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Abstract. Automatic Speech Recognition (ASR) in reverberant rooms
can be improved by choosing training data from the same acoustical en-
vironment as the test data. In a real-world application this is often not
possible. A solution for this problem is to use speech signals from a close-
talking microphone and reverberate them artificially with multiple room
impulse responses. This paper shows results on recognizers whose train-
ing data differ in size and percentage of reverberated signals in order to
find the best combination for data sets with different degrees of rever-
beration. The average error rate on a close-talking and a distant-talking
test set could thus be reduced by 29% relative.

1 Introduction

When developing speech-driven human-machine interfaces for hands-free control
of devices in a living-room environment, like for television sets and VCRs, the
microphones recording the user’s utterances will be integrated into the device
itself or distributed in the room. This leads to the problem that among other
distortions the received signal is reverberated. In our work we used artificially
reverberated training data to improve performance of speech recognition in re-
verberant rooms, as e.g. in [1, 2]. However, we tried to find a training set that
is suitable for both reverberated and clean speech and, in general, for unknown
target environments. Our research thus aims at ASR systems that are portable
between different acoustic conditions. Other well-known methods for improv-
ing speech recognition performance on distant-talking data are environment-
independent features (see an overview in [3, pp. 39-51]), sometimes with inte-
grated normalization methods as in RASTA-PLP [4], or combining the signals
from a microphone array [5]. These were not applied in our experiments.

This paper is organized as follows: In Section 2 we present preliminary exper-
iments with a reduced amount of training data from the EMBASSI corpus [6]
? now with ATR, Kyoto, Japan
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II

allowing fast evaluation of different data and recognizer configurations. Based
on the findings from these examinations we introduce recognizers with a large
training set in Section 3. The data were taken from the Verbmobil corpus and
allowed us to compare our results with earlier experiments on these data [7].
Section 4 summarizes the results.

2 Preliminary Experiments

2.1 Recognizer Specifications and Baseline System

As in a previous work, we used a baseline recognizer with only one hour of
training data for fast evaluation of various setups where the training and test
data were taken from the EMBASSI corpus [6]. This German speech collection
was recorded in a room with a reverberation time of T60 = 150ms (i.e. the time
span in which the reverberation decays by 60dB). It consists of utterances of 20
speakers (10 male, 10 female) who read commands to a TV set and to a VCR,
since the topic of EMBASSI was developing speech interfaces for these devices.
A close-talking microphone (headset) and a linear array of 11 microphones were
used for simultaneous recording. The center of the latter was either 1 meter or 2.5
meters away from the speaker (see Fig. 1). In each one of 10 sessions each speaker
read 60 sentences which took approx. between 150 and 180 seconds. The size of
the room was 5.8m× 5.9m× 3.1m, the center of the microphone array was at
position (2.0m, 5.2m, 1.4m). The speaker sat at position (2.0m, 4.2m, 1.4m) or
(2.0m, 2.7m, 1.4m), respectively, i.e. the head was at about the same height as
the microphones. The origin of the coordinate system in the room was the left
corner behind the speaker.

The training data of the EMBASSI baseline system (EMB-base, see Table 1)
consisted of the close-talking recordings of 6 male and 6 female speakers from two
sessions (60min of speech, 8315 words). One male and one female speaker formed
the validation set (10min, 1439 words), and one half of the test set consisted
of the remaining three men and three women (30min, 4184 words). The other
half were the corresponding data of the central array microphone, which was 1 m
away during one of the used sessions and 2.5m during the other.

Our speech recognition system is based on semi-continuous HMMs. It models
phones in a variable context dependent on their frequency of occurrence and thus
forms the so-called polyphones. The HMMs for each polyphone have three to
four states. The EMBASSI recognizers have a vocabulary size of 474 words and
were trained with a 4-gram language model. For each 16ms frame (10ms overlap)
24 features were computed (signal energy, 11 MFCCs and the first derivatives of
those 12 static features, approximated over 5 consecutive frames).

Before reverberating the training data artificially we trained a recognizer
with EMBASSI data from a distant microphone (EMB-rev) in order to find
out which results could maximally be reached when training and test environ-
ment were the same. Therefore we used the signals from the microphone from the
center of the microphone array whose recordings were synchronously recorded
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Table 1. Data sets for the recognizers trained with EMBASSI data (“mic. dist.” =
microphone distance, “CT art. rev.” = close-talking artificially reverberated)

training validation test
recognizer mic. dist. duration mic. dist. duration mic. dist. dur.

