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Abstract

The paper investigates automatic rating of non-native children’s
pronunciation. We have designed a set of 28 pronunciation-
features; when classification is performed in high-dimensional
feature space best recognition-results can be achieved. Dif-
ferent measures to evaluate inter-rater agreement and the ma-
chine score are proposed. In the European project Pf-Star data
of native and non-native children has been recorded; the Ger-
man children reading English texts have been graded by 13–14
raters. When classifying 5 sentence-level marks the result can
be interpreted as 73 % correct. Looking at a longer context,
recognition becomes more robust. On the speaker level error
and correlation is comparable with some of the human raters.

1. Introduction
The development of useful educational software for computer
assisted language learning (CALL) requires robust scoring al-
gorithms that rate the student’s skills in a similar manner as
a human teacher would do. In this paper we focus on an ap-
plication that supports second-language learning for children.
The first challenge is to automatically recognize children’s
speech; this has been investigated in the European project Pf-
Star (http://pfstar.itc.it/). Caused by higher spectral variability
or higher variability in speaking rate, vocal effort, and degree of
spontaneity, it is more difficult to recognize young speakers than
adults [1, 2]. Another challenge is the recognition and finally
the rating of non-native speech which we will focus on in the
following. All Pf-Star partners recorded non-native children;
for comparison, our partners in Birmingham collected similar
native data. The pronunciation of the German children reading
English sentences has been marked by several teachers of En-
glish. In this paper we will compare the teachers’ ratings and
measure the reliability. For other databases human ratings have
been compared e.g. in [3] or [4].

Research on automatic scoring of non-natives’ pronuncia-
tion has been carried out on the phone-level e.g. in [5]. The
GOP-measurement (Goodness of Pronunciation) calculates the
posterior probabilities of the desired phone; for this purpose
forced alignment scores and the output of a phone-recognizer
are compared. Phone-level scoring is necessary to localize the
pronunciation error. However, the system will not be accepted
by the user if too many false alarms occur and the user gets
frustrated. Since particularly the pronunciation of beginners is
rather poor, an additional measurement is required to reliably
judge the candidate’s English on a higher level (sentence- or
text-level) based on a longer observation. Neumeyer et al. [3]
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automatically score non-natives on sentence and speaker-level.
The inter-rater open-correlation is 0.78 (sentence) and 0.87
(speaker). Correlations are calculated with machine scores ob-
tained from different features: HMM log-likelihood scores,
posterior probabilities of the desired phone for each phone-
segment, word or phone recognition rate, duration, and syllabic
timing. Different combination techniques of sentence based
scores are investigated in [6]: with neural networks a correla-
tion of 0.64 is achieved. Different aspects of human ratings are
compared with several machine scores for sentences in [4].

In the following different pronunciation-features are com-
bined and extended to an 28-dimensional feature vector. Ma-
chine scores are computed with the LDA-classifier. After a de-
scription of the data we will propose measures for the agreement
among teachers and between the human and automatic ratings.
Then the teacher’s agreement will be analyzed. In the last part
the automatic scoring of utterances, texts and speakers is de-
scribed and discussed.

2. Corpora
The PF-STAR NON-NATIVE-database contains recordings of
German children reading English texts: 57 children (26m, 31f),
age 10 – 15, from two different schools (OHM and MONT1).
Altogether the database comprises 3.4 hours of speech (4627
utterances). Most children had been learning English for half a
year only. They were reading known texts from their text book
and some phrases and single words, which have been recorded
by all partners in the Pf-Star project. The recordings include
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Figure 1: The mean marks over all teachers and marks of teach-
ers T2 and T5. How can we measure the agreement?

reading errors, repetitions of words, word fragments, and non-
verbals. The total size of the vocabulary is 940 words. The
PF-STAR NATIVE-corpus (14.2 hours, 1740 words) contains
British children recorded by the University of Birmingham [7]:
159 children, age 4 – 14. In the following the NATIVE data is
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text-level speaker-level
min mean max min mean max

C 0.62 0.78 0.89 0.63 0.80 0.94
E 13.8 20.1 31.5 9.4 17.4 32.3
Enorm 13.5 17.1 21.9 9.3 13.8 21.4
CL3 39.9 72.4 89.7 52.8 77.8 93.8
CL5 31.5 51.4 67.9 27.8 45.4 70.4

Table 1: Agreement of human ratings: Open-correlation C;
open-error E and Enorm (same mean for all raters) in %. In
the discrete case for 3 and 5 classes: CL3 and CL5 in %

used for the training of the HMMs of the recognizer and for
some comparison in feature space.

