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ABSTRACT

We describe an enhanced method for the selection of opti-
mal sensor actions in a probabilistic state estimation frame-
work. We apply this to the selection of optimal focal lengths
for cameras with a variable motor zoom in a real-time visual
object tracking task. The optimal camera action is deter-
mined by the expected state estimate entropy for each can-
didate action. Varying action costs are taken into account
by predicting the entropy several steps into the future. Our
contribution is the use of the sequential Kalman filter to deal
transparently with a variable number of cameras, potential
object loss in a subset of the cameras, and to reduce the cal-
culation time through independent optimization.

From International Conference on Image Processing - ICIP’05, Volume 3, 2005, (pp. 105–108).

1. INTRODUCTION

This paper describes and enhances a method for selecting
optimal sensor actions in a probabilistic state estimation
framework. The method can incorporate varying costs into
the action selection process by predicting the effect of a se-
quence of future actions. The goal is to find those sensor
actions which most reduce the uncertainty of the estimate.
We apply this method to the problem of choosing optimal
focal lengths in a real-time object tracking system.

There have been previous works in the area of object
recognition [1, 2, 3], showing that the active selection of
viewpoints can reduce the classification uncertainty. The
problem of changing focal lengths for object tracking has
been discussed in [4, 5]. However, these works aim to im-
prove tracking by keeping the scale of the target constant,
instead of being based on the current target information. In
[6], a subset from a sensor set is chosen which aims to keep
the uncertainty in an object tracking task below a certain
threshold. A heuristic approach is used to greatly enhance
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the speed of the selection. In [7], the expected entropy of
the state estimate distribution for each action is used to se-
lect the action which yields the lowest uncertainty.

Previous work [8] has extended this approach to rate a
sequence of sensor actions. This allows cases in which cer-
tain actions allow or forbid other future actions. In the case
of focal length selection, the available focal lengths are lim-
ited by the zoom motor speed. However, with this approach,
the action search space, and thus evaluation time, grows ex-
ponentially in the number of cameras. Nor can this method
easily handle object loss in only a subset of cameras.

To address this, we now employ a sequential Kalman
filter, which is a sequential evaluation method of the stan-
dard Kalman filter. The observations from each sensor are
combined with the a priori state estimate in sequence, gen-
erating intermediate state estimates. By treating each sensor
independently of the others, the information of each individ-
ual sensor is maximized. This reduces the action space and
allows the number of sensors to change dynamically.

We have tested our method in an object tracking task
with up to three real cameras and looking 4 steps into the
future. While a single-step approach lost the object in up
to 30% of all frames, the multi-step method still avoided all
object loss, but at far less computation time as before.

In the next section, we briefly review the Kalman Fil-
ter and entropy-based action selection. Section 3 describes
object tracking with the sequential Kalman filter, and the
implications for single-step and multi-step action selection.
Section 4 shows the experimental setup and evaluates the re-
sults. This also includes computation time. Finally, the last
section summarizes and concludes this paper, listing poten-
tial future improvements.

2. KALMAN FILTER AND ACTION SELECTION

We use the well-known Kalman filter [9] for our state esti-
mation, extended to allow sensor actions. Since many ap-



plications need a non-linear observation function or a non-
linear state transition function, the extended Kalman filter is
employed, though this is not relevant to our methods. The
interested reader is referred to [9, 10, 11]. Object tracking
with sensor actions is described in [2, 7]. This method is ex-
tended in [8] to multi-step action selection, i.e. the selection
of a sequence of actions several steps into the future. This
last work is the one we expand on here.

Briefly, the Kalman filter updates a state estimate of
the observed system in discrete time steps. The state es-
timate at time t is in the form of a Gaussian distribution
with mean x̂

+
t
∈ IRn and covariance matrix P

+
t
∈ IRn×n.

The Kalman filter works in two steps: first, it predicts the
a priori state estimate at time step t + 1 from the current
estimate in the prediction step:

x̂
+
t
,P +

t
−→ x̂

−

t+1,P
−

t+1 (1)

Then it updates this estimate with the observations ot+1 ∈
IRm and sensor actions at+1 ∈ IRl to obtain the a posteriori
estimate in the correction step:

x̂
−

t+1,P
−

t+1 −→ x̂
+
t+1,P

+
t+1 (2)

Entropy based action selection [7] chooses the action
a
∗

t
which is expected to result in the state estimate with the

least entropy. The entropy of the Gaussian a posteriori de-
pends only on its covariance P

+
t

, which in turn depends on
the sensor action at but not on the observation ot. There-
fore, the covariance, and thus the expected entropy, can be
calculated for at before ot is made.

