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Abstract. In this paper an appearance-based statistical approach for lo-
calization and classification of 3-D objects in 2-D color images with real
heterogeneous backgrounds is presented. The object feature extraction
is done separately for the red, green, and blue channel. We compute six
dimensional local feature vectors directly from pixel values in the images
using wavelet multiresolution analysis. The first and second component
of the feature vectors depend on the pixel values in the red channel, the
third and fourth in the green channel, and fifth and sixth in the blue
channel. Then we define an object area as a function of 3-D transforma-
tions and represent the feature vectors as probability density functions.
In the recognition phase we use an algorithm based on maximum like-
lihood estimation for object localization and classification. Experiments
made on a real data set with 39600 images compare the recognition rates
for the new algorithm, which uses the color information of objects, with
the results in the case of gray level images.

1 Introduction

For many tasks the localization and classification of objects in images is very use-

ful, sometimes even necessary. Algorithms for automatic computational object

recognition can be applied for example: to face classification [11], to localization

of obstacles on the road with a camera mounted on a driving car, to service

robotics [13], to handwriting recognition, and so on. There exist two main ap-

proaches for 3-D object recognition: based on results of a segmentation process

[5], or directly on the object appearance [4]. The comparison of them can be

found in [7]. The appearance-based methods compute feature vectors from pixel

values in images without a previous segmentation process [8]. Some of them use

only one global feature vector for the whole image (e.g. eigenspace approach

[3]), others describe objects with more local features (e.g. neural networks [9]).

Many recognition systems do not make use of the color information of objects.

For some applications objects are distinguishable very well in the gray level

space, for others the recognition algorithm with color modeling takes too much
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time compared to the improvement of the localization and classification rates.

However, one can imagine situations, where two or more objects having totally

different colors seem to look identical in gray level images. Their classification is

very difficult, and it makes sense to use the color information of objects in this

case. For some objects, which have different colors for different views, also the

localization is easier in the color space.

In the present work we introduce the color modeling of objects, but in con-

trast to most approaches (e.g. [1]) we do not use histograms. Six dimensional

local feature vectors are computed directly from pixel values (appearance-based

approach) using wavelet multiresolution analysis [6] and modeled by density

functions [10]. The first and second component of the feature vectors depend on

the pixel values in the red channel, the third and fourth in the green channel, and

fifth and sixth result from pixel values in the blue channel. The main advantage

of the local feature vectors is that a local disturbance only affects the feature

vectors in a small region around it. In contrast to this a global feature vector

can change totally, if only one pixel in the image varies.

In Sect. 2 the training of statistical object models is presented. Beginning

with the computation of the object density value, up to the algorithm for object

localization and classification Sect. 3 describes the whole recognition phase. In

Sect. 4 the recognition rates for the new algorithm with color modeling are

compared with the results in the case of gray level images. Sect. 5 closes our

contribution with conclusions.

2 Statistical Object Model

In order to learn a statistical object model Mκ for an object class Ωκ we take

training images of the object Ωκ in known poses, compute feature vectors in

these images (Sect. 2.1), define an object area (Sect. 2.2), and model the feature

vectors by density functions (Sect. 2.3).

First we define a set of objects Ω = {Ω1, . . . , Ωκ, . . . , Ωk} and take training

images of them on a dark background in known poses. The original training im-

ages are preprocessed by resizing them to RGB images sized 2n×2n pixels, where

n ∈ {6, 7, 8, 9}. One image fκ,i for each object class Ωκ is used as a reference

image. By pose of an object in the image fκ,j we denote the 3-D transformation

(translation and rotation) that maps the object in the reference image fκ,i to

the object in fκ,j . The 3-D transformation can be described by a translation

t = (tx, ty, tz)
T

and a rotation φ = (φx, φy , φz)
T
. The x- and y-axes of the world

coordinate system lie in the image plane, and the z axis is orthographic to the

image plane (Fig. 2). A rotation about the x- and y-axes as well as a translation

along the z-axis (scaling) changes the size and appearance of the object in the

image. These are the so called external transformation parameters (text = tz and

φext = (φx, φy)
T
). The remaining transformation parameters are called internal

and do not change the object size and appearance. Up to the end of Sect. 2 the

number of the object class κ is omitted, because the training of the statistical

object model is identical for all object classes.
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Fig. 1. Computation of a feature vector on a grid point � m for the scale s = 2. r
,

ij are
calculated by horizontal and vertical low pass filtering of rij and resolution reduction
by factor 0.5. The final coefficients result from r

,

ij as follows: br - low pass horizontal
and low pass vertical, dr,0 - low pass horizontal and high pass vertical, dr,1 - high pass
horizontal and high pass vertical, dr,2 - high pass horizontal and low pass vertical.

