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ABSTRACT

X-ray 3D rotational angiography based on C-arm systems has become a versatile and established tomographic
imaging modality for high contrast objects in interventional environment. Improvements in data acquisition, e.g.
by use of flat panel detectors, will enable C-arm systems to resolve even low-contrast details. However, further
progress will be limited by the incompleteness of data acquisition on the conventional short-scan circular source
trajectories. Cone artifacts, which result from that incompleteness, significantly degrade image quality by severe
smearing and shading. To assure data completeness a combination of a partial circle with one or several line
segments is investigated. A new and efficient reconstruction algorithm is deduced from a general inversion formula
based on 3D Radon theory. The method is theoretically exact, possesses shift-invariant filtered backprojection
(FBP) structure, and solves the long object problem. The algorithm is flexible in dealing with various circle and
line configurations. The reconstruction method requires nothing more than the theoretically minimum length of
scan trajectory. It consists of a conventional short-scan circle and a line segment approximately twice as long
as the height of the region-of-interest. Geometrical deviations from the ideal source trajectory are considered in
the implementation in order to handle data of real C-arm systems. Reconstruction results show excellent image
quality free of cone artifacts. The proposed scan trajectory and reconstruction algorithm assure excellent image
quality and allow low-contrast tomographic imaging with C-arm based cone-beam systems. The method can be
implemented without any hardware modifications on systems commercially available today.

Keywords: image reconstruction, computed tomography, cone-beam, theoretically exact, filtered backprojection
algorithm, C-arm imaging, circle and line, data completeness, geometric calibration

1. INTRODUCTION

Tomographic imaging of high contrast objects based on cone-beam projections acquired on C-arm systems1

has already been established in a clinical, interventional environment. In particular in neuroradiology the 3D
representation of the complex vascular tree is of high clinical value to plan or validate therapy. Due to the invasive,
arterial injection of contrast agent the vascular tree possesses a much higher contrast to the surrounding tissue like
e.g. bone. Thus, the procedure is relatively insensitive to distortions and image artifacts. Recent improvements
in data acquisition, e.g. by use of flat panel detectors, will shift clinical applications towards imaging of low-
contrast objects. E.g. diagnosis and treatment of stroke on the same C-arm device might be a highly desirable
goal. For that hemorrhage in brain matter has to be ruled out before treating ischemia. According to current
clinical protocols this is done by a native computed tomography (CT) scan. Certainly soft tissue imaging requires
accurate data acquisition and processing2.3 A serious limitation is the incompleteness of projection data acquired
by a conventional short-scan circular source trajectory. Cone artifacts, which result from that incompleteness,
occur as a smearing and shading artifact and may superpose severely important low contrast details.

Numerous investigations on source trajectories which satisfy Tuy’s completeness condition4 can be found in
the literature: saddle trajectory,5 a selection of non-planar, non-closed trajectories optimized for C-arm devices,6

circle and arc trajectory optimized for CT gantries,7 circle and line trajectory89,10 and many others. This paper
deals with a short-scan circle and line trajectory which can be easily realized on existing C-arm device without
any hardware modifications. The line scan can be regarded as an add-on to the conventional short-scan circular
path. To our knowledge there does not exist an exact inversion scheme for that trajectory besides the recently
published algorithm of Katsevich.11 The method is deduced from a general inversion formula based on 3D Radon



theory.15 The approach is theoretically exact, possesses efficient, shift-invariant filtered backprojection (FBP)
structure, and solves the long object problem. The algorithm is flexible in dealing with various circle and line
configurations. The reconstruction method requires nothing more than the theoretically minimum length of scan
trajectory.

The proposed reconstruction algorithm is based on an ideal source trajectory. However, C-arm devices show
some mechanical instabilities which have to be considered.13 Fortunately, the geometrical deviations from the
ideal source path are almost reproducible and are accounted for by a geometrical calibration process. The
projection geometry of non-ideal source trajectories is described conveniently in the framework of projection
matrices.14 The backprojection step is performed exactly by a direct use of projection matrices. The filtering
step requires a more elaborate adaptation strategy. This paper proposes a simple but robust scheme how to
adapt the reconstruction algorithm to non-ideal sampling patterns as they occur in imaging with real world
C-arm devices.

