.
The resulting algorithm proved to be robust to illumination changes and out-
performed existing algorithms in our experiments. Furthermore, we overcame the
feature drift problem of frame-to-frame translation tracking by determining the



Fig. 4. Close-up views of feature tracking with (upper row) and without (lower row)
feature drift prevention are shown for frames 0, 80, 120, and 219 of the test sequence.

final feature position from the translation parameters of the affine motion estima-
tion. We demonstrated the increased accuracy and robustness of this approach
in our experiments. With the described enhancements, our tracking system can
robustly track 250 features at a rate of 30 frames per second while replacing lost
features every five frames on a standard personal computer.
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