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Abstract
Mel Frequency Cepstral Coefficients (MFCC) and Perceptual
Linear Prediction (PLP) are the most popular acoustic features
used in speech recognition. Often it depends on the task, which
of the two methods leads to a better performance. In this work
we develop acoustic features that combine the advantages of
MFCC and PLP. Based on the observation that the techniques
have many similarities, we revise the processing steps of PLP.
In particular, the filter-bank, the equal-loudness pre-emphasis
and the input for the linear prediction are improved. It is shown
for a broadcast news transcription task and a corpus of chil-
dren’s speech that the new variant of PLP performs better than
both MFCC and conventional PLP for a wide range of clean and
noisy acoustic conditions.

1. Introduction
The acoustic features most commonly used in speech recogni-
tion are Mel Frequency Cepstral Coefficients (MFCC) [1] and
Perceptual Linear Prediction (PLP) features [2]. PLP features
are reported (e. g. in [3]) to be more robust when there is an
acoustic mismatch between training and test data. In our own
experiments we found that under clean conditions and when
there is no significant mismatch, MFCC features lead to a per-
formance that is slightly superior to PLP. Thus, it is advisable
to decide for each task which one of the two feature types would
be more appropriate. However, in many applications the acous-
tic conditions do not remain constant over the whole data set:
in broadcast news transcription, for instance, segments with
clean speech are intermixed with segments that contain back-
ground music or noisy telephone speech. In order to achieve
optimal performance it is desirable to have a feature extraction
that is well-suited both for clean and adverse acoustic condi-
tions. Thus, the favorable properties of PLP and MFCC have to
be combined.

In spite of the fact that PLP has been derived independently
of the MFCC technique, there are many similarities between
the two methods [4, p. 67]. We utilize these in a revised fea-
ture extraction algorithm that integrates elements taken from the
MFCC procedure into PLP. Even though PLP has been devel-
oped based on a psycho-physical findings, we follow the ap-
proach of Hunt [5] and interpret the steps of PLP purely in sig-
nal processing terms. We consider the following changes of
PLP: (i) the Bark filter-bank is replaced by a Mel filter-bank;
(ii) the equal-loudness weighting of the spectrum is substituted
by a pre-emphasis that is applied to the speech signal; (iii) the
duplication of the first and last filter-bank value that is done
in conventional PLP before linear prediction (LP) is dropped.
Finally, (iv), a new filter-bank is introduced with a very large
number of filters. As the new filters have the same band-width
as in the conventional approach, there is no loss of robustness.
On a large corpus of broadcast-news data and a corpus of chil-
dren’s speech we show that our variant of PLP, which retains
from the auditorily motivated components only the filter-bank,
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rms better than the conventional methods.
ariants of PLP, in particular the use of alternative filter-
, have already been investigated by others. Mason and
] incorporated the JSRU filter-bank in PLP with a slight
ase in performance. Furthermore, the authors claimed
e equal-loudness pre-emphasis had no measurable effect.
land et al. [7] proposed MF-PLP, which substitutes the
filter-bank in PLP by a Mel filter-bank. This is equivalent
e of the modifications that are also described here. While
thors showed in [7] that MF-PLP compares favorably to

C under difficult acoustic conditions, they did not publish
irect comparison between PLP and MF-PLP which is pro-
in this paper. Furthermore, our approach includes addi-
improvements of PLP and we show that even the conven-
Mel filter-bank can be improved.
his paper is structured as follows: After discussing the
rities and differences between PLP and MFCC, we derive

al modifications of PLP. Next, the employed speech cor-
and baseline systems are described. Finally, the revised
rocedure is evaluated.

