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Abstract

In this paper, we propose a novel intensity–based
method that address non–rigid 2D-3D registration
problem. This method allows non–rigid transfor-
mation for volumetric data to establish the proper
alignment with a sparse number of 2D projections.
The key issue of nonrigid 2D-3D registration is how
to define the distance measure between 3D data and
2D projection. In this work, we use the idea that
comes from algebraic reconstruction theory to han-
dle this problem. We modify the Euler–Lagrange
equation by introducing a new 3D force. This exter-
nal force term is computed from the residual of the
algebraic reconstruction procedures. It means that
we integrate the algebraic reconstruction technique
into the variational registration framework, so that
the 3D displacement field is driven to minimize the
“reconstruction distance” between volumetric data
and those 2D projections. Experimental results are
presented on both artificial phantom and a real 3D
Digital Subtraction Angiography (DSA) data.

1 Introduction

The 2D-3D registration has great value in many
medical applications. Volumetric CT are frequently
used in clinical diagnosis and surgical planning.
However, it is uncommon to acquire those 3D data
as interventional imaging modalities. Typically, the
intra–procedural data sets are presented in two–
dimensional information, like X-ray fluoroscopes.
Although these images lack the spatial details of
volumetric data, they can be acquired in real time
and with minor radiation exposure to patients. The
goal of 2D-3D registration is to find the 3D trans-
form that aligns reconstructed volumes with intra–
interventional 2D images in order to make use of
up–to–date information for surgical guidance and
other interventions.

Many 2D-3D registration methods are proposed

by literatures. According to the distance mea-
sure, these methods can be roughly classified into
feature–based and intensity–based. Feature–based
approaches make use of landmarks (fiducial or nat-
ural) or the other anatomical features to match im-
ages. For example, Gueziec et al. [1] use surface
features to align CT volume with fluoroscopy X-
ray. Feldmar et al. [2] presented a unified frame-
work for 2D-3D registration of curves and surfaces.
Hamadeh et al. [3] extended Feldmar’s method by
combining segmentation result of X-ray images.
Intensity–based registration measure the similarity
of intensity directly. Thus, no feature extraction
is required and the whole registration procedure
can be automatic. E.g., Weese et al. [4] presented
an intensity–based method for 2D-3D registration.
LaRose et al [5] investigate real time iterative X-
ray/CT registration techniques. Zollei et al. [6]
employ mutual information as similarity measure
and stochastic gradient ascent approach as opti-
mization procedure in 2D-3D registration problems.
Yao et al. [7] proposed an affine 2D-3D registration
method based on a statistical model.

Most of the prior work focused on parameterized
transformation, such as rigid or affine transforma-
tion, i.e., the spatial transforms are defined by a set
of parameters. However, in many clinic applica-
tions, it is more reasonable to describe the spatial
transformations with a non–parameterized model,
i.e., the displacement field. Our work is actually
motivated by the limitation of nowadays methods.
In this paper we propose a way that allows non–
rigid transformation for volumetric data to establish
the proper alignment with a sparse number of two–
dimensional projections.

The key issue of nonrigid 2D-3D registration is
how to define the distance measure between 3D data
and 2D projection. In this work, we use the idea
that comes from algebraic reconstruction theory to
handle this problem. One distinguish viewpoint of
this paper is that the 2D-3D registration problem
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can be somehow regarded as in a certain “recon-
struction” procedure, in which the volumetric data
is the initial volume and the reference 2D images
are used to further “reconstruct” the volume. How-
ever, instead of updating the intensity values of the
floating volume as a common reconstruction pro-
cedure, we use the residual of the algebraic recon-
struction to drive the registration equation to find
the appropriate spatial transformation. It means that
we integrate algebraic reconstruction technique into
variational registration framework, so that the 3D
displacement field is driven to minimize the “re-
construction distance” between volumetric data and
those two–dimensional projections.

The paper is organized as following. Firstly, we
briefly introduce the non–rigid registration method
and the algebraic reconstruction. Then, we combine
these two techniques in a uniform framework to
handle the 2D-3D registration problem. Finally, we
verify our approach via experiments on both phan-
tom data and a real 3D reconstructed medical image
with a synthetic deformation.

