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Summary. In this paper we present a statistical approach for localization and
classification of 3-D objects in 2-D images with real heterogeneous background.
Two-dimensional local feature vectors are computed directly from pixel intensities
in square gray level images with the wavelet multiresolution analysis. We use three
different resolution levels for the feature computation. For the first one local neigh-
borhoods of size 8 × 8 pixels, for the second one 4 × 4 pixels, and for the third one
2 × 2 pixels are taken into account. Then we define an object area as a function
of 3-D transformations and represent the feature vectors as density functions. Our
localization and classification algorithm uses a combination of object models created
for the three different resolutions in the training phase. Experiments made on a real
data set with 42240 images show that the recognition rates are much better using
the resolution combination of the wavelet transformation.

1 Introduction

The automatic localization and classification of objects in real environment

images is becoming more important lately. Object recognition systems can

be applied for example: to face classification, to localization of obstacles on

the road with a camera mounted on a driving car, to service robotics [10],

to handwriting recognition, and so on. There exist two main approaches for

localization and classification of 3-D objects in 2-D gray level images: based

on results of a segmentation process [5], or directly on the object appearance

[3, 8]. The appearance-based methods compute feature vectors from pixel

intensities in images without previous segmentation process. Some of them use

only one global feature vector for the whole image (e.g. eigenspace approach

[2]), other describe objects with more local features (e.g. neural networks [7]).
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In the present work two-dimensional local feature vectors are computed

directly from pixel intensities (appearance-based approach) using the wavelet

multiresolution analysis [6] and modeled by density functions [4]. The main

advantage of the local feature vectors is that a local disturbance only affects

the feature vectors in a small region around it. In contrast to this a global

feature vector can totally change, if only one pixel in the image varies. We

introduce feature extraction on three different resolution levels in each image

and create three statistical object models for each object class in the training

phase. Our new algorithm for object localization and classification uses a

combination of the object models obtained for these different resolution levels,

which significantly improves the recognition rates.

In Sect. 2 the training of statistical object models with all its steps, es-

pecially the computation of feature vectors, is presented. Beginning with the

computation of the object density value, through the recognition algorithm for

one resolution, until the combination of object models for different resolutions

Sect. 3 describes the whole recognition phase. The experimental evaluation of

the new approach made on a large image data set can be found in Sect. 4.

Sect. 5 closes our contribution with conclusions.

2 Training of Statistical Object Models

In order to learn object models we preprocess training images (Sect. 2.1),

compute feature vectors in the preprocessed images (Sect. 2.2), define an ob-

ject area (Sect. 2.3), and model the feature vectors by density functions (Sect.

2.4). At the end of the training process we get three statistical models for

each object class, because the feature vector calculation is applied for three

different resolutions of the wavelet transformation.

2.1 Image Sample Set for Training

First we define a set of object classes Ω = {Ω1, . . . , Ωκ, . . . , Ωk} and take

training images of them on a dark background. The original training images

are preprocessed by converting them to gray level images sized 2n ×2n pixels,

where n ∈ {6, 7, 8, 9}. Then we set one image gκ,i for each object class Ωκ

as a reference image. With a pose of an object in the image gκ,j we denote

the 3-D transformation (translations and rotations) that maps the object in

the reference image gκ,i to the object in gκ,j . The 3-D transformation can be

described with translations t = (tx, ty, tz)
T

and rotations φ = (φx, φy, φz)
T
.

The x and y axes lie in the image plane, and the z axis is orthographic to the

image plane. With rotation around the x and y axes as well as with translation

along the z axis (scaling) change the size and appearance of the object in the

image. These are the so called external transformation parameters (text = tz

and φext = (φx, φy)
T
). The remaining transformation parameters are called

internal and do not change the object size and appearance. Until the end

of Sect. 2 the number of object class κ is omitted, because the training is

identical for all object classes.
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bkl is the low-pass coefficient. The other coefficients result

from combinations of low-pass and high-pass filtering (d0 = 0.25·[−(b11+b12)+(b21+
b22)], d1 = 0.25·[−(−b11 +b12)+(−b21+b22)], d2 = 0.25·[(−b11 +b12)+(−b21+b22)])

2.2 Computation of Feature Vectors

In all preprocessed training images feature vectors are computed using the

wavelet transformation [1]. For the calculation of these vectors a grid with the

size ∆r = 2s, where s is the index of the scale, is laid on an image (Fig. 1).