Multi-step action selection [8] enhances this method to
calculate the expected entropy for a sequence of k future
actions 〈a〉t+k. This is necessary since the availability of
future actions may depend on actions selected earlier. For
our example of focal length selection, the limited speed of
the zoom lens motors restricts future zoom settings.

3. SEQUENTIAL ACTION SELECTION

For this work, we extend the action selection approach [7]
by using the sequential Kalman filter [10]. This also applies
to the multi-step methods [8].

3.1. Sequential Kalman filter

The sequential Kalman filter [10] is a sequential evaluation
method for the standard Kalman filter algorithm. It is pos-
sible if the noise process disturbing the sensors is statisti-
cally independent between the sensors. This is a common
assumption in visual object tracking tasks.

In the sequential Kalman filter, each sensor is given its
own, limited Kalman filter, called the subfilter. We index
the subfilters by c, the last subfilter is called cm. The output

state estimate of each subfilter becomes the input estimate
of the next subfilter. Figure 1 shows an example with three
cameras tracking an object.

At the beginning of each time step t, the a priori state
estimate x̂

−

t
,P−

t
is generated from the previous a posteri-

ori state estimate x̂
+
t−1,P

+
t−1. This is unchanged from the

non-sequential version, and done only once per time step.
This estimate x̂

−

t
,P−

t
becomes the a priori state estimate

of the first subfilter (where (c) denotes any property of the
subfilter c):
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t
(3)

Each sensor c generates a (2-dimensional for cameras) ob-
servation vector ot

(c) with its own sensor action at
(c). The

prediction step of subfilter c combines its a priori estimate
with ot

(c) as with the normal Kalman correction step. The
result is passed to the next subfilter.
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−
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(c) (4)
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Finally, the a posteriori state estimate x̂
+
t

(cm),P +
t

(cm) of
the last subfilter cm is used as the a posteriori estimate
x̂

+
t
,P +

t
of the entire system.

Sequential evaluation has several big advantages. First
of all, the calculation time is generally lower than the tra-
ditional Kalman filter equations. Second, if a sensor can-
not generate an observation, e.g. when the object has left
a camera’s field-of-view, the corresponding subfilter can be
skipped. Third, the architecture is easily extendable. More
sensors can be added by simply adding them to the chain,
instead of reconfiguring the entire filter.

3.2. Sequential action selection

Entropy based action selection can now be done per indi-
vidual sensor. Looking at the covariance matrices in the
sequential Kalman filter, we note that each sensor has a mul-
tiplicative influence on the previous estimate covariance:

P
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t

(1) = (I −Kt
(1)

Ht
(1))P−

t

(1) (8)
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where I is the identity matrix, Kt
(c) is the Kalman gain ma-

trix and Ht
(c)) the linear(ized) observation function matrix

of sensor c, as per the Kalman filter equations [9, 10, 11].
We call Ct

(c) = I−Kt
(c)

Ht
(c) the contribution of sensor

c at time t.



Fig. 1. The sequential Kalman Filter. Each camera adds its
observation to the state estimate in sequence. The a poste-
riori state estimate of the last camera is transformed to the
a priori estimate of the first camera on the next time step.

The expected entropy of the a posteriori state estimate
depends directly on the determinant |P +

t
| of its covariance

matrix. Since

|P +
t
| = |P +

t

(cm)| (11)

= |Ct
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Ct
(cm−1) . . . Ct

(1)
P

−

t
| (12)

= |Ct
(cm)| · |Ct

(cm−1)| · · · |Ct
(1)| · |P−

t
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by finding the actions at
(c) for which the determinants of

the contributions Ct
(c) of each sensor c are minimized, the

expected entropy is likewise minimized (but see below).
In practice, this means each subfilter is treated as if it

were the only filter. The action selection proceeds just as
before [7]. However, Kt

(c), and therefore Ct
(c), depend

on the a priori covariance of subfilter c. This approach can
therefore only work if the optimal action for one sensor does
not depend in any significant way on the actions taken by
the other sensors. This is the case for focal length selection,
but for other action spaces, e.g. changing the position of the
cameras, this may no longer hold.