This paper is organized as follows: Section 2 describes the inversion formula for ideal short-scan circle and lines
trajectories. The adaptation of the algorithm to source paths deviating form the ideal trajectory is presented in
Section 3. Image results are shown in Section 4 which prove the clinical relevance of the requirement of complete
data acquisition and validate the proposed reconstruction algorithm and its adaptation to realistic sampling
patterns.

2. INVERSION FORMULA

Consider the source trajectory consisting of an incomplete circle C and a line segment L attached to C at one
of the endpoints of C (see Figure 1). At first we assume that C is sufficiently close to a complete circle, and L
is sufficiently long. Let y0 be the point where they intersect. We assume that the detector array DP (s) is flat,
contains the x3-axis (the axis of C), and is perpendicular to the shortest line segment connecting the source y(s)
and the x3-axis.

Figure 1. Illustration of the circle and line trajectory

Introduce the following notations. S2 is the unit sphere in IR3, and

Df (y, Θ) :=

∫

∞

0

f(y + Θt)dt, Θ ∈ S2;

β(s, x) :=
x − y(s)

|x − y(s)|
;

Π(x, ξ) := {z ∈ IR3 : (z − x) · ξ = 0}.

(1)

We assume that f is smooth, compactly supported, and identically equals zero in a neighborhood of the source
trajectory.



Suppose I1 3 s → y(s) ∈ L and I2 3 s → y(s) ∈ C are parametrizations of the line and circle, respectively.
We assume that the circle is of radius R and centered at the origin. Let U be an open set, such that U ⊂
{(x1, x2, x3) ∈ IR3 : x2

1 + x2
2 < R2}.

Pick a reconstruction point x ∈ U , and consider the plane Π(x) through x and L. Π(x) intersects C at two
points. One of them is y0, and the second is denoted yC(x). Let L1π(x) be the line segment containing x and
connecting yC(x) to L (see Figure 1). Then yL(x) ∈ L denotes the other endpoint of L1π(x). Our procedure
determines two parametric intervals. The first one I1(x) ⊂ I1 corresponds to the section of L between y0 and
yL(x). The second one I2(x) ⊂ I2 corresponds to the section of C between y0 and yC(x). The section of C ∪ L
bounded by L1π(x) is denoted Λ1π(x). It is easily seen that Λ1π(x) is complete in the sense of Tuy.

Consider intersections of planes through x with Λ1π(x). Neglecting planes tangent to the trajectory, there
can be either one or three intersection points (IPs). Moreover, there can be at most one IP belonging to L. In
view of this argument, the data in Table 1 defines the weight function n up to a set of measure zero.

The role of n is twofold. First, it has to deal with redundancy in the cone beam data by assigning weights to
IPs between Radon planes and the source trajectory. Second, a proper choice of n yields an efficient shift-invariant
convolution backprojection algorithm in the framework of Katsevich’s general inversion formula.15 The function
n, described by Table 1, can be described as follows. If there is one IP, it is given weight 1. If there are three IPs,
the two IPs on the circle have weight 1 each, and the IP on the line segment has weight -1. As is easily seen,
n is normalized:

∑

j n(sj , x, α) = 1 for almost all α ∈ S2. Here the summation is over all intersection points
y(sj) ∈ Π(x, α) ∩ Λ1π(x).

