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Abstract. In this paper we will investigate the performance of TRAP-
features on clean and noisy data. Multiple feature sets are evaluated on a
corpus which was recorded in clean and noisy environment. In addition,
the clean version was reverberated artificially. The feature sets are assem-
bled from selected energy bands. In this manner multiple recognizers are
trained using different energy bands. The outputs of all recognizers are
joined with ROVER in order to achieve a single recognition result. This
system is compared to a baseline recognizer that uses Mel frequency cep-
strum coefficients (MFCC). In this paper we will point out that the use of
artificial reverberation leads to more robustness to noise in general. Fur-
thermore most TRAP-based features excel in phone recognition. While
MFCC features prove to be better in a matched training/test situation,
TRAP-features clearly outperform them in a mismatched training/test
situation: When we train on clean data and evaluate on noisy data the
word accuracy (WA) can be raised by 173 % relative (from 12.0 % to
32.8 % WA).

1 Introduction

Noise and reverberation have a strong influence on automatic speech recognition
systems. Even slight noise or reverberation can cause an enormous decrease of
the recognition rate. Human beings are less affected by such disadvantageous ef-
fects. Unfortunately these disadvantageous sound situations are quite important
in many application scenarios like driving a car or being in an “intelligent room”
in which many appliances can be controlled by voice. The use of closetalk mi-
crophones is often not practical since they have to be attached very close to the
speaker’s head and the user acceptance of such a device is very low. This is the
reason why robust automatic recognition systems with far distant microphones
are desirable. To achieve this we look at two different aspects of automatic speech
recognition: The use of features which are restricted to certain frequency bands
but are calculated over a longer time span and the use of multiple recognizers.



2 Andreas Maier et al.

Our features are based on the TRAP approach of Hynek Hermansky pre-
sented in [1]. In his investigations he especially pointed out the robustness of his
features.

The speech corpus used in this paper is available in three different levels of
noise and reverberation. In addition to the recordings with a closetalk micro-
phone the scenery was filmed by a video camera for documentary purposes. In
this manner a second rather noisy version could be recorded. The third version
was obtained by adding an artificial reverberation to the closetalk version.

Since the TRAP-features are computed for each band individually it is easy
to train different independent recognizers. In case of a distortion of a single
frequency band the other recognizers can still recognize the spoken utterance. In
[2] it is shown that such a combination using the ROVER procedure can produce
very promising results. A recognizer with a certain feature set is trained on every
version of the corpus. Each feature set is created using different energy bands.
Furthermore different types of TRAP-features are used as well. For the baseline
system MFCCs are used.

After the training the recognizers are evaluated on a disjoint test set. We
present results on phone and on word level. Furthermore outputs on word level
are joined using ROVER included in the Speech Recognition Scoring Toolkit
(SCTK) which can be downloaded from [3].

All recognizers trained on the closetalk and closetalk reverberated version of
the corpus are evaluated on the test set of the room microphone version as well.

The next section gives a short literature overview. In chapter 3 a short de-
scription of the AIBO database follows. The experimental setup and the results
are described in chapter 4. The paper ends with an outlook to future work and
a summary.

2 Related Work

The feature extraction is primarily based on the work of Hynek Hermansky.
In [1] the so called Temporal Patterns (TRAP) are introduced. Based on the
assumption that the temporal context in each band is essential for the classifi-
cation of phones each band is analyzed individually, first. Using a long context
of up to one second a neural net is trained for each energy band. The outputs
of the nets are scores for 29 phonetic classes. These scores are obtained for each
band and used as input for a neural net merger. The merger’s outputs are again
scores for 29 phonetic classes. As Hermansky states these features can produce
better results than perceptive linear prediction (PLP) features especially when
the distortions occur only in certain bands.

Furthermore Hermansky points out the importance of the modulation spec-
trum in [4]. This spectrum can be obtained by a short-time analysis of each
TRAP band. From this analysis a spectrum results whose both axes have fre-
quency scales. One results from the filter bank analysis and displays the fre-
quency of the signal. The other one displays the modulation frequency. As Her-



Robust Speech Recognition with TRAPs 3

mansky states only modulations over 1 Hz and below 16Hz are important for
the perception of speech.

In [5] the importance of the modulation spectrum is highlighted even more.
Greenberg proposes to use a so called modulation spectrogram. This kind of
spectrogram does not display the strength of a certain frequency band anymore.
It displays only the strength of the modulation around 4 Hz. In order to compute
this, the spectrogram is processed for each frequency band and transformed into
modulation frequency. It is processed in such a manner that in the end only a
single coefficient is obtained for the modulation frequency between 2 and 8 Hz.
These coefficients get arranged in a spectrographic layout to form the modulation
spectrogram. Greenberg states that the modulation spectrogram is quite robust
to noise and distortions.