3.3. Multi-step sequential action selection

The multi-step extension described in [8] can also be used
with the sequential Kalman filter. This works by individu-
ally calculating the expected entropy of each subfilter sev-
eral steps into the future. For subfilter c, the expected a
posteriori covariance is calculated as follows:
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Fig. 2. Tracking results for 2 cameras with 1 and 4 steps
lookahead. Note the two deviations in the case of the single-
step method, due to object loss.

where eq. (14) corresponds to the initialization (3), eq. (16)
corresponds to (1), the Kalman prediction step, and (15) and
(17) correspond to (2) or (8), the Kalman update equations.

Basically, the method of [8] is applied as if each subfilter
were the only existing filter. The optimal sensor actions are
then the set of the optimal actions of each subfilter.

A note about visibility: the expected entropy of an ac-
tion, or sequence of actions, depends strongly on the proba-
bility that an observation will, in fact, be made. Visibility is
handled just as in [8], except that each subfilter only needs
to calculate the probability of an observation for its asso-
ciated sensor. See [7, 8] for details on visibility. Through
individual optimization. the sequential evaluation, however,
more easily handles the case of only a subset of sensors pro-
viding no observation.

4. EXPERIMENTS

Unlike the previous work [8], we were able to test our al-
gorithms with real cameras, in our case Sony DFW-VL500
cameras with motorized zoom lenses. These tracked a small
object on a circular path.

The system was tested with two and with three cameras.
The results matched those from the simulation in [8], espe-
cially with regard to the number of frames with object loss.

Figure 2 shows the tracked object position for four full
cycles of the object, with two cameras. In the single-step
case, significant object loss in one or more cameras oc-
curs in two places. This is due to the object moving out
of the field of view of a camera faster than the zoom lens
could compensate. At each of these places, the position es-
timate diverges greatly from the circular ground-truth path
(not shown), since only one camera could contribute mean-
ingful tracking data. The multi-step method, however, is
capable of anticipating such a loss several steps in advance.
This causes the camera to start zooming outwards earlier,



Visibility 0 1 2 3
2 cameras, 1 step 0% 29.2% 70.8% -
2 cameras, 4 steps 0% 0% 100% -
3 cameras, 1 step 0% 0% 19.1% 80.9%
3 cameras, 4 steps 0% 0% 0% 100%

Table 1. Percentage of frames where the object was seen
by 0, 1, 2 and 3 cameras. Setups were compared with 2 and
3 cameras, and with 1 and 4 frame lookahead. In this case,
the multi-step approach completely eliminates the problem
of object loss.

keeping the object in the camera’s field of view.
Table 1 lists the percentage of frames in which the object

was seen by zero, one, two or, in the case of a three-camera
setup, three cameras. One can see that, given a bounded
zoom lens speed, the single-step method loses track of the
object for a significant portion of frames (20 to 30 percent).
The multi-step method, however, did not lose the object in
any camera. These results match those in [8].

In the three camera setup, the tracking results between
single-step and multi-step were negligible, due to the pres-
ence of a redundant camera. The results are not shown here.

The computation time was reduced drastically, even in
the case of a simple global action space search. Whereas
in [8], finding the optimal actions for two cameras while
looking 4 steps into the future took 26 seconds, the sequen-
tial method takes merely 0.6 seconds, and about 1 second
for three cameras. Since this is not yet real-time, the cam-
era framerate, zoom speed and object speed were artificially
reduced. This was also necessary to cope with frame and
zoom synchronization problems.

5. CONCLUSION AND OUTLOOK

We have presented an alternative method for selecting infor-
mation theoretically optimal sensor actions by considering
and optimizing each sensor independently. This allows for
greater flexibility, automatically copes with partial observa-
tion loss, and reduces the action space to be searched.

The results match those which were observed in a simu-
lated environment. The multi-step approach greatly reduces
the number of frames with object loss, visibly improving
the tracking quality.

Future work will aim to further speed up the evaluation
process. One possible improvement uses dynamic program-
ming techniques to perform the action optimization. An-
other approach aims to include the visibility in the covari-
ance output by the Kalman filter. Preliminary tests have
shown this is possible, but more theoretical work is needed.
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