On each grid point xm a two-dimensional local feature vector cm = c(xm) is

calculated. For this purpose we perform s-times the wavelet multiresolution

analysis [6] using Haar wavelet. The components of the feature vector cm are

given by:

cm = c(xm) =

(
ln(2−s |bs,m|)
ln[2−s (|d0,s,m| + |d1,s,m| + |d2,s,m|)]

)
(1)

bs,m is the low-pass coefficient and d0...2,s,m result from combinations of low-

pass and high-pass filtering. An illustration for the computation of a feature

vector for s = 2 can be seen in Fig. 1 (indexes m and s are omitted). Our

algorithm works with three resolution levels of the wavelet transformation: L3

(s = 3), L2 (s = 2), L1 (s = 1). For each of these resolutions object models

are created. The following training steps are identical for all resolution levels.

2.3 Modeling of Object Area

For the object model we want to consider only those feature vectors that

belong to the object and not to the background. For each feature vector cm in

each external training pose (φext,t, text,t) (for each training image) a discrete

assignment function is defined [8]:

ξ̂m(φext,t, text,t) =

{
1 if cm,1(φext,t, text,t) ≥ St

0 if cm,1(φext,t, text,t) < St
(2)

St is chosen manually. In the test images objects appear not only in the

training poses, but also between them. In order to localize such objects

we construct a continuous assignment function ξm(φext, text) using values of
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ξ̂m(φext,t, text,t) by interpolation with trigonometric functions. The set of fea-

ture vectors belonging to the object for the given external pose (φext, text)

(called object area O(φext, text)) can be now determined with the following

rule:

ξm(φext, text) ≥ SO =⇒ cm(φext, text) ∈ O(φext, text) (3)

The threshold value SO is also chosen manually. In the case of internal trans-

formations the object area does not change the size and can be translated

and rotated with these transformations. So, we can write the object area as a

function of all transformation parameters: O(φ, t).

2.4 Density Functions of the Feature Vectors

All feature vectors computed in the training phase (1) are interpreted as

random variables. The object feature vectors are modeled with the normal

distribution [4]. For each object feature vector cm ∈ O we compute a mean

value vector µm and standard deviation vector σm. The density of the object

feature vector can be written as: p(cm) = p(cm|µm, σm, φ, t). The feature vec-

tors, which belong to the background are modeled with the equal distribution

p(cm) = pb.

3 Localization and Classification

After for each object class Ωκ three corresponding object models Mκ,s (s ∈
{1, 2, 3}) were created, we can localize and classify objects in test images. At

the beginning test images are preprocessed and feature vectors are computed

(1) with the same method as in the training phase (Sect. 2.1 and 2.2). Then

we start our recognition algorithm that uses only one of the trained object

models for each object class (Sect. 3.2). After that the results are refined by

using the combination of object models for different resolutions (Sect. 3.3). In

both cases object density values (Sect. 3.1) for many pose and class hypotheses

are needed.

3.1 Object Density Value

In order to compute the object density value for the class Ωκ in the pose (φ, t)

for a given test image we determine the set of feature vectors that belong to

the object C = {c1, c2, . . . , cM} (object area Oκ(φ, t), Sect. 2.3) and compute

their values. Then we compare the calculated object feature vectors with the

corresponding density functions stored in the object model Mκ,s and read

density values for these vectors (p(c1), p(c2), . . . , p(cM )). The object density

value for the object class Ωκ in the pose (φ, t) can be computed as:

p(C|Bκ,s, φ, t) =

M∏

i=0

max {p(ci), pb} (4)

Bκ,s comprehends the trained mean value vectors and standard deviation

vectors from Mκ,s and pb is the background density value (Sect. 2.4).
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3.2 Recognition Algorithm for One Resolution

The localization and classification algorithm for one resolution (one object

model) is realized with the maximum likelihood estimation [9] and can be

described with the following equation:

(κ̂, φ̂, t̂) = argmax
κ

{argmax
(φ,t)

G(p(C|Bκ,s, φ, t))} (5)

κ̂ is the classification result and (φ̂, t̂) is the localization result. First the object

density (normalized by G) is maximized according to the pose parameters

(φ, t) and then to the class κ. The norm function G is defined by:

G(p(C|Bκ,s, φ, t)) = M

√
p(C|Bκ,s, φ, t) (6)

M is the number of feature vectors belonging to the object area Oκ(φ, t). This

norm function decreases the dependency between the maximization result and

the object area size.

3.3 Combination of Object Models for Different Resolutions

Our recognition algorithm uses a combination of object models obtained for

different resolutions of the wavelet transformation. We start for the resolution

level L3 (s = 3), where the feature vectors are computed from local neigh-

borhoods of size 8 × 8 pixels. According to Sect. 3.2 we find a class and pose

of the object in the scene (κ̂3, φ̂3, t̂3) (5). Then the maximum likelihood esti-

mation is applied for all object classes for the resolution level L2 (s = 2) in

the small neighborhood of the localization result from L3 (φ̂3, t̂3)
1. A refined

recognition result (κ̂2, φ̂2, t̂2) is obtained. Analogical for the resolution level

L1 (s = 1) we maximize the object density (normalized by the function G

(6)) only in the small neighborhood of (φ̂2, t̂2) and get the finally recognition

result (κ̂1, φ̂1, t̂1).