Table 1. Definition of the weight function n(s, x, α)

Case n
1IP, s1 ∈ I1(x) n(s1, x, α) = 1
1IP, s1 ∈ I2(x) n(s1, x, α) = 1
3IPs, s1 ∈ I1(x) n(s1, x, α) = −1
s2, s3 ∈ I2(x) n(sk, x, α) = 1, k = 2, 3

Denote
φ(s, x, θ) := sgn(α · ẏ(s))n(s, x, α), α = α(θ) ∈ β⊥(s, x), (2)

where θ is a polar angle in the plane perpendicular to β(s, x). According to the general scheme in,15 we have
to locate jumps of φ(s, x, θ) in θ. By studying these jumps in two cases: s ∈ I1(x) and s ∈ I2(x) and using the
general scheme in15 we obtain the following inversion algorithm (see11). Pick s ∈ I1(x) (i.e., y(s) is on the line).
Find a plane through x and y(s), which is tangent to C at some yt(s, x), s ∈ I2(x). Let u1(s, x) be the unit vector
perpendicular to that plane:

u1(s, x) :=
(yt(s, x) − y(s)) × β(s, x)

|(yt(s, x) − y(s)) × β(s, x)|
, x ∈ U, s ∈ I1(x). (3)

Pick now s ∈ I2(x) (i.e., y(s) is on the circle) and define

u2(s, x) :=
ẏ(s) × β(s, x)

|ẏ(s) × β(s, x)|
, x ∈ U, s ∈ I2(x). (4)

By construction, u2(s, x) is the unit vector perpendicular to the plane containing x, y(s), and tangent to C at
y(s). Using (3) and (4) we obtain the following reconstruction formula for f ∈ C∞

0 (U):

f(x) = −
1

2π2

2
∑

k=1

∫

Ik(x)

δk(s, x)

|x − y(s)|

∫ 2π

0

∂

∂q
Df (y(q), Θk(s, x, γ))

∣

∣

∣

∣

q=s

dγ

sin γ
ds, (5)

where

Θk(s, x, γ) := cos γβ(s, x) + sin γek(s, x), ek(s, x) := β(s, x) × uk(s, x). (6)



and δk is defined as follows:

δ1(s, x) = −sgn(u1(s, x) · ẏ(s)), s ∈ I1(x); δ2(s, x) = 1, s ∈ I2(x). (7)

Suppose, for example, that L is parametrized in such a way that the source moves down along L as s increases.
Then δ1(s, x) = 1, s ∈ I1(x). If the source moves up along L as s increases, then δ1(s, x) = −1, s ∈ I1(x).

Figure 2. Projection onto the detector plane when the source is on the line

Consider now the computational structure of the algorithm. Pick y(s) ∈ L. For a point x ∈ U we have to find
st ∈ I2(x). This determines the filtering line on the detector, which is tangent to Ĉ at ŷ(st). Here Ĉ and ŷ(st)
are projections onto the detector plane of C and y(st), respectively. It is easy to see that all other x ∈ U which
project onto this line to the left of y(st) will share it as their filtering line. Hence, we can first perform filtering
along lines on the detector tangent to Ĉ (see family L1 in Figure 2), and then perform backprojection. The range
of st values, smin

t ≤ st ≤ smax
t , depends on the region of interest (ROI) and is illustrated in Figure 2. Just like

in15 it is easily seen that filtering is shift-invariant, and consists of convolving ∂
∂q

Df (y(q), Θk(s, ·, γ)) |q=s with

1/ sin γ.

Figure 3. Projection onto the detector plane when the source is on the circle

If y(s) ∈ C, filtering must be performed along lines on the detector parallel to ẏ(s). The resulting family
is denoted L2 in Figure 3. Pick any line from L2. One shows that all x whose projection belongs to that line
and appears to the right of L̂ share it as their filtering line. As before, one can first perform filtering (i.e.,



convolution with 1/ sinγ) along these lines, and follow it by backprojection. Hence the resulting algorithm is of
the convolution-based FBP type.

Let us now describe some properties of the proposed algorithm. As follows from the construction of L1π(x),
yL(x) → y0 as x3 → 0. In the limit x3 = 0 we get yL(x) = y0, so the integral over L in (5) disappears, and the
integral over C becomes a very short scan fan-beam reconstruction formula of.17

Given specific C and L, we can determine the part of the support of f that can be accurately reconstructed
by the proposed algorithm. This is the volume bounded by the following three surfaces: the plane of C, the
plane defined by L and the endpoint of C not on L, and the conical surface of lines joining the points of C to
the endpoint of L that is not on C. This volume will be denoted U(C, L). Note however that the object f may
extend outside U(C, L), as long as it stays away from the source trajectory C ∪ L.