2. PLP vs. MFCC
er to justify the proposed modifications, we shortly review

and compare it with the MFCC computation. As shown
. 1, PLP consists of the following steps: (i) The power

rum is computed from the windowed speech signal. (ii) A
ency warping into the Bark scale is applied. (iii) The audi-
warped spectrum is convoluted with the power spectrum
simulated critical-band masking curve to simulate the

al-band integration of human hearing. (iv) The smoothed
rum is down-sampled at intervals of ≈ 1 Bark. The three
frequency warping, smoothing and sampling (ii-iv) are in-
ed into a single filter-bank called Bark filter-bank. (v) An
-loudness pre-emphasis weights the filter-bank outputs to
ate the sensitivity of hearing. (vi) The equalized values are
ormed according to the power law of Stevens by raising
to the power of 0.33. The resulting auditorily warped line
rum is further processed by (vii) linear prediction (LP).
sely speaking, applying LP to the auditorily warped line
rum means that we compute the predictor coefficients of a
thetical) signal that has this warped spectrum as a power

rum. Finally, (viii), cepstral coefficients are obtained from
edictor coefficients by a recursion that is equivalent to the
ithm of the model spectrum followed by an inverse Fourier
orm. Fig. 1 shows a comparative scheme of PLP and
C computation. Note that the MFCC computation in the
ine-system includes a pre-emphasis x′

t = xt − 0.95 ·xt−1

s applied to the speech signal samples xt. Obviously,
o methods have many similarities. Differences between
nd MFCC lie in the filter-banks, the equal-loudness pre-

asis, the intensity-to-loudness conversion and in the appli-
of LP. Each of them is discussed in the following.

s we consider the discrepancy between the progression of
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Fig. 1: The computation steps of PLP (left) and MFCC (right).
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Fig. 2: Bark (top) and Mel filter-bank for a power spectrum with
257 coefficients (not normalized for display purposes).

the Bark- and the Mel-scale to be negligible in practice (see
e. g. [8, p. 34]), the most prominent difference between Bark
and Mel filter-bank is the shape and, presumably more impor-
tant, the number and the width of the filters. It can be seen in
Fig. 2 that the Bark filter-bank consists of 19 asymmetrically-
shaped filters while the Mel filter-bank contains typically 24–40
triangular filters which have a 50%-overlap (e. g. [8, p. 317]).

Hermansky [2] introduced an equal-loudness pre-emphasis
of the power spectrum to take into account the frequency sensi-
tivity of human hearing. Each power spectrum coefficient P (ω)

is multiplied with a weight E1(f) = (f2+1.44·106)f4

(f2+1.6·105)2(f2+9.61·106)

that depends on its frequency in Hertz f = ω
2π

fsample. For sig-
nals with a Nyquist frequency fnyq that is greater than 5 kHz,
an alternative weighting function E2(f) is defined in [2, Eq. 7’]
which gives a better approximation of the psycho-physical find-
ings as it also represents the decrease in sensitivity in the higher
frequency range. Both weighting functions are shown in Fig. 3.
As it is shown in Fig. 3 the equal-loudness weighting function
E1 used in PLP is quite similar to the pre-emphasis that is ap-
plied to the speech signal in the MFCC computation. The effect
of the pre-emphasis has to be discussed in the context of the suc-
cessive application of LP. The relation between a discrete input
power spectrum P (ω) and the corresponding LP model power
spectrum P̂ (ω) is given by [9]:

1

M

M∑

m=1

P (ωm)

P̂ (ωm)
= 1 (1)

Thus, P̂ (ω) is a smooth fit to P (ω); the smoothness is enforced
by the fact that P̂ (ω) is an all-pole spectrum of low order. It
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: The equal-loudness weighting function E1 in PLP (left,
is quite similar to a conventional pre-emphasis applied to

gnal (right). The equal-loudness weighting function E2 is
n on the left, dashed.
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: Model spectrum of a linear prediction of order 20 (left).
: with (.)0.33 compression prior to LP (scaled). In each
the original power spectrum is also shown as a thin line.

e seen from Eq. 1 that large values of P (ω) have more
nce on the overall fit than small values. As in speech sig-
igh frequencies have much lower magnitudes than low fre-
ies, it is beneficial to equalize the power spectrum before
ing LP. The application of a pre-emphasis increases high
encies and thus makes the spectral fit of LP more uniform
he frequency range.
ig. 4 (left) shows that the LP model approximates the spec-
nvelope of P (ω). This is due to Eq. 1. However, together
he all-pole model assumption, this leads to sharp peaks in
. The intensity-to-loudness conversion, which raises the
r spectrum coefficients to the power of 0.33, decreases the

ic variability and flattens the peaks of P (ω). The result-
odel spectrum is smoother with less pronounced peaks as
emonstrated in Fig. 4 (right). The intensity-to-loudness
rsion is therefore to be seen as a tuning of the spectral
ope approximation.

3. Modifications of PLP
iscussion of the different processing steps of PLP and
mparison with the MFCC computation motivate several

fications of PLP. In particular, we measure experimentally
of the two filter-banks (Bark or Mel filter-bank) leads to
performance and propose an improved filter-bank for PLP
FCC. Further experiments investigate the pre-emphasis
e computation of the LP.

Filter-bank

seems to be no intuitive reason why the Bark filter-bank
d be optimal for PLP (see Sec. 2) and other filter-bank
urations should be evaluated as well. A promising candi-
s the popular Mel filter-bank which has already success-
been employed within PLP by others [7]. Fig. 5 illustrates
he application of the Mel filter-bank is equivalent to three
cutive processing steps: (i) Mel frequency warping of the
r spectrum; (ii) convolution with a triangle (i. e. smooth-
and (iii) down-sampling. The number of filters resembles
ecision of the sampling in step (iii). In order to minimize
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Fig. 5: The steps implicitly performed when the standard Mel
filter-bank (24 filters of width 226.8 Mel) is applied: original
power spectrum; warping; smoothing; sampling.

the loss in information, the number of filters should be as high
as possible. In the conventional definition of the Mel filter-bank,
the triangular filters have an overlap of 50% (e. g. [8, p. 317]);
i. e. increasing the number of filters reduces at the same time
their band-width. The width of the filters, however, defines the
characteristics of the smoothing step and should be determined
independently. Therefore we propose an alternative definition
of a Mel filter-bank: the filter band-width is fixed to 226.8 Mel,
which is equivalent to the band-width in a conventional Mel
filter-bank with 24 filters. The number of filters is chosen inde-
pendently; here we take 257 filters which is the number of input
spectral coefficients. Consequently, these filters have an overlap
which is much larger than 50%.

3.2. Pre-emphasis

We have shown in Sec. 2 that there is a high degree of similarity
between the equal-loudness weighting performed in PLP and
the pre-emphasis that is applied to the speech signal in the con-
ventional MFCC computation. The latter is widely used and can
be applied in a very simple manner before the short-time spec-
tral analysis. Furthermore, it is not clear if E1 performs better
than E2 or if both give approximately the same performance.
Therefore we have to measure experimentally which one of the
three different methods to perform pre-emphasis (E1, E2 or to
the signal) leads to the best results.

3.3. LP input

The center frequencies of the first and last Bark filter have a
distance of ≈ 1 Bark to the boundaries of the frequency range
[0; fnyq]. According to Hermansky, there should be two addi-
tional filters with center frequencies 0 and fnyq, but they cannot
be computed because the filters would reach too far into unde-
fined frequency ranges [2]. As a substitute, the first and last
filter-bank output are duplicated in conventional PLP (after the
equal-loudness pre-emphasis). We take a different view here
and discard the duplication of the boundary values in order to
avoid an over-emphasis1 . The effective frequency range of the
LP is then determined by the center frequencies f1, fk of the
first and last filter as [f1; fk]. Note that it is possible to move
the center-frequencies of the filters to 0 and fnyq by mirroring

1A compromise between Hermansky’s procedure and our approach
would be to apply DCT-II [8, p. 228] when computing the auto-
regression coefficients. However, in our experiments we found this to
be sub-optimal.
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4. Data sets and baseline system
ing and evaluation were done on two different corpora:
It and HUB4. ChildIt has been recorded at ITC-irst with
se-talk microphone and consists of Italian texts read by
en. It comprises 8 h of speech for training and 2.5 h for
ation. The language model was estimated on articles taken
Italian newspapers. For the experiments on HUB4, we
the BN-E data released by the LDC in 1997 and 1998 as
ng data. These corpora contain a total of about 143 h of
h. The 1998 Hub4 evaluation data consists of 3 h of speech
98). For selected experiments, we report the HUB4 results
. the focus conditions (F-conditions) marked in Eval98:

baseline planned broadcast speech, clean background.
spontaneous broadcast speech, clean background.
speech over telephone, clean background.
speech with background music.
speech with degraded acoustics (noise, other speech).
planned, non-native speech, clean background.
all other conditions that cannot be classified into F0-F5.

uage models were trained on approx. 132 million words of
cast news transcripts distributed by LDC and on the tran-
s of the BN-E training data. The acoustic front-end of the
rst speech recognition system applies cluster-based mean
ariance normalization to the first 13 cepstral coefficients
ombines them with their first and second order time deriva-
into a 39-dimensional feature vector. In all experiments,
e Mel(ω) = 1125 · ln(1+ω/700). No manual labeling of
rs is used in training and recognition. The acoustic mod-
e state-tied, cross-word, gender-independent, bandwidth-
endent triphone HMMs. The MFCC baseline system has
ied states and about 11000 Gaussians for ChildIt; for
4 it has 9079 tied states and about 146000 Gaussians. All
systems in this work have a similar number of parameters.

5. Experimental results
ord error rates (WER) for the MFCC and PLP baseline
s are shown in the first two columns of Tab. 1. While PLP

e 1: WER in % for MFCC and different variants of PLP.

system MFCC PLP (A) (B) (C) (D) RPLP
filter-bank Mel Bark Mel Mel Mel Mel Mel

re-emphasis S E1 E1 E2 S E1 S
licate values -

√ √ √ √
- -

)0.33 and LP -
√ √ √ √ √ √

ChildIt 15.2 15.9 15.6 15.6 15.3 15.2 14.8
HUB4 20.5 20.6 20.1 20.1 20.2 20.1 19.9

rms 4.6% rel. worse than MFCC on the ChildIt task which
een recorded in a clean acoustic environment, we obtain
equal results for both feature types on HUB4 which is

tically less homogeneous. Systems (A)–(D) in Tab. 1 cor-
nd to different variants of PLP. In system (A) the Bark
bank is replaced by a conventional Mel filter-bank with
ters. This leads to a noticeable improvement on both data
owever, results on ChildIt are still worse than for MFCC.
systems (A), (B) and (C) compare different ways to per-
the pre-emphasis. System (A) and (B) apply the weight-
nctions E1 and E2, respectively. System (C) applies a

mphasis directly to the speech signal like in MFCC, this
oted by the letter S in Tab. 1. While there is no mea-

le difference between E1 and E2, the pre-emphasis ap-
to the signal gives a better performance for ChildIt and



a slightly higher WER for HUB4. By discarding the duplica-
tion of the filter-bank values at the boundaries we derive system
(D) and system revised PLP (RPLP) from the systems (A) and
(C), respectively. While in both cases discarding the duplication
leads to improvements in WER, the best results are obtained
for system RPLP, i. e. the combination of a pre-emphasis ap-
plied to the speech signal together with the discarded boundary
values. An explanation for the fact that system (C) performs
worse than (A) on HUB4 could be that the harmful effect of
the duplication step is more pronounced in combination with
the pre-emphasis than with the weighting functions E1 and E2,
where the weight for the first filter output is almost zero (see
Fig. 3). The revised PLP is equivalent to the baseline MFCC
feature computation with an intensity-to-loudness conversion
and a LP step. System RPLP performs better than both baseline
systems on both tasks. More precisely, the rel. improvements
in WER are 6.9% and 3.4% over conventional PLP for ChildIt
and HUB4, respectively, and 2.6% and 2.9% over MFCC for
ChildIt and HUB4, respectively. The differences between sys-
tems RPLP and MFCC and between RPLP and PLP are sig-
nificant according to the matched pairs sentence-segment word
error (MAPSSWE) test. For the HUB4 Eval98 test set the re-
spective p-values are 0.002 and < 0.001.

Once we have found in system RPLP a suitable configura-
tion for PLP, we compare the conventional Mel filter-bank (24
filters) with the proposed Mel filter-bank that consists of 257
filters as described in Sec. 3.1. The corresponding results are
shown in Tab. 2. For the HUB4 task, results are also given for

Table 2: WER [%] for different filter-bank configurations.

HUB4system ChildIt
1st step 2nd step

MFCC, 24 filters 15.2 20.5 18.7
MFCC, 257 filters 14.8 20.2 18.4
PLP, 19 filters 15.9 20.6 18.7
RPLP, 24 filters 14.8 19.9 18.2
RPLP, 257 filters 15.0 19.7 17.8

the second step, i. e. after the application of MLLR adaptation
with two regression classes. For MLLR the first-step result of
each system is taken as a supervision. From Tab. 2 it can be seen
that the new filter-bank with 257 filters leads to additional im-
provements on the HUB4 task both for MFCC and PLP. On the
ChildIt corpus, however, there is only an improvement for the
MFCC features, while for RPLP the new filter-bank results in a
slight increase in WER2. We found it encouraging to note that
the improvements obtained by revised PLP and the proposed
filter-bank stay the same or become even more prominent after
MLLR adaptation (see Tab. 2). The baseline systems are com-
pared with the revised PLP for the different focus conditions of
the Eval98 test set in Tab. 3. It can be seen that RPLP together

Table 3: WER [%] on HUB4 w. r. t. the focus conditions.

F-condition all F0 F1 F2 F3 F4 F5 FX
proportion 100.0 30.7 19.3 3.4 4.3 28.2 0.7 13.5
MFCC 20.5 12.8 20.3 31.5 24.0 20.7 26.0 33.9
PLP 20.6 12.9 19.8 31.0 23.3 21.2 20.4 34.5
RPLP, 257 f. 19.7 12.1 19.3 30.1 21.1 19.9 25.1 33.5

with the proposed filter-bank performs better than both MFCC
2Note that by widening the frequency range covered by the center-

frequencies of the filters to [0; fnyq] as indicated in Sec. 3.3, we can
reach a WER of 14.6% with the proposed filter-bank. However, we
believe that such optimizations are strongly corpus-dependent.
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LP for nearly all marked conditions. Remember that non-
speech (F5), the only condition where it performs worse
LP, corresponds to less than 1% of the test data. The over-

l. improvements in WER w. r. t. the MFCC and PLP base-
ystems are 3.9% and 4.4%, respectively. After MLLR, the
d PLP with 257 filters performs in both cases 4.8% better
he MFCC and PLP baseline systems.

6. Conclusion and future work
ave shown that the PLP computation can be improved no-
ly. Our revised setup for PLP applies a pre-emphasis to
gnal, and employs a Mel filter-bank with a large num-
f filters (e. g. 257) and a band-width around 230 Mel.
l-loudness weighting and duplication of the boundary val-
f the filter-bank are discarded. This setup simplifies the
utation of PLP. Compared to conventional PLP, we re-
the WER by 5.7% rel. for the ChildIt corpus and by 4.4%
r HUB4. The improvements remain after MLLR adapta-

MFCC benefits from the proposed filter-bank as well.
ue to the higher sampling resolution of the proposed filter-
we expect it to be beneficial when used together with Vo-

ract Length Normalization (VTLN) and other normaliza-
pproaches like the one described in [10]. Therefore we
vestigating the combination of the revised features with
aptive training procedure [10].
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