2 Mono–dimensional registration

In this section we briefly introduce the framework
of the intensity–based nonrigid registration of same
dimensional images. Here, two volumetric data are
given, template volume T (x) and reference volume
R(x). For simplification, the intensities of image
data have been scaled into ]0, 1[. The mathematical
description of mono–dimensional registration prob-
lem is to find a displacement field u : R

d → R
d,

such that

J [u] := D[R, T ; u] + αS[u] = min (1)

The distance measure D indicts the dissimilarity
between two volumes. E.g., sum of squared dif-
ferences (SSD) is one of the most popular distance
measures for monomodal registration problems. It
is defined as:

DSSD[R, T ; u] :=

1

2

Z

Ω

(T (x − u(x)) − R(x))2 dx (2)

The regularizer S in Eq.(1) is added as the rem-
edy for the arbitrary irregularity of transformation.
Many regularizers have been proposed by literature

[8]-[12]. Here we employ the curvature regularizer,
which is defined as:

Scurv[u] :=
1

2

d
X

l=1

Z

Ω

(∆ul)
2

dx (3)

According the theory of variational calculus, the
optimal u(x) in (3) is characterized by the related
Euler–Lagrange equation

f(x, u(x)) + α∆2[u](x) = 0. (4)

f(x, u(x)) is called external force term, which is
computed from the intensity of images after trans-
formation. It drives the algorithm to search for
the optimal displacement u(x) that aligns images.
Mathematically, f(x, u(x)) is the Gâteaux deriva-
tive of distance measure D in (1). For the SSD dis-
tance measure, the force can be computed as fol-
lowing,

f = D
I
u · ∇T (x − u(x)) (5)

Here ∇T (x − u(x)) is the gradient vector field
of transformed image. It contains the structure in-
formation of the underlying objects and determines
the direction of the force term. DI

u = (R(x) −
T (x−u(x))) is the substraction of two images’ in-
tensities. It can be understood as a signed distance
between [−1, 1]. If two mono–modal images are to
be aligned, this factor DI

u will approach to 0 and the
force will nearly vanish. An O(N log N) numeri-
cal scheme for equation (4) was designed in [12].

The conventional mono–dimensional non–rigid
registration techniques are not applicable in 2D-3D
registration problem, because their distance mea-
sures (like SSD) fail to express the dissimilarities
between 3D volume and 2D projections.

3 Nonrigid 2D-3D registration

The 2D-3D registration can be defined as following.
We have the floating volume T and a number of 2D
projections Rφ’s. Here φ = 0, ..., Φ and Φ is the
number of projections. Given the projection model,
the task of nonrigid 2D-3D registration is to find
the 3D displacement u(x) that align the volume T

to the 2D projections Rφ’s.
In order to solve 2D-3D registration under varia-

tional framework, we need to find a proper distance,
let’s say DR

u , to take place the DI
u in (5), which

666

Manuscript



describes the dissimilarity between the 2D-3D im-
ages. Such distance need to fulfill following crite-
rion:

• DR
u must be bounded.

• The value of DR
u can indicate a signed distance

between T and Rφ’s.
• If the Rφ’s are the projections of the T , DR

u =
0.

In this paper we propose the residuals between
2D projections and 3D volume as this signed dis-
tance. The residuals terms are extensively used in
the iterative reconstruction approaches, e.g., Cim-
mino’s simultaneous projection method [17] or
Censor and Gordon’s component averaging alge-
braic reconstruction schemes [14]. Different alge-
braic reconstruction techniques (ART) have differ-
ent residual weighting terms. But all the residuals
satisfy previous three criterion of DR

u . In the fol-
lowing, we introduce the relevant knowledge about
algebraic reconstruction, then present the new 3D
force term based on residuals and give the overall
algorithm finally.

3.1 Algebraic Reconstruction Technique

For the ease of presentation we serialize T into a
vector ~t according to lexicographical ordering. The
projections Rφ’s are also serialized into one vector
in following way:

~r = (~r1, ~r2, . . . , ~rΦ) =

(R1,1, . . . , Rm,1, · · · , R1,Φ, . . . , Rm,Φ)> ∈ R
mΦ

Each ~rφ is the lexicographical ordering vector of
the projection φ. And m is the number of observed
intensities in each projection image.

The task of algebraic image reconstruction is to
solve the equation system

A~t = ~r (6)

where the (mΦ × N )-matrix A = (ai,j) defines
the projection geometry of a C-arm system or CT-
scanner. Each ai,j element represents the contribu-
tion of the jth voxel to the ith ray during the casting
of an X-ray through the human body. Several pro-
jection models are proposed by literature to deter-
mine the ai,j coefficients [15], [19]. In this work we
employ the fast alpha-clipping algorithm [16]. The-
oretically those more sophisticated projector mod-
els can also be used in this framework.