The trajectory consisting of an incomplete circle and a line segment can be used as a building block for
constructing other trajectories. E.g., one can consider an incomplete circle C with line segments attached to
it at each endpoint of C. These segments can be on opposite sides of C (see Figure 4, left panel), or on the
same side of C (see Figure 4, right panel). Inversion algorithms for these trajectories are obtained from (5) by
applying it to each circle+line subset and then adding the results (if necessary). Indeed, suppose the segments
are on opposite sides of C. Then the volume U(C, L) in the half-space z ≥ 0 is reconstructed using the trajectory
C ∪ L, and the volume U(C, L′) in z ≤ 0 is reconstructed using C ∪ L′. In this case no summation is needed.
If L and L′ are on the same side of C, then we only reconstruct in the half-space z ≥ 0. In this case each voxel
in the volume U(C, L) ∩ U(C, L′) is reconstructed twice: using C ∪ L and C ∪ L′, so the summation is used.
This does not mean that reconstruction time is twice as long. First, the line portions of the scan L and L′ are
used only one time each. Second, only a part of the circle C is used twice. This does not lead to any increase
in computational time, because filtering and backprojection are identical in both cases. Consequently, a simple
post-filtering weight solves the problem of multiple contributions to any given voxel.

Figure 4. Examples of trajectories that can be handled by the proposed algorithm

Consider now the overall detector requirements. We will assume that L and L′ are on the opposite sides of C,
and the reconstruction volume is {(x1, x2, x3) : x2

1 + x2
2 ≤ r2, −H ≤ x3 ≤ H}. It is easily seen that the circular

scan requires the rectangular detector of size

|d1| ≤
r

√

1 − (r/R)2
, |d2| ≤

H

1 − (r/R)
. (8)

Here d1 and d2 are the horizontal and vertical axes on the detector. It is shown in11 that the line scans require
the detector of size

|d1| ≤
r

√

1 − (r/R)2
, |d2| ≤

H

1 − (r/R)

1

1 − (r/R)2
. (9)



Hence the addition of line scans increases the detector height compared with the conventional Feldkamp-type
circular reconstruction only by a factor 1/(1− (r/R)2).

3. CONSIDERATION OF NON-IDEAL SOURCE TRAJECTORIES

The exact reconstruction algorithm derived in the previous section presumes on an ideal acquisition geometry.
Data acquisition with a C-arm device, however, never fulfills these ideal geometry presumptions. The movements
of the acquisition system are influenced by mechanical phenomena like gravity and inertia leading to different
non-ideal types of focus trajectories - a phenomena that has to be considered in the reconstruction approach.

3.1. Geometry description using Projection Matrices

The non-ideal acquisition geometry of a real world C arm device now is represented by a sequence of homogenous
projection matrices14 Ps ∈ IR3×4. For every source position s, and thus for every measured projection image, the
matrix Ps completely describes the perspective cone beam projection of the object. More precisely, the matrix
defines the relation between every voxel xh of the object and the coordinates wh of the corresponding detector
image point

wh = Psxh, (10)

where a voxel with a cartesian coordinate vector x is denoted by the homogenous vector xh = (b · xT , b) with
b ∈ IR\0 and an analog notation for a cartesian detector position w = (upix, vpix)T is wh = (c ·wT , c)T , c ∈ IR\0.
upix and vpix are the coordinate values of an image point measured along the two perpendicular axes’ vectors
eu,s respectively ev,s that coincide with the row respectively the column direction of the pixel grid of the detector
DP (s).