The NON-NATIVE data has been graded with 1 (best) to 5
(worst pronunciation). A German student of English (graduate
level) has rated all the data on the utterance-level (rater S). Most
of the sentences are rated with 2 (50 %, 1: 16 % , 3: 20 % , 4:
8 % , 5: 5 %). Recordings from the OHM school (32 pupils)
have been annotated additionally by 12 teachers (raters T1 –
T12) on the text-level and by a native teacher (rater N). T1 –
T7 have many years of teaching experience, the other raters less
than two years. 4 of the experienced teachers were asked to rate
the data half a year later again. For the speaker-level, ratings are
obtained by averaging the text-ratings. An additional speaker
rating is performed by rater S. Each speaker read 3.8 texts in the
average, each text contains around 11 utterances.

3. Comparison of ratings
The correlation Cor(xi, xj) is the measurement most fre-
quently used when ratings are compared in a metric space M.
x

k ∈ MN are vectors, where the N components are the labels
of rater k. In our case the domain is M = [1, 5] which in-
cludes the discrete marks 1 − 5. Also intermediate marks (e.g.
1.3, 1.5, 1.7 and so on) were allowed and used by some teach-
ers very frequently but by others very rarely. For K raters the
open-corelation of rater k is defined as

C(xk) = Cor(xk
,

1
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X
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In this paper we compare the open-correlation of human raters
with the correlation between the machine score and the average
rater. Fig. 1 shows the ratings of T2 (C(xT2) = 0.86) and T5
(C(xT5) = 0.79). Both ratings are highly correlated, however,
T5 gives systematically higher marks, which cannot be mea-
sured with the correlation. Thus we introduce the error of rater
i (vector components xk
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where the denominator calculates the maximal possible error by
comparing the reference rater j with the minimal (mmin = 1)
and maximal (mmax = 5) mark m ∈ M. The error-measure is
introduced in [8] but normalized with mmax−mmin. The open-
error E(xk) is calculated analogous to Eq.1. The ratings in
Fig. 1 are assessed with E(xT2) = 12 % and E(xT5) = 24 %.

A measurement for discrete automatic scoring is the recog-
nition rate RR. In the following an items (sentence, text) is
considered as correctly recognized or classified, if the decoder
(machine or human) agrees with the reference (human). To
guarantee robust recognition for all classes on unbalanced data,

the class-wise averaged recognition rate CL is used, which is
the unweighted average recall. RR5 and CL5 give classifica-
tion rates for the 5-class problem. The coarser 3-class prob-
lem (RR3, CL3) only discriminates the classes good pronunci-
ation (marks 1, 2), bad pronunciation (marks 3, 4), and mispro-
nounced (mark 5). For the human ratings we calculate analo-
gous to Eq.1 the open-CL: one rater is the decoder whereas the
mean of all other raters is the reference.

Other measures for the agreement of ratings are e.g. the
weighted κ [9]. Here, only κ = 0.38 is achieved since many
raters do not use the whole range of M. 0.1 < κ ≤ 0.4 in-
dicates weak agreement. For non-metric ratings we proposed a
measure in [10].

4. Human ratings

For the 12 teachers and the native rater we calculated C, E ,
Enorm, CL3, and CL5 (K = 13 in Eq.1). Values for these mea-
sures (maximum, minimum and mean over all raters) are given
in Tab. 1; the mean open-correlation of all text-level ratings is
0.78. The mean open-error is 20 %, after normalization in a
way, that the mean of each teacher’s ratings equals 3 (Enorm),
the error decreases to 17 %. For the discrete classification with 3
classes in the average 72 % CL3 is achieved and 51 % CL5. As
4 teachers judged the data 2 times, we expect the maximal pos-
sible agreement if we calculate correlation and error for these
pairs. The intra-speaker correlation is between 0.75 and 0.83
(mean: 0.81), the error E is between 15 % and 17 % (mean:
16 %). In the average, better values are obtained for the intra-
speaker correlation and error than for the mean open-correlation
and -error (Tab. 1).