Many efficient algorithms are proposed for this
large, sparse and unstructured problem. An excel-
lent survey of these algorithms is given in [18]. In
these reconstruction techniques, the 3D image ~t is
usually initialized with zeros. In each iteration, ev-
ery voxel has an individual relaxation residual that
updates its intensity value. The reconstruction pro-
cess stops when

‖A~t
k − ~r‖ < ε. (7)

The relaxation can be seen as a driving force in the
reconstruction, whose value indicate scale signed
“distances” between 3D image and observed pro-
jections. Ideally, when the observed 2D images are
exactly the projections of the volume, the residuals
on every voxels vanish. This strike property inspires
us to use residuals to build up the external force for
the 2D-3D registration equation.

3.2 2D-3D Distance using Mean Relax-
ation

In this work we use Censor and Gordon’s compo-
nent averaging (CAV) technique [14] to define the
signed distance DR

u ∈ R
3. For the jth voxel, it is

defined as

D
R
j (x, u(x)) =

λ

Φ

Φ
X

φ=1

m
X

i=1

a
φ
i,j

ri,φ(x) − 〈~ai,φ,~t(x − u(x))〉
n

P

l=1

s
φ

l |a
φ

i,l|
2

. (8)

where ai,φ is the ith row of A
φ whereas A

φ only
contains the rays from projection φ, s

φ

l the num-
ber of non-zero elements in the lth column of A

φ

and λ ∈ R is a relaxation factor. The 2D resid-
ual eR

i,φ := ri,φ(x) − 〈~ai,φ,~t(x − u(x))〉 between
the projection of the deformed template and the ob-
served reference image is averaged by the compo-
nents (ai,j) and back projected into 3D. DR

u is then
the mean relaxation (distance) between ~t and ~r for
all given reference images. The convergence of the
voxel relaxation in the CAV guarantees that DR

u is
bounded value [17]. Thus the new relaxation force
fR ∈ R

3 is defined as

f
R(x, u(x)) = D

R
u · ∇T (x − u(x)). (9)

The modified Euler–Lagrange equation becomes

f
R(x, u(x)) + α∆2[u](x) = 0. (10)
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With such relaxation force term, this equation
characterizes the optimal 3D displacement field that
minimizes the relaxation distance. At same time,
it has same form with the original Euler–lagrange
equation of 3D-3D registration problem. Thus we
apply the same scheme in [12] to solve the equa-
tion (10). The non–rigid 2D-3D registration algo-
rithm is summarized as following.

Algorithm 1 Nonrigid 2D-3D registration
%Initialization
u(k) = 0.
for k = 0, 1, ... do

Compute DR,(k)(x, u(x)) using (8)
Compute fR,(k) using (9).
Compute u(k+1) via solving Eq (10).

end for

4 Experiments

Experimental results are presented on artificial 2D-
3D phantoms and real 3D DSA data. For the experi-
ments we resampled all volume data to 64×64×64
and the projection images to 128×128. The projec-
tion geometry for each X-ray image is given from a
real C-arm system. This projection geometry has
been estimated in a calibration step. We use only
monomodal image data in our experiments.

The relative error ε(k) between the ground truth
template image T GT and the deformed template
image T (x − u(x) is defined as

ε
(k) :=

1
N
P

j=1

|T GT
j |

N
X

j=1

|T
(k)
j (x − u(x)) − T

GT
j |

(11)
and the 2D-3D distance D̃ with

D̃
(k) :=

1

N

N
X

j=1

(DR
j (x, u(x)))2 (12)

4.1 Phantom

We first evaluate the 2D-3D registration on a
sphere-cube phantom as shown in fig. 2, 1. We reg-
ister a 3D cube with digitally reconstructed radio-
graphs (DRRs) from a sphere. For practical appli-
cation it is important to show that it works also with
a very sparse number of projection images. Figure

3 shows the relationship between the 2D-3D relax-
ation distance and the number of projection images.