As the deviations in acquisition geometry vary from C-arm device to C-arm device, but remain almost constant
for successive scans on the same device, an essential task is to determine an individual, valid sequence of Ps for
a given C-arm system. This geometric calibration is done by an automated procedure involving a calibration
phantom of exactly defined structure and an appropriate calibration algorithm that calculates a valid matrix Ps

for a given s.18

A matrix Ps can be decomposed in a complete set of projection parameters.14 Especially the extrinsic
parameters are of interest as they include position and orientation of the involved detector and focus entities. We
present a way to calculate the focus positions and the direction vectors of the pixel coordinate system’s axes from
every Ps. By that the acquisition trajectory can be composed and when using matrices downloaded from a real
world C-arm device, it is possible to determine the deviations of the acquisition geometry compared to the ideal
circle and line geometry presumed by the reconstruction approach. For convenience the matrices Ms ∈ IR3×3 are
introduced, consisting of the first three columns of the Ps. Note that all Ms are invertible.

The focus position y(s) is calculated as

y(s) = M−1
s Ps(0, 0, 0, 1)T . (11)

The projection matrices define the detector only up to scale. To have knowledge about the precise structure of
the C-arm acquisition system, either the specification of the focus-detector distance or the detector pixel spacing
is needed. The direction of the two axis of the detector pixel coordinate system, however, is universally valid. eu,s

is parallel to the vector ((0, 0, 1)·Ms)
T×((0, 1, 0)·Ms)

T and ev,s points in direction ((0, 0, 1)·Ms)
T×((1, 0, 0)·Ms)

T .
Further, the detector coordinates w0,s of the intersection of the optical axis and the detector plane are calculated
as w0,s = Ms ·(0, 0, 1)Ms. It turns out that the real path can vary up to 2% in radial direction from an ideal circle.
Further, the focus positions are not located within a plane, but vary in longitudinal direction. We found out that
a relative movement of focus and detector appears when the C-arm is in motion. Tilt and rotational deviations
are not very prominent, but the translationary in-plane movement of the detector during the acquisition run is
considerable. The reconstruction algorithm derived for an ideal circle and line trajectory has to be adapted to
the non-ideal source paths of real C-arm devices.



3.2. Adaptations to the original method

For an application of the circle and line reconstruction approach the following general strategy is applied. The
given projection matrix Ps exactly describes the relation between the object and its cone beam projection image
for every s. By that, an exact consideration of the non-ideal acquisition geometry in the backprojection step is
possible by the direct use of the projection matrices.13 For the filtering step the case of non-ideal trajectory is
transferred into the ideal case approximately. The presumed ideal trajectory consisting of a partial circle and
a perpendicularly attached line segment is fitted into the set of real world focus positions. The fitted circle
path again projects as a parabola onto the detector and the same approach as described above can be used to
determine the filtering directions as tangents to the occurring parabola.

The least-square fit of the ideal trajectory yfitted(s) into the path y(s), as illustrated in Figure 5 corresponds
to the minimization of the total estimation error

ε =
∑

s

(

‖yfitted(s) − y(s)‖2
)

(12)

and is done in a three steps approach.

y(s)


x
1


x
2


x
3


CP


x
center
 y      (s)
fitted


L


C


R


Figure 5. Fit of an ideal circle and line trajectory yfitted(s) into the set of real world focus positions y(s). A dotted
object is located below the circular plane CP .

First, we perform a least-square algebraic fit of a plane into the circle’s focus positions followed by an
orthogonal projection of the path y(s) onto the determined circular plane CP . On CP , a partial circle is fitted into
the projected focus positions using a 2D algebraic least-square estimation method19 and then optimally represents
the circle scan. Finally the line segment is determined perpendicular to the circular plane and connected to the
end of the circle segment. The fitted trajectory can be described by the circular plane CP , the circle center
xcenter , the circle segment’s radius R and the length and the position of the line segment.