On the speaker-level we have K = 14 raters (additionally
rater S). As can be seen in Tab. 1, the mean open-correlation is
0.80, the lowest correlation is observed for teacher T9 (C =
0.63) and rater S (C = 0.64), the highest error for S (Enorm =
21 %) and for the native teacher (Enorm = 17 %, C = 0.75).
To be native does not mean better agreement with the average
teachers: in our case the native teacher has less teaching expe-
rience and less practice in grading German children.

5. Automatic scoring

For the extraction of pronunciation features word- and phone-
recognizers are required. We used the HTK toolkit to estimate
monophone HMMs and language models (LMs) with the PF-
STAR NATIVE data. In order to test with non-natives, LMs are
estimated on the NON-NATIVE corpus. LMs are build from the
original texts, since they can be assumed to be known in our sce-
nario; the perplexity of both unigram LMs is around 150. The
recognizers are based on 12 Mel-cepstrum features, the energy,
and 13 first and 13 second order derivatives. With a unigram
LM 19.6 % word accuracy (WA) are achieved for the NATIVE

test data and 18.2 % WA for NON-NATIVE (bigram: 42.8 vs.
38.1 % WA, perplexity 34 vs. 17). The low recognition rates
show the difficulties caused by the wide age-range of the native
children and the dissimilar pronunciation by German children
with only little practice in English.

The recognized phone sequences together with the likeli-
hood scores as well as the forced alignment of the data together
with scores are the basis for the pronunciation feature extrac-
tion. In addition, a phone bigram model and a duration look-
up-table (D-LUT) with native phone-duration statistics are es-



C E CL3 CL5
Rate-Of-Speech 0.35 41.2 41.2 28.6
Pauses 0.31 41.8 41.4 29.1
DurationLUT 0.13 42.1 40.0 23.7
DurationScore 0.35 40.6 44.9 28.5
Likelihood 0.30 41.8 41.1 26.4
LikeliRatio 0.21 41.8 44.0 27.0
PhoneSeq 0.34 41.5 42.4 28.6
Accuracy 0.20 41.7 47.8 29.1

Table 2: Pronunciation features (E, CL3 and CL5 in %).

timated on the TIMIT2 database. A set of 28 features has been
designed for utterance-level scoring. It is an extension of the
features proposed in [3]. For details, please refer to [11]. Fea-
tures within one of the following eight groups (number given in
brackets) differ basically in the way of normalization:
Rate-Of-Speech (ROS) (5): # of phones or words per sentence,
both reciprocals and the proportion of phonation time.
Pauses (2): Duration of between-word pauses, number of
pauses longer than 0.2 sec.
DurationLUT (2): The actual duration of phones is compared
with the expected duration from the D-LUT. As features we take
the mean duration deviation and the scatter.
DurationScore (2): P (t|p,o) is the probability of the observed
duration t (normalized with the ROS) given the desired phone
p and the acoustic observation o. The duration distribution is
estimated on native data (TIMIT). We sum up P (t|p,o) over all
phones of an utterance and normalize e.g with the # of phones.
Likelihood (9): This features are based on the log-likelihood
log P (o|λq) of the acoustic observation o given the HMM λ of
the recognized phone q. For some components the likelihoods
are normalized by the phone-duration or the expected duration
from the D-LUT. After that, the log-likelihoods are summed up
over all frames and normalized e.g. with the ROS
LikeliRatio (3): log P (o|λp) − log P (o|λq) is the ratio be-
tween the likelihood obtained by the forced alignment and the
one obtained by phone recognition. We normalize with the
number of phones, the ROS or the expected duration.
PhoneSeq (3): The probability of the recognized phone se-
quence given a phone bigram LM. Again we normalize with
the # of phones or the ROS or take the not normalized values.

Additionally word- and phone-Accuracy are used as fea-
tures. Tab. 2 summarizes the feature groups and shows the opti-
mal values for C, E, CL3, and CL5 per feature-group . Details
of the experimental setup are given in the next section.