3D-cube 2D-sphere projection

Figure 1: 3D-cube/2D-sphere phantom

We can verify on the phantom data (fig. 2) that
even for Φ = 2, 3 reference images the computed
deformation field (fig. 2) is smooth and the cube is
deformed into a sphere (fig. 4). The deformation
field using Φ = 3 reference images is more precise
than the one using only Φ = 2 (approximately or-
thogonal) projections. The relaxation distance (fig.
3) for Φ = 6 reference images (unique distributed
projection angle) is also smoother and a more repre-
sentative dissimilarity than the one computed with
Φ = 2 projections. Both the relative error ε(k) and
D̃(k) decrease with an increasing number of itera-
tions (fig. 5, 6). In conclusion we can say that for
Φ = 4, 3 and even 2 projections we got an impres-
sive match of the 3D cube and the sphere projec-
tions.

4.2 Medical Data

To evaluate the 3D deformation field using medical
data we use a real 3D DSA image that was recon-
structed via Filtered Backprojection and add a non-
rigid deformation. The image contains with contrast
agent filled vessels (white). Thus we do not have
real fluoroscopic images we compute the DRRs
from the vessel image before the 3D-deformation
and register afterwards the synthetic deformed DSA
image with the DRRs. The result is shown and dis-
cussed in fig. 9, 10, 8 and 7.

5 Discussion

5.1 2D-3D Distance

The quality of the 2D-3D distance depends on Φ,
the number of reference images used for the DR

u
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computation and the corresponding projection an-
gle distribution of the reference images. Obvi-
ously a uniform distribution of the projections over
180 degree around the body will provide a bet-
ter distance meassure than a non-uniform and lim-
ited angle distribution. However could we even
achieve promising results with phantom data using
only two approximately orthogonal aligned refer-
ence images. To achieve satisfactory results with
real data more than two projections are required. In
practice can the registration start with two projec-
tions and additional acquired projections during the
intervention can be added sequencially.

5.2 Projector Model

The alpha-clipping projector model we used in our
experiments is fast, but also one of the simplest one
that introduce artifacts to the projection. These arti-
facts affect the quality of the relaxation distance in
a negative manner. This can be improved by using
a more sophisticated projector model [15]. Recon-
struction artifacts in the pre-reconstructed template
image may also cause problems, depending on the
strength of these artifacts. The relaxation distance
depends also on the residuals eR

i,φ of the computed
volume projections and the acquired projection im-
ages from the physical X-ray scanner. Here we sug-
gest applying a denoising of noisy low contrast flu-
oroscopic images before computing the relaxation
distance.

5.3 Image Modality

The current approach is limited to monomodal reg-
istration, but reformulating the iterative algebraic
reconstruction to a statistical representation [18] -
maximum likelihood algorithms (RAMLA) - the re-
laxation distance may extended to a multi-modal
registration scheme.

6 Summary

The 2D-3D registration problem can be classified
into two problem models:

1. Projection of the 3D template A~t and comput-
ing the 2D-3D distance and deformation field
in 2D.

2. Backprojection of 2D residuals by inversion of
A

†~r into 3D and computation of a 3D distance
and deformation field.

In this paper we address the second problem model.
We use Censor and Gordon’s CAV reconstruction
technique to backproject the 2D dissimilarity into
3D. The substitution of the mono-dimensional force
term (5) with a 2D-3D force term (9) allows to deal
with the non-rigid 2D-3D registration problem like
a 3D-3D registration. A large benefit of this tech-
nique is the usability of well studied existing non-
rigid 3D-3D registration approaches.

References

[1] Gueziec, A., “Assessing the registration of CT-
scan data to intraoperative x-rays by fusing x-
rays and preoperative information”, Proced-
ing SPIE Medical Imaging’99, p. 3661-3688.

[2] Feldmar, J., N. Ayache and F. Betting, “3D-
2D projective registration of free–from curves
and surfaces”, 1994, INRIA, France.

[3] Hamadeh, A., et al., “Towards automatic reg-
istration between CT and X-ray images: co-
operation between 3D/2D registration and 2D
edge detection”, in 2nd Annual Internaltional
Symposium on MRCAS, 1995. Baltimore,
MD USA.

[4] Weese, J., et al. “An Approach to 2D/3D Reg-
istration of a Vertebra in 2D X-ray Fluoro-
scopes with 3D CT Images”, in Computer Vi-
sion and Virtual Reality in Medicine II - Med-
ical Robotics and Computer Assisted Surgery
III, 1997, France.

[5] LaRose, D., “Iterative X-ray/CT registra-
tion using accelerated volume rendering”, in
Robotics Institute, 2001, Carnegie Mellon
University.

[6] Zollei, L., “2D-3D rigid registration of X-ray
fluoroscopy and CT images using mutual in-
formation and sparsely sampled histogram es-
timators”, in IEEE CVPR, 2001.