In order to combine the recognizers the ROVER system is employed. [2] de-
scribes the algorithm as follows. The output of the recognizers on word level are
aligned first and merged later on with the ROVER voting module. In order to
do the alignment two hypotheses are processed iteratively by dynamic program-
ming. To match the task the algorithm was extended by Fiscus et al. since the
base hypothesis can hold more than one word at a time. Afterwards the best
word for each alignment can be found. This is done with the voting module.
It supports several modes which can even include the scores returned by the
recognizer into the decision process. A reduction of up to 16 % of the word error
rate was obtained.

In [6] it is shown, that reverberation can be created artificially if the char-
acteristic spectral properties are known. Those properties can be acquired by
recording a known signal from various positions in a room; for each position in
the room attributes can be determined. The characteristics found can be applied
to a clean signal by convoluting the signal with a finite-impulse-response (FIR)
filter. In this manner reverberation can be added to any signal.

3 Corpus

As already mentioned in the introduction the AIBO database is available in
three versions. The experimental setup of this database used a Sony AIBO robot
[7]. The original design was intended to record emotional speech of children.
The children were to accomplish several tasks with AIBO commanding it by
voice. However, the robot was controlled by a wizard in a so called wizard of

Oz experiment. The wizard was disguised as an audio technician. A complete
description of the tasks can be found in [8]. The recordings were done with
a closetalk microphone which was attached to the child’s head. Thus a clean
version of the data was recorded which is called closetalk (ct) later on.

For documentary purposes the whole experiment was filmed with a video
camera as well. The sound track of the film contains a lot of reverberation and
background noises, since the camera’s microphone is designed to record the whole
scenery in a room and since the camera was approximately 3 m away from the
child. The fact that the distance between speaker and microphone was quite far
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and that the child was not facing the microphone emphasize the difficulty of this
recognition task. This version is called room microphone (rm) in the following.

The third version of the corpus was created using artificial reverberation. To
achieve this the data of the ct version were convoluted with different impulse
responses. The impulse responses were recored in a different room using multiple
speaker positions and echo durations T60 as shown in Fig. 1. With each of the
twelve responses 1/12th of the corpus was reverberated. This corpus is called
closetalk reverberated (ct rv) later on.

58 cm

60 cm

120 cm

240 cm

T   = 250 ms60

T   = 400 ms60

Fig. 1. Positions of the different impulse responses.

The advantage of this procedure is that the data had to be transcribed only
once. So all versions have the same size in vocabulary (850 words and 350 word
fragments) and the same language models.

4 Experimental Setup

First, we give an overview of the used features, i.e. MFCCs, TRAPs, and filtered
TRAPs. Then a description of the recognizers and their combination follows.

4.1 Features

The baseline system which is compared to all results uses MFCC features. So
the signal is processed with a fast Hartley transform with a window size of 16ms
computed every 10ms. Then 22 filter banks are computed from the resulting
spectrum. After taking the logarithm the signal is processed with a discrete
Cosine transformation. In the end 11 Mel coefficients plus the signal’s energy
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are taken as static features and another 12 delta features are computed using a
regression line over 5 frames, i.e. 56ms. Cepstrum mean abstraction is applied.

The TRAP features used in this paper are based on [1] but differ in several
details. They are computed from the logarithmic Mel spectrum. The Mel filter
bank consists of 18 banks. Using a context of ±15 frames a TRAP with 31 entries
is created for each band. In this phase n of 18 bands are chosen. The coefficients
of these bands are concatenated and reduced to 24 dimensions using a linear
discriminant analysis (LDA) instead of the neural nets used by Hermansky. The
classes needed by the LDA are obtained by a forced alignment with the baseline
hidden Markov recognizer. In total 47 German phonetic classes were used. In
the following the TRAP-features are labeled with the letter T .

The modulation spectrum is computed in a similar manner. After the TRAP
coefficients are found they are transformed with a fast Fourier transformation.
This results in a complex spectrum which states the modulation of the different
energy bands. So the filtered TRAP features can be computed using a band
pass between 1Hz and 16Hz in modulation frequency. All coefficients of the
spectrum outside these boundaries are set to 0. Then the modulation spectrum
is transformed again into the TRAP domain. Fig. 2 shows the TRAP of the 8th
band of a phone /i/ before and after the filtering on the different versions of
the corpus. As can be seen the filtered curves are closer to each other, i.e. the
filtering reduces the differences in the features caused by the different recording
conditions. Again the desired bands are concatenated and reduced with a LDA
transformation. This type of feature is called F in the following.
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Fig. 2. TRAPs and Filtered TRAPs for the eighth band (from 1.1 kHz to 1.6 kHz) of
a phone /i/ for different versions of the corpus.

4.2 Recognizers

The hidden Markov models (HMM) which are employed here are trained with
the ISADORA [9] system of the Chair for Pattern Recognition of the University
of Erlangen–Nuremberg. This system has been developed since 1978 and has
been employed on various tasks in the field of pattern recognition from speech
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recognition to genetic decoding and recognition of hand writing. The system
provides all tools needed for the training of HMMs. For decoding the lr beam

recognizer is employed. In our experiments we used semi-continuous HMMs with
full covariance matrices and polyphone models as elementary HMMs. The latest
version of the system is described in [9]. Each recognizer provides a best recog-
nized word chain. These word chains are used as input for ROVER. Using the
output of multiple recognizers it can compute a single best word chain. To do this
the word chains are aligned iteratively first. Then the best word for each position
is chosen. This can be done using several algorithms. In our experiments we used
voting and included confidence scores from the recognizers (method avgconf ).