EMB-base close-talk 60 min close-talk 10 min close-talk 30 min
(T60: ≈ 0 ms) 1 m 15 min

2.5 m 15 min

EMB-rev 1 m 30 min 1 m 5 min like EMB-base
(T60: 150 ms) 2.5 m 30 min 2.5 m 5 min

EMB-12 close-talk 12·60= close-talk 12·10= like EMB-base
(T60: 250, 400 ms) (artif. rev.) 720 min (artif. rev.) 120 min

EMB-2 close-talk+ 60 min close-talk+ 10 min like EMB-base
(T60: 0, 250, 400ms) CT art. rev. 60 min CT art. rev. 10 min

with the close-talking training data. As two EMBASSI sessions were involved,
half of the data were recorded at a distance of 1 m and the other half at 2.5m dis-
tance (see Table 1). The situation for the validation data was similar. Only the
test data were exactly the same as before.
Table 2 shows that, for distant talkers, the best results are achieved on the rever-
berated test data, i.e. for those acoustical environments that were present in the
training data. For 1 m microphone distance the word accuracy was 94.1% (90.2%
on EMB-base) and for 2.5m distance it was 93.1% (84.1%). The close-talking
signals, however, have disadvantages in this approach (87.5% vs. 94.3%). In the
table we also added the results for the recognition without a language model
in order to show how much the pure acoustic information contributed to the
word accuracies. The good results when using the 4-gram model were achieved
because the training data were not spontaneous, but read sentences.

Of course training a recognition system with reverberated speech is a simple
way to improve the results on test data recorded with a large distance from
speaker to microphone. This usually means, however, that the acoustical prop-
erties of the training data are the same as in the test data. In a real application
the target environment is largely unknown before. Therefore, we investigate in
the following to what extent artificially reverberated training data can match
various test environments.

2.2 Training the System with Artificially Reverberated Data

If the goal is a recognizer which works robustly in many environments one might
suggest that the training data should provide recordings that were made in a
lot of different places. This would mean collecting speech data in many rooms
with different impulse responses and place the microphone(s) in different angles
and distances from the speakers who also have to be available in every location.
Reverberating close-talking speech artificially with the help of pre-defined room
impulse responses can reduce this effort.
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Table 2. Word accuracies for the EMBASSI recognizers (0-gram = no language model)

mic. dist. lang. model EMB-base EMB-rev EMB-12 EMB-2

close-talk 4-gram 94.3 87.5 91.7 95.5

close-talk 0-gram 70.0 40.0 57.7 71.4

1 m 4-gram 90.2 94.1 94.0 94.4

1 m 0-gram 52.4 66.2 61.9 63.0

2.5 m 4-gram 84.1 93.1 88.4 89.6

2.5 m 0-gram 37.5 63.2 52.4 55.3

The room impulse responses were measured in the room where also the EM-

BASSI corpus was recorded. However, the reverberation time was changed from
T60 =150ms to T60 =250ms and to T60 =400ms by removing sound absorb-
ing carpets and sound absorbing curtains from the room. 12 impulse responses
were measured for loudspeaker positions on three semi-circles in front of the
microphone array at distances 60 cm, 120 cm, and 240 cm. See Fig. 1 for the ex-
perimental setup. The close-talking training data of the baseline recognizer were
convolved with each one of the impulse responses separately, i.e. 12 hours of re-
verberated data (EMB-12; cmp. Table 1) resulted from one hour of close-talking
speech.