[7] Yao, J., et al. “Assessing accuracy factors in
deformable 2D/3D medical image registration
using a statistical Pelvis model”, in Proceed-
ings of the Ninth IEEE International Confer-
ence on Computer Vision (ICCV 2003) 2-
Volume.

[8] Broit, C. Optimal registration of deformed im-
ages, Ph.D Thesis, Computer and Information
Science, Uni Pensylvania, 1981.

[9] Morten, B., Medical image registration and
surgery simulation, Ph.D Thesis, IMM, Tech-

666

Manuscript



nical University of Denmark, 1996.
[10] Christensen, G., Deformable shape models

for anatomy, Ph.D Thesis, Sever Institute of
Technology, Washington University, 1994.

[11] Fischer, B. and Modersitzki, J. Fast diffustion
registration, AMS contemporary Mathemat-
ics, Inverse Problems, Image Analysis, and
Medical Imaging, vol. 313, 2002, pp: 117-
129.

[12] Fisher. B and J. Modersitzki, “Curvature
based image registration”, JMIV 18(1), 2003.

[13] Y. Censor and T. Elfving, “Block-Iterative
Algorithms with Diagonally Scaled Oblique
Projections for the Linear Feasibility Prob-
lem”, SIAM Journal on Matrix Analysis and
Applications, vol. 24, number 1, p. 40-58,
2002.

[14] Y. Censor and D. Gordon and R. Gordon,
“Component averaging: An efficient itera-
tive parallel algorithm for large and sparse
unstructured problems”, Parallel Computing,
vol. 27, pp. 777-808, 2001.

[15] K. Mueller and R. Yagel and J. J. Wheller,
“Fast Implementation of Algebraic Meth-
ods for 3D Reconstruction from Cone-Beam
Data”, IEEE Trans. Med. Imaging, Vol. 18,
No. 6, pp. 538-548, 1999.

[16] J. D. Foley and A. van Dam and S. K. Feiner
and J. F. Hughes, “Computer Graphics: Prin-
ciples and Practice in C”, isbn 0201848406,
1995, Addison-Wesley Professional.

[17] M .Jiang, G. Wang, “Convergence studies
on iterative algorithms for image reconstruc-
tion”, IEEE Trans Med Imaging. 2003 May,
Vol. 22 No. 5, pp. 569-79.

[18] M .Jiang, G. Wang, “Development of iterative
algorithms for image reconstruction”, Journal
of X-Ray Science and Technology Vol. 10,
2002, pp. 77-86, IOS Press.

[19] P. E. Danielsson and M. Magnusson Seger
“Combining Fourier and iterative methods in
computer tomography. Analysis of an iteration
scheme. The 2D-case”, Dept. EE, Linköping
University, Oct. 2004, No. LiTH-ISY-R-2634,
SE-581 83 Linköping, Sweden.
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Figure 2: 3D-2D cube-sphere registration after k it-
erations (λ = 1.5, τ = 2, α = 5, center volume
slice of deformed 3D-template).666
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k = 0, Φ = 6 k = 69, Φ = 6

k = 0, Φ = 4 k = 49, Φ = 4

k = 0, Φ = 2 k = 99, Φ = 2

Figure 3: 3D-2D cube-sphere relaxation distance
DR(x, u(x)) after k iterations (λ = 1.5, τ =
2, α = 5, center volume slice).

Figure 4: Rendered 3D-cube template (cube with
small rectangular hole inside; see fig. 2) after reg-
istration with 2D-sphere projections. The rectangu-
lar hole is almost closed inside the defomed cube
(k = 99, Φ = 4, λ = 1.5, τ = 2, α = 5).
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Figure 5: Relative error ε(k) (11) between T GT and
T (k)(x − u(x)).

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0  2  4  6  8  10  12

2D
-3

D 
Di

st
an

ce

Iterations

7 projections

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0  2  4  6  8  10  12

2D
-3

D 
Di

st
an

ce

Iterations

7 projections
4 projections

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0  2  4  6  8  10  12

2D
-3

D 
Di

st
an

ce

Iterations

7 projections
4 projections
2 projections

Figure 6: 2D-3D distance D̃(k) (12) after k itera-
tions (λ = 1.5, τ = 2, α = 5).
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Figure 7: Relative error ε(k) (11) between T GT and
T (k)(x − u(x)).
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