2.1 Feature Vectors

For the feature extraction we divide each preprocessed image f into squares of

size 2s×2s (s ≤ n) pixels, and set in their centers grid points xm. On all of these

2n−s × 2n−s grid points six dimensional local feature vectors with the wavelet

multiresolution analysis [6] are computed:

cm = c(xm) = (cm,r,1, cm,r,2, cm,g,1, cm,g,2, cm,b,1, cm,b,2)
T

. (1)

The choice of the wavelet transformation follows from the experimental results.

The components cm,r,1 and cm,r,2 depend on the pixel values in the red channel,

cm,g,1 and cm,g,2 in the green channel, and cm,b,1 and cm,b,2 in the blue channel.

We explain their computation in detail only for the red channel (cm,r,1, cm,r,2)
T
,

because for the other channels as well as for gray level images it is done in

the same way. We perform s-times the wavelet multiresolution analysis for the

red channel values in the local neighborhood of xm (neighborhood size: 2s × 2s

pixels) using Johnston 8-TAB wavelets [2]. The component cm,r,1 of the feature

vector cm is given by:

cm,r,1 = ln |br,s,m| , (2)

and cm,r,2 can be calculated with the equation:

cm,r,2 = ln(|dr,0,s,m| + |dr,1,s,m| + |dr,2,s,m|) . (3)

br,s,m is the low pass coefficient and dr,0...2,s,m result from combinations of low

pass and high pass filtering. An illustration of the feature vector computation

for s = 2 can be seen in Fig. 1 (indices m and s are omitted). In Sect. 4.2 we

compare the results for color and gray level images. In the case of gray level

images two dimensional feature vectors cm = (cm,1, cm,2)
T

computed according

to (2) and (3) are used [10].



2.2 Object Area

For the object model we consider only those feature vectors that belong to the

object and not to the background. For each feature vector cm in each exter-

nal training pose (φext,t, text,t) (for each training image) a discrete assignment

function is defined:

ξ̂m(φext,t, text,t) =

{
1, if cm,{r∨g∨b},1(φext,t, text,t) ≥ St

0, otherwise
. (4)

St is chosen manually. If for all color channels the first feature vector coefficient

(cm,r,1, cm,g,1, cm,b,1) computed according to (2) is less than St, cm does not

belong to the object. In the test images objects appear not only in the training

poses, but also between them. In order to localize such objects we construct a

continuous assignment function ξm(φext, text) using values of ξ̂m(φext,t, text,t)

by interpolation with trigonometric functions. The set of feature vectors be-

longing to the object for the given external pose (φext, text) (called object area

O(φext, text)) can now be determined with the following rule:

ξm(φext, text) ≥ SO =⇒ cm(φext, text) ∈ O(φext, text) . (5)

The threshold SO is also chosen manually. In the case of internal transformations

the object area does not change the size and can be translated and rotated with

these transformations. So, we can write the object area as a function of all

transformation parameters: O(φ, t).

2.3 Density Functions of the Feature Vectors

All feature vectors computed in the training phase according to (1), (2), and

(3) are interpreted as random variables. The object feature vectors are modeled

with the normal distribution [10]. For each object feature vector we compute a

mean value vector µm and standard deviation vector σm. The density of the

object feature vector can be written as:

p(cm) = p(cm|µm, σm, φ, t) =
∏

i∈{r,g,b}

2∏

j=0

p(cm,i,j |µm,i,j , σm,i,j , φ, t) . (6)

The feature vectors, which belong to the background are modeled by an uniform

distribution, and their density functions are constant p(cm) = pb.

3 Localization and Classification

After a corresponding object model Mκ was created for each object class Ωκ,

we can localize and classify objects in test images. At the beginning each test

image is preprocessed and feature vectors are computed according to (1), (2),

and (3) with the same method as in the training phase (Sect. 2.1). Then we start

our localization and classification algorithm based on the maximum likelihood

estimation (Sect. 3.2), which maximizes the object density value (Sect. 3.1).



3.1 Object Density Value

In order to compute the object density value for the class Ωκ in pose (φ, t) for

the given test image f we determine the set of feature vectors that belong to the

object C = {c1, c2, . . . , cM} (object area Oκ(φ, t), Sect. 2.2) according to (5)

and compute their values using equations (1), (2), and (3). Then we compare the

calculated object feature vectors with the corresponding density functions (6)

stored in the object model Mκ and determine density values for these vectors

(p(c1), p(c2), . . . , p(cM )). The density value of object Ωκ in pose (φ, t) for the

given test image f is given by:

p(C|Bκ, φ, t) =

M∏

i=0

max {p(ci), pb} . (7)

Bκ comprehends the trained mean value vectors and standard deviation vectors

from Mκ and pb is the background density value (Sect. 2.3).