Remember that the pose and the orientation of the volume coordinate system are given by the projection
matrices Ps. We perform a normalization of the coordinate system bringing it more in line with the configuration
of the previous chapter. This is done by multiplying every Ps from the right side with a transformation matrix
Tv ∈ IR4×4 independent from s. The normalization consists of two operations, a translation Tv,t to locate the
origin at xcenter and a rotation Tv,r that parallelizes the line direction with the x3 axis. We can thus write
Tv = Tv,r · Tv,t. After the coordinate transform, the circular plane CP equals the x3=0 plane and the trajectory
is centered around the rotational axis with the line pointing in positive x3 direction.

Further, the change of the relative position of the focus and the detector has to be handled. The detector
coordinate system is adapted such that the fitted source trajectory is projected onto the detector on the same
position as in the ideal case. Then, the filtering instructions described in Section 2 can be applied without any
further modification. Regarding the used C-arm hardware, it turns out to be sufficient to correct the in-plane
translationary movement of the pixel coordinate system, which is the most prominent deviation from the ideal
geometry case. For every s, a translation matrix Td,s ∈ IR3×3 is determined and multiplied to Ps from the left, so



that the volume coordinate origin always projects onto the same detector coordinates. By that, the coordinates
of Ĉ become independent from the current misplacement of the detector area.

Finally, the modified projection matrices

P mod
s = Td,s · Ps · Tv (13)

describe the cone beam projection involving the normalized coordinate systems for the volume and for the
detector. Note that these projection matrices still represent the non-ideal acquisition geometry.

4. IMAGE RESULTS

To test the quality of the developed reconstruction method a set of experiments is performed, involving different
phantom objects and ideal as well as real world non-ideal acquisition geometry.

4.1. Clinical relevance of Cone Artifacts

This evaluation proves the clinical relevance of the well known cone artifacts appearing frequently in short scan
FDK reconstructed volume data sets from mathematically defined objects. We thus expect statements about
the quality of the reconstruction approaches in the practical domain. In a first experiment both the state of the
art short scan FDK algorithm and the circle and line approach are used to reconstruct a volume data set from
synthetic projections of the so called voxelized head phantom. This object is defined as an array of 512×512×360
voxel values f(x) that represent a human head with data generated by a spiral CT Angiography imaging system.

The voxelized head phantom is centered around the plane of the circular trajectory at x3=0. The acquisition
trajectory involves 2 line segments pointing in different directions, and so the upper half of the object is recon-
structed from projections acquired along the upper line and the circle, whereas the lower parts require the other
line segment and the circle. Detailed reconstruction parameters are presented in Table 2.

Figure 6 and Figure 7 visualize two different slices of the reconstructed volumes as well as of the original
object definition. As we want to compare image qualities in low contrast applications, a small window from -100
HU to 100 HU is selected.

Figure 6. The x1=0 mm slice of the voxelized head phantom, visualized in a window of -100 HU to +100 HU. From the
left to the right the short scan FDK result, the circle and line result and the original image are shown.

Regarding first the slice x3=-59 mm of Figure 7, including a lot of bone structures and thus rich in contrast,
one can see that the cone artifacts are very prominent in the image reconstructed by the short scan FDK
approach. Smearing artifacts cover up the view on the soft tissue decreasing the significance of the image content
strongly. In the less structured regions of the voxelized head phantom, like in the brain region, however, only few
disturbing cone artifacts are visible. The circle and line approach overcomes the restriction of an incompletely
acquired 3D Radon space and thus can eliminate the cone artifact phenomena throughout the whole volume.
The image results are very close and almost not distinguishable to the original object in both visualized slices.



Figure 7. Transaxial slices taken from the voxelized head phantom and visualized with a window from -100 HU to +100
HU. Row-wise from the top to the bottom: Image results when using the short scan FDK method, the circle and line
approach and the original slices. The left column shows the slice x3=+59 mm the right one x3=-59 mm.



4.2. Qualitative Analysis using non-ideal Geometry

In a second experiment we involve the non-ideal acquisition geometry corresponding to a real world C-arm scan
in order to validate the proposed adaption scheme. Further, the effects of the geometry deviations on the quality
of the resulting images is shown.