The results for the recognition experiments are summarized in Table 2. It can
be noticed that the recognition performance for the reverberated data increased.
Although the acoustical properties of the training data are different from those
of the test data, especially for 1m microphone distance similar results could
be achieved as for matching training and testing conditions (94.0% vs. 94.1%).
However, the recognition performance for the close-talking test data decreased.
So we tested if a mixture of reverberated and clear training data can avoid
this problem but still keep the recognition rates for the room microphones on
their high level. Therefore we used as one part of the training set the entire
training set of the baseline recognizer (see Table 1). The other part consisted
of one twelfth of the artificially reverberated training files used in the EMB-12
recognizer, i.e. the new training set (EMB-2; see Table 1) was twice as big as
for the baseline system and each room impulse response was present in 1

24
of

the data. Thus the ratio between close-talking and reverberated training data
was 1:1. Other ratios are currently being examined.
The results for this approach in Table 2 show that the recognition could be
enhanced for all three test sets, even for the close-talking recordings. This is
very encouraging in view of a future application, but the question arose if the
reason for this improvement was really (only) the reverberation of the training
files. Note that the baseline recognizer had a very small training set of about one
hour of speech data only, so it might be that the baseline training set (EMB-
base) was simply too small for a robust estimation of the phone models. Which
percentage of the improvement was the outcome of the sound quality and the
size of the data set, resp., had to be estimated during further tests. Furthermore
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58 cm

60 cm

120 cm

240 cm

T   = 250 ms60

T   = 400 ms60

EMBASSI Speaker Position

Fig. 1. Assumed speaker positions in the virtual recording rooms for artificially re-
verberated data; 12 room impulse responses from different positions and with two
reverberation times (250 and 400 ms) were used. The circles mark the positions of the
speaker in the real EMBASSI recording room

training and test data were both taken from the EMBASSI corpus up to now.
The impulse responses for the artificial reverberation of the close-talking signals
were measured in the same recording room. In the next section we therefore
describe experiments with two other corpora for training and test.

3 Experiments with Verbmobil Training Data

In a next experiment, we study the recognition performance for a larger vocab-
ulary and for longer reverberation time of the testing environment.

3.1 Training and Test Data

A widely used data collection for speech recognition in German-speaking coun-
tries is the German part of the Verbmobil corpus. We use a subset of this data
consisting of about 27.5 hours of close-talking speech produced by 578 speak-
ers (304 male, 274 female; cmp. [7]). The topic in the dialogues is appointment
scheduling (spontaneous speech) involving a vocabulary of 6825 words. As test
set, we used a subset of a currently unpublished corpus recorded at our faculty
which will be denoted as “FAT” in the following. It was recorded in an office
room of size 4.5m× 4.3m× 3.2m with reverberation time T60 = 300ms. 6 speak-
ers (3 male, 3 female) read transliterations of Verbmobil dialogues. Thus the
vocabulary of both speech collections was the same and the FAT data could
easily serve as test data for the Verbmobil recognizers. The distant-talking
microphone was placed at the position (2.0m, 2.5m, 1.4m), the speaker posi-
tion was (2.0m, 1.5m, 1.4m), i.e. 1m away from the distant-talking microphone.
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The origin of the coordinate system in the room was the left corner behind the
speaker.

The training and validation data for the baseline Verbmobil recognizer
(VM-base) were the same set as in [7]. As in the previous experiments, the
recognizer was trained on mixtures of clean and artificially reverberated close-
talking signals. The important difference, however, is that the sizes of training
and validation set were not changed for the different acoustic conditions. Thus
the changes in the results are only dependent of the degree of reverberation in
the data, because the acoustic model of a specific phone gets the same amount
of training data in all training processes, only the acoustic conditions change.

Concerning the training set, three different recognizers were set up (Table 3)
comparable to those with the EMBASSI data:

– VM-base: This is the baseline Verbmobil recognizer as described in [7].
It was trained with close-talking recordings only (257,810 words, 11714 ut-
terances).

– VM-12: All close-talking recordings were reverberated. The impulse re-
sponses were changed for each utterance for preventing that all utterances
from the same speaker are convolved with the same impulse responses.

– VM-2: As for EMB-2 (Table 1) half of the training set consisted of close-
talking signals and half of reverberated files. The 12 room impulse responses
were equally distributed over the utterances.

The fact that only 48 utterances were in the original Verbmobil validation
set was inconvenient for the test series as each one of the 12 room impulse
responses was represented in the validation lists of VM-12 and VM-2 by very
few files. Nevertheless the file lists were not changed in order to get results
comparable with experiments in [7].

The recognizers were evaluated on four data sets (cmp. Table 3):

– the original Verbmobil test set (268 close-talking recordings, 4781 words,
30min of speech) as defined in [7].

– the artificially reverberated Verbmobil test set: The original test set was
convolved with the same 12 room impulse responses also used for the corre-
sponding training data. The 268 files contain the 12 room impulse responses
with equal proportions.