6. Experimental results
The experimental setup is the following: first pronunciation fea-
tures are calculated for the NON-NATIVE database. We uti-
lize forced alignment and recognition results based on HMMs
trained on native data. Decorrelation and feature reduction
of the 28-dimensional feature vectors is performed with prin-
cipal component analysis (PCA). With the resulting features
LDA classifiers are trained using the leave-one-speaker-out
(loo) technique. The output of all test iterations is accumulated
and afterwards evaluated. Dependent on the training (whether
we train 5 classes for marks 1–5 or 3 classes for marks 1, 3, 5;
mapping as described in Sec.3) we get for each test-utterance 5
or 3 posterior probabilities: P (i|u) is the probability of mark i

given the utterance-level features u.

2http://www.ldc.upenn.edu/ catalog number LDC93S1

features PCA C E CL3 CL5
all 28 → 28 0.33 29.2 49.0 33.3
all 28 → 14 0.32 29.8 50.2 33.4
3 (best C) 3 → 3 0.24 32.3 41.3 27.8
3 (best CL3) 3 → 3 0.21 30.6 48.6 30.3

Table 3: Automatic classification after feature reduction/ decor-
relation with PCA (E, CL3, CL5 in %)

Discrete classification results are obtained if we decide for
the mark with maximum P (i|u). These results are evaluated
with CL3 and CL5. In order to measure C and E we use a
continuous classification score: the expectation

P

i
iP (i|u) is

calculated over all marks i ∈ {1, 2, 3, 4, 5} of the 5-class prob-
lem. On the utterance-level we use the ratings of S for train-
ing and testing; for final evaluation on the text- and speaker-
level the classification result is compared with the average of
the teacher’s ratings.

Utterance-level scoring. Tab. 3 shows the recognition
results for the utterance-level. After reduction of the 28-
dimensional feature-vectors to 14 principal-components a more
robust training is possible and better recognition rates are
achieved. For the discrete 5-class-task up to 33.4 % CL5
(28.7 % RR53) are obtained, for the 3-class-task 50.2 % CL3
(52.6 % RR34). Rates for the 5-class-task are lower, which is
caused by a clear overlap of neighboring classes. If a confusion
of neighboring marks is tolerated, the result can be interpreted
as 72.9 % RR. This phenomenon is also measured by the er-
ror E, that is only around 30 % whereas 1 − CL5 would be
more than 66 %. The correlation is C = 0.33 in the best case.
In comparison with Tab. 2 correlation decreases but recognition
rates are higher. If we combine the best 3 features in terms of
correlation from Tab. 2 we get low recognition rates; if we com-
bine the best 3 features in terms of CL3, acceptable recognition
rates are achieved. However, with higher-dimensional feature-
vectors correlation and recognition rates can be increased.

Next we will look at the distribution in feature space. Fig. 2
(left) shows the distribution of some of the optimal features in
Tab. 2 (LikeliRatio and DurationScore): three classes for the
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Figure 2: Pronunciation feature space: clusters for marks 1 – 3
of non-natives (l.) and clusters for age-groups of natives (r.).

marks 1, 3, and 5. Unfortunately, the classes clearly overlap.
This may be caused by both, not enough discriminant features
nor precise ratings by only one labeler. However, as can be seen
in Fig. 2 (right), the cluster for mark 1 is covered by the class
of native children in the age of 8–10, which complies with the
assumption that natives would be marked with 1. The different
pronunciation of good non-native speakers and natives is com-

3Recalls: 1: 55.2 %, 2: 19.5 %, 3: 29.2 %, 4: 24.9 %, 5: 38.4 %
4Recalls: 1: 59.2 %, 3: 37.3 %, 5: 54.0 %
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Figure 3: Text (a) and speaker (b) rating: Mean marks of all
teachers, marks of teacher T1, automatic scoring.

pletely eliminated with our feature set. However, even for na-
tives poor pronunciation can be observed for young children. In
the 5-class task natives with age 8–10 are classified with mark 1
(53 %), 2 (17 %) and 3 (18 %) whereas 6–7 year old natives are
classified with 1 (49 %), 2 (11 %) and 5 (30 %).

Text-/speaker-level scoring. More precise machine scores
are achieved, if we use more information than only one utter-
ance. In the following we calculate a continuous machine score
as described above, but from the 3-class task. Then we build
the average score over all utterances of a text or a speaker. As
for the text based scoring the correlation with the average rater
is C = 0.53. The confidence interval on a 95 % significance
level is [0.38; 0.65]. For the error we obtain E = 25 %. The
text based machine-rating, the average of the teachers’ marks,
and T1 (C = 0.83, E = 15 %) are compared in Fig. 3a. The
recognition rate is 59 % CL3 (32 % CL5).