3.2 Recognition Algorithm

The localization and classification algorithm is realized with maximum likelihood

estimation [12] and can be described with the following equation:

(κ̂, φ̂, t̂) = argmax
κ

{argmax
(φ,t)

G(p(C|Bκ, φ, t))} . (8)

κ̂ is the classification result and (φ̂, t̂) is the localization result. First the object

density (normalized by G) is maximized according to the pose parameters (φ, t)

and then to the class κ. The norm function G is defined by:

G(p(C|Bκ, φ, t)) = M

√
p(C|Bκ, φ, t) . (9)

M is the number of feature vectors belonging to the object area Oκ(φ, t) (Sect.

3.1). This norm function reduces the dependency between the maximization

result and the object area size.

4 Experiments and Results

We verified our approach on a 3D-REAL-ENV image data base (Sect. 4.1). The

color modeling of objects brings the most profit in very heterogeneous environ-

ments compared to the algorithm for gray level images (Sect. 4.2).

4.1 Image Data Base

3D-REAL-ENV (Image Data Base for 3-D Object Recognition in Real World

Environment) consists of 10 objects depicted in Fig. 2. The experiments were

done using images of size 256 × 256 pixels. The pose of an object is defined
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Fig. 2. 10 object classes used for experiments. In the first row examples of test images
with “more heterogeneous” backgrounds; from left: bank cup, toy fire engine, green
puncher, siemens cup, nizoral bottle. In the second row examples of test images with
“less heterogeneous” backgrounds; from left: toy passenger car, candy box, stapler, toy
truck, white puncher. In the right upper corner the coordinate system for the object
pose definition is shown.

with external rotations and internal translations (φx, φy, tx, ty)
T

(Fig. 2). For

the training we took 3360 images of each object with two different illuminations.

The objects were put on a turntable (0◦ ≤ φtable < 360◦) and a robot arm with

a camera was moved from horizontal to vertical (0◦ ≤ φarm ≤ 90◦). The angle

between two adjacent training viewpoints amounts to 4.5◦. For the tests 2000

images with homogeneous, 2000 images with “less heterogeneous”, and 2000

with “more heterogeneous” backgrounds were taken. In the test images with

“less heterogeneous” backgrounds the objects are easier to distinguish from the

background than in the scenes with “more heterogeneous” backgrounds. The

object poses and the illumination in the recognition phase are different from the

training viewpoints and illuminations. For the test images with heterogeneous

backgrounds we used more than 200 different backgrounds.

4.2 Localization and Classification Rates

We count a localization result as correct, if the error for the external rota-

tions (φx, φy)
T

is not larger than 15◦ and the error for the internal translations

(tx, ty)
T

is not larger than 10 pixels. The feature extraction for the experiments

was made for the scale s = 3 of the wavelet multiresolution analysis (Sect. 2.1).

Fig. 3 presents the recognition rates depending on the distance of the train-

ing views for test images with homogeneous, “less heterogeneous”, and “more

heterogeneous” backgrounds. Table 1 contains the recognition rates for 4.5◦ dis-

tance of training views. The color modeling brings the most improvement of the

localization and classification rates for test images with “more heterogeneous”

backgrounds. For scenes with homogeneous backgrounds the algorithm for gray

level images works very well, and it is not necessary to use the color informa-

tion of objects. Object localization and classification takes 3.6s in one gray level

image, and 7s in one color image on Pentium 4, 2.66 MHz, 512 MB RAM.
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Fig. 3. Localization and classification rates depending on the distance of the train-
ing views for 2000 test images with homogeneous (first row), 2000 test images with
“less heterogeneous” (second row), and 2000 test images with “more heterogeneous”
backgrounds (third row). (— color images; · · · gray level images).

5 Conclusions

In this article a powerful statistical appearance-based approach for 3-D object

recognition in 2-D images with real heterogeneous backgrounds is presented.

After feature extraction, which is done separately for the red, green, and blue

channel, we define an assignment function, which assigns the features to the ob-

ject or to the background, and statistically model them by density functions. In

the recognition phase we use an algorithm based on the maximum likelihood es-

timation for localization and classification of objects. Results show that the color

modeling brings a great improvement of the recognition rates in heterogeneous

environments. On the other side we proved that for scenes with homogeneous

backgrounds the use of gray level images is sufficient.

In the future we will try to obtain better recognition rates by transformation

of the RGB images into other color spaces. We will also consider the case of

multi-object scenes with context dependencies.



Table 1. Recognition rates for 4.5◦ distance of training views for 2000 test images with
homogeneous, 2000 with “less heterogeneous”, and 2000 with “more heterogeneous”
backgrounds.

Distance Localization Classification

of Training Hom. Less Het. More Het. Hom. Less Het. More Het.

Views 4.5◦ Back. Back. Back. Back. Back. Back.

Color Images 98.5% 82.2% 77.1% 100% 93.0% 87.3%

Gray Level Images 99.1% 80.9% 69.0% 100% 92.2% 54.1%
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