– the FAT close-talking set: The 1445 files contain 24738 words (vocabulary
size: 865 words) and have a total duration of 150min.

– the FAT room microphone set: These data were synchronously recorded with
the close-talking data by a room microphone 1m away from the speaker. This
microphone was of the same type as those used for the EMBASSI corpus.

As the texts read in the FAT test data were transliterations of Verbmobil

dialogues, all the utterances were in the training data of the language model.
Therefore, the recognition results which are obtained for the FAT close-talking
data using the 4-gram language model are better than for the (non-overlapping)
Verbmobil close-talking test set (see Table 4). The test set perplexity of the
FAT data was 87.7 while for the Verbmobil language model test data it was
151.5.
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Table 3. Data sets for the recognizers trained with Verbmobil data (“mic. dist.” =
microphone distance, “CT art. rev.” = close-talking artificially reverberated)

training validation test
recognizer mic. dist. dur. mic. dist. dur. mic. dist. dur.

VM-base close-talk 27 h close-talk 7 min close-talk 30 min
(T60: ≈ 0 ms) CT art. rev. 30 min

FAT CT 150 min
FAT 1 m 150 min

VM-12 close-talk 27 h close-talk 7 min like VM-base
(T60: 250, 400 ms) (artif. rev.) (artif. rev.)

VM-2 close-talk+ 13.5 h close-talk+ 3.5 min like VM-base
(T60: 0, 250, 400 ms) CT art. rev. 13.5 h CT art. rev. 3.5 min

Table 4. Word accuracies for the Verbmobil recognizers (0-gram = no language
model)

test set lang. model VM-base VM-12 VM-2

Verbmobil close-talk 4-gram 80.1 72.1 77.9

Verbmobil close-talk 0-gram 51.4 37.4 49.1

Verbmobil art. rev. 4-gram 59.9 67.5 67.4

Verbmobil art. rev. 0-gram 28.5 39.8 37.6

FAT close-talk 4-gram 86.8 81.6 85.5

FAT close-talk 0-gram 49.4 38.3 46.5

FAT reverb. 4-gram 47.8 71.3 69.4

FAT reverb. 0-gram 12.5 32.3 28.8

3.2 Results

Table 4 summarizes the results on the Verbmobil based recognizers. The word
accuracy for the FAT close-talking test set is the highest for the VM-base rec-
ognizer (86.8% word accuracy using a 4-gram language model) and lowest for
VM-12 where only reverberated data was in the training set (81.6%). VM-2
almost reaches the baseline result (85.5%). Regarding the FAT data recorded at
1m distance in a room with T60 =300ms the close-talking recognizer VM-base
shows least accuracy as expected (47.8%) and VM-12 the highest one (71.3%).
Here VM-2 with 69.4% also nearly reaches the same value. Taking the average
of the results on FAT close-talking data and distant-talking data the baseline
word accuracy of 68.3% can be improved by 29.0% relative to a word accuracy
of 77.5% on VM-2 (VM-12 reaches 76.5%). This result shows that artificially
reverberated training data can help to improve the robustness of speech recog-
nition in reverberant acoustic environments for mismatch of the room impulse
responses for training and testing.
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4 Conclusions and Outlook

We tested artificially reverberated training data for improving the robustness
of ASR against reverberation. For training, we used a small subset of the EM-

BASSI and the German Verbmobil corpus, respectively, using room impulse
responses from environments with T60 =250ms and 400ms reverberation time.
For testing, we used the test set of the FAT corpus which contains synchronously
recorded signals from a close-talking microphone and a distant-talking micro-
phone at a distance of 1m in a room with T60 = 300ms reverberation time.
The average word accuracy for both test subsets on a Verbmobil recognizer
trained with close-talking data (VM-base) was 68.3%. Training with artificially
reverberated data (VM-12) lead to an increase for reverberated data but to a
decrease for close-talking data. Using half of both training sets in another recog-
nizer (VM-2) did not only give the best average result (77.5%), but with merely
moderate loss on the single subsets. Future experiments will include optimizing
the relation between close-talking and distant-talking training data and test-
ing other kinds of features like our MFCC variant with µ-law companded Mel
spectrum coefficients [6].
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