For the speaker based rating the correlation is even 0.61
(E = 16 %) which is close to rater T9 (C = 0.63, E = 16 %).
In Fig. 3b the automatic score is compared with the average
teacher and teacher T1 (C = 0.89, E = 9 %).

7. Summary
In this paper we presented a high dimensional feature set for
the classification of non-natives’ pronunciation. The combina-
tion of many features based on different normalization tech-
niques increases recognition rates. All experiments are con-
ducted with the PF-STAR NON-NATIVE-corpus with ratings by
several teachers. We discussed 4 different measures for the
agreement: the correlation, the error that takes into account the
distances between marks, and the class-wise averaged recogni-
tion rate for the discrete 3 and the 5-class task, that unfortu-
nately punishes confusion of neighboring classes in the same
way as confusion of far distant classes. Both kinds of mea-
sures should be optimal: the correlation and one of the pro-
posed recognition-rates. Sentences have been assessed only by
rater S, thus no robust reference was available. 3 classes are
recognized with 50 % CL3, for 5 classes, only every third utter-
ance is correctly classified. However, since especially neighbor-

ing classes overlap, less than one third of the maximal possible
deviation from the reference mark occurs (error 30 %); the cor-
relation is 0.33. Between teachers the correlation is 0.8 on text
and speaker-level. With machine scores we achieve 0.5 on the
text-level and 0.6 on the speaker-level. This automatic result
is in the same rage as rater S or T9. The error drops on the
speaker-level to 16 % while human raters make 14 % errors in
comparison with the average teacher. When testing natives with
our classifier 70 % could be classified as good speakers (mark 1
and 2), in particular the 8–10 year old children.

8. Acknowledgments
A part of this work was funded by the European Commis-
sion (IST programme) in the framework of PF-STAR (Grant
IST-2001-37599) and by the German Federal Ministry of Ed-
ucation and Research (BMBF) in the frame of SmartWeb
(Grant 01 IMD 01 F). The responsibility for the content lies with
the authors.

9. References
[1] A. Potamianos and S. Narayanan, “Robust Recognition

of Children’s Speech,” IEEE Transactions on Speech and
Audio Processing, vol. 11, no. 6, pp. 603– 616, 2003.

[2] G. Stemmer, “Modeling Variability in Speech Recogni-
tion,” Ph.D. dissertation, Universität Erlangen-Nürnberg,
Lehrstuhl für Mustererkennung, Germany, 2005.

[3] L. Neumeyer, H. Franco, V. Digalakis, and M. Weintraub,
“Automatic Scoring of Pronunciation Quality,” Speech
Communication, vol. 30, pp. 83–93, 2000.

[4] C. Cucchiarini, H. Strik, and L. Boves, “Different Aspects
of Expert Pronunciation Quality Ratings and Their Re-
lation to Scores Produced by Speech Recognition Algo-
rithms,” Speech Comm., vol. 30, pp. 109–119, 2000.

[5] S. M. Witt and S. J. Young, “Phone-level Pronunciation
Scoring and Assessment for Interactive Language Learn-
ing,” Speech Communication, vol. 30, pp. 95–108, 2000.

[6] H. Franco, L. Neumeyer, V. Digalakis, and O. Ronen,
“Combination of Machine Scores for Automatic Grad-
ing of Pronunciation Quality,” Speech Communication,
vol. 30, pp. 121–130, 2000.

[7] S. D’Arcy, L. Wong, and M. Russell, “Recognition of
Read and Spontaneous Children’s Speech Using two new
Corpora,” in Proc. ICSLP, Korea, 2004.

[8] C. Teixeira, F. Horacio, E. Shriberg, K. Precoda, and
K. Snmez, “Prosodic Features for Automatic Text-
Independent Evaluation of Degree of Nativeness for Lan-
guage learners,” in Proc. ICSLP, 2000, pp. 187–190.

[9] F. Krummenauer, “Erweiterungen von Cohen’s kappa-
Maß für Multi-Rater-Studien: Eine Übersicht,” Infor-
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