The object of interest is now composed by mathematically defined geometric objects like ellipsoids or cubes
and simulates the basic anatomical structure of a human head including homogeneous regions with embedded
low contrast objects but also high contrast structures. Because of its composition, this so called mathematical
head phantom20 is very demanding to the reconstruction approaches significantly revealing any type of artifact.

Figure 8. The slice x3=49.5mm visualized using a window from 10 HU to 90 HU. The top row presents the results from
the ideal geometry simulation, the the bottom row from the simulation involving real, non-ideal acquisition geometry.
The images on the left are reconstructed using the short scan FDK method, the images on the right using the circle and
line approach.

Two scans are simulated from the object, which is shifted by 4 cm along the x3 axis. The first one involves
ideal geometry and the second one includes a series of projection matrices downloaded from a real world C-arm
device and thus representing relevant geometry deviations. The reconstruction and simulation parameters are
listed in Table 2.



In Figure 8 one representative transaxial slice of the object is visualized in a window from 10 HU to 90 HU.
The experiments affirm the results from the first evaluation. Again, severe cone artifacts appear in the FDK
reconstructed images in contrast to the high quality image data resulting from the circle and line method. Note
that the simulated scans of ideal and non-ideal trajectories start at different angular positions. Thus, the ori-
entation of artifacts differ. Involving non-ideal acquisition geometry, additional artifacts in both reconstruction
approaches can be detected. Some streak-like artifacts of low intensity appear near the high contrast bone struc-
ture. The artifacts are due to some slight irregularities in angular sampling and to some remaining inexactness
in the filtering step. In particular the matching of the contribution of the line and circular scan might be critical
in more severe cases. Anyway, this experiment shows that the proposed adaptation appears sufficient to consider
geometrical distortions of real world C-arm devices.

voxelized head mathematical head
ideal geometry ideal geometry non-ideal geometry

detector dimension 641× 500 640× 500 720× 720
pixel size (0.6mm)2 (0.6mm)2 (0.580mm)2

# projections on circle 501 501 538
# projections on each line 221 196 196

angular range of circle 200 deg 200 deg 214 deg
length of each line 220 mm 195 mm 195 mm

image volume dimension 512× 512× 400 512× 512× 161 512× 512× 161
voxel size (0.422mm)3 0.48 × 0.48× 0.50mm3 0.48× 0.48 × 0.50mm3

Table 2. Reconstruction and simulation parameters

5. CONCLUSIONS

C-arm based tomographic imaging is developing rapidly towards low contrast resolution. A severe obstacle is the
fact that a pure circular scan path does not provide a complete dataset in cone-beam geometry. A simulation
study with an anthropomorphic head phantom clearly shows the clinical relevance of cone artifacts resulting
from data incompleteness. Data incompleteness can be overcome by an additional line scan to the conventional
short-scan circular trajectory. The line scan can be easily realized as an add-on to current C-arm devices without
any hardware modifications. A recently published reconstruction algorithm of Katsevich type handles the case
of an ideal trajectory theoretically exact and efficient requiring a minimum amount of data. A stable method is
proposed to adapt approximately the reconstruction algorithm to the real sampling pattern of existing C-arm
devices which deviates from the ideal source path. An ideal trajectory is fitted to the real source path to find
proper filtering lines. Backprojection is performed exactly by use of the geometric calibration information. In
simulation experiments it is shown that (i) the new reconstruction algorithm provides excellent image quality;
(ii) cone artifacts are totally eliminated by use of a complete data set; (iii) geometrical deviations from the
ideal trajectory can be handled robustly by the suggested, simple adaptation approach at least for existing
C-arm devices; (iv) non-ideal trajectories still cause some slight streak artifacts due to irregular sampling and
remaining inexactness of the approximate geometrical adaptation. Certainly the limitations of approximation
in the adaptation approach have to be investigated systematically in the future. Furthermore a quantitative
assessment of image quality is still in preparation. Anyway, it appears that the proposed approach is an easy
and viable way to provide excellent low contrast imaging based on C-arm devices in a clinical, interventional
environment.
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