4 Experiments and Results

We verified our approach on a 3D-REAL-ENV image data base (Sect. 4.1).

Using the combination of object models for different resolutions (Sect. 3.3)

the execution time increases (Sect. 4.2), but we obtain better localization and

classification rates (Sect. 4.3).

4.1 Image Data Base

3D-REAL-ENV (Image Data Base for 3-D Object Recognition in Real World

Environment) consists of 10 objects depicted in Fig. 2. We made the experi-

1The small neighborhood of ( �
�

s, �
�
s) is defined for rotations with ±5(s − 1)[◦],

and for translations with ±2s−1 pixels.
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Fig. 2. 10 object classes used for experiments. In the first row examples of test
images with “more heterogeneous” background can be seen. From left: bank cup,
toy fire engine, green puncher, siemens cup, nizoral bottle. The second row con-
tains examples of test images with “less heterogeneous” background. From left: toy
passenger car, ricola container, stapler, toy truck, white puncher.

ments using gray level images of size 256×256 pixels. The pose of an object is

defined with external rotations and internal translations (φx, φy, tx, ty)
T
. For

the training we took 3360 images of each object with two different illumina-

tions. The objects were put on a turntable (0◦ ≤ φtable ≤ 360◦) and a robot

arm with a camera was moved from horizontal to vertical (0◦ ≤ φarm ≤ 90◦).

The angle between two adjacent training viewpoints amounts to 4.5◦. For

the tests 2880 images with homogeneous, 2880 images with “less heteroge-

neous”, and 2880 with “more heterogeneous” background were taken. In the

test images with “less heterogeneous” background the objects are easier to

distinguish from the background than in the test images with “more het-

erogeneous” background. The object poses and the illumination in the test

images were different from the training viewpoints and illuminations.

4.2 Execution Time

In Table 1 we compare the execution time in the recognition phase for different

resolution levels and their combinations. The finest resolution level L1 is very

time consuming and can be used only in combination with L2 and L3.

Table 1. Execution time of the localization and classification algorithm for L3, L2,
L1, and combinations L3–L2, L3–L2–L1.

Pentium 4

2.66 GHz � 3 � 2 � 1 � 3– � 2 � 3– � 2– � 1

512 MB RAM

Recognition

in 1 Test 3.6s 124.7s 73.7m 24.0s 96.5s
Image
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Fig. 3. Localization and classification rates depending on the distance of the training
views for test images with homogeneous (first row), “less heterogeneous” (second
row), and “more heterogeneous” background (third row). (— combination of L3–
L2–L1; · · · combination of L3–L2; +++ resolution level L3).

4.3 Localization and Classification Rates

We count a localization result as correct, if the error for the external rotations

(φx, φy) is not bigger than 15◦ and the error for the internal translations is

not bigger than 10 pixels. Fig. 3 presents the recognition rates depending

on the distance of the training views for test images with homogeneous, “less

heterogeneous”, and “more heterogeneous” background. The advantage of the

combination of the resolution levels is visible especially for classification. Table

2 contains the recognition rates for 4.5◦ distance of training views.

Table 2. Recognition rates for 4.5◦ distance of training views.

Distance Localization Classification

of Training Hom. Less Het. More Het. Hom. Less Het. More Het.

Views 4.5◦ Back. Back. Back. Back. Back. Back.

� 3 99.1% 80.9% 69.0% 100% 92.2% 54.1%

� 3– � 2 99.1% 84.9% 74.4% 100% 95.0% 77.2%

� 3– � 2– � 1 99.1% 87.0% 76.5% 100% 97.1% 86.5%
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5 Conclusions

In this article a powerful statistical, appearance-based approach for 3-D ob-

ject localization and classification in images with heterogeneous background is

presented. After computation of local feature vectors for three different reso-

lutions of the wavelet transformation we define an assignment function, which

assigns the features to the object or to the background, and statistically model

them by density functions. Our new algorithm for localization and classifica-

tion of objects uses a combination of the statistical models obtained for the

three resolutions. In the experiments we showed that the new algorithm brings

an improvement of the recognition rates, especially for the classification, in

relatively short execution time. In the future we will introduce color modeling

to our system, because the color information of objects is presently lost in the

image preprocessing step.
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