4.3 Results

In the following the presented features are evaluated. All of the recognizers
trained here use only 6 of 18 critical bands in order to enable a majority de-
cision with three recognizers. Tab. 1 gives an overview of the results obtained
on phone level. As one can see the recognizers using every third band are far
better than the baseline MFCC recognizer. However, if the bands are chosen
consecutively like in the case of T1−6 the recognizers perform worse than the
baseline. Therefore the results on word level focus only on the recognizers using
every third band.

Table 1. Results of the different features on phone level; class wise averaged recognition
rates in %.

Feature Bands Abbreviation ct ct rv rm
MFCC 42.3 36.7 28.2

T 1,4,7,10,13,16 T3n+1 52.2 45.2 32.2

T 1,2,3,4,5,6 T1−6 41.2 33.4 22.0
F 1,4,7,10,13,16 F3n+1 49.7 42.9 28.2

On word level the recognition rates of the individual recognizers can not
compete with the baseline recognizers in most cases. Only if the training and the
test data do not match like in the case of training on closetalk data and evaluation
on room microphone data, some of the TRAP recognizers can obtain better
results than the baseline system. Note, that the use of artificial reverberation
during training always results in an improvement when evaluating on the room
microphone test set. In order to focus on the performance of the acoustic models,
Tab. 2 shows the recognition rates for a unigram language model.

When the recognizers are joined with ROVER better recognition rates can
be achieved. The TRAP based recognizers can now obtain better results than
the baseline in most cases. Nevertheless MFCC still return better results when
training and test is done on closetalk microphone data. Tab. 3 gives 4-gram
recognition rates, since such a language model is usually applied on a real task.
Its perplexity on the test set is 50. Note that the consequence of the combination
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Table 2. WAs of the individual recognizers with a unigram language model.

Training ct ct rv rm ct ct rv
Test ct ct rv rm rm rm
MFCC 69.3 63.1 35.2 4.9 7.6
T3n+1 55.0 50.5 27.6 -10.8 1.3
T3n+2 53.2 48.8 27.0 -4.0 9.4

T3n 55.1 49.1 29.1 -4.4 2.3
F3n+1 57.3 51.7 29.1 -2.4 5.5
F3n+2 55.8 50.5 28.5 5.8 12.5

F3n 57.6 51.5 29.5 1.2 6.7

of the recognizers is an enormous improvement if training and test data do not
match. Except for the ct/ct constellation the TRAP based recognizers give better
results than the MFCC recognizers. Combining the TRAP-features with MFCC
provides a small further improvement. When training is done on closetalk data
and evaluation on room microphone data the recognition rate can be improved
by 173% relatively (from 12.0% to 32.8% WA).

Table 3. Categorical 4-gram recognition rates of the combined recognizers.

# of Training ct ct rv rm ct ct rv
recognizers Test ct ct rv rm rm rm

1 MFCC 77.2 63.1 46.9 12.0 18.8
1 Fbest 66.1 61.1 39.0 15.8 23.0
3 T3n 71.1 65.9 47.3 21.6 34.3
4 T3n+MFCC 70.3 66.7 48.7 32.8 31.6
3 F3n 72.1 63.4 48.9 27.2 34.3
4 F3n+MFCC 73.4 64.5 49.4 30.9 35.2

5 Outlook and Summary

It could be shown that the TRAP features have the greatest advantage when
training and test data are mismatched. We conclude that these features gener-
alize better. Furthermore the use of TRAP features and artificial reverberation
can improve the recognition rate on the room microphone test set from 12.0% to
35.2%. As the experiments show the upper limit (training and test on room mi-
crophone data) is 46.9% in the baseline system. Fig. 3 gives an overview over the
best achieved WAs. In our current research we adapt the ct rv recognizer with
a small amount of “in task” data, i.e. rm data. We hope that this will close the
gap between the currently best “mismatched” recognizer and the rm/rm base-
line. Such a procedure will allow to use the vast amount of clean transcribed
training data for the training of far distant microphone recognizers.

In this paper we presented the AIBO database in three versions. These ver-
sions are closetalk microphone, room microphone, and closetalk reverberated.
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Fig. 3. Overview of the WAs on the room microphone test set.

Furthermore two TRAP based features were introduced. T -features are based
on Hermansky’s TRAP approach and F -features are created by filtering in the
modulation frequency. Then a method to combine multiple recognizers was pre-
sented. In the results section the different recognition rates were given. The best
improvement compared to an MFCC baseline system could be obtained on mis-
matched training and test data where a 173% relative improvement was achieved
(from 12.0% to 32.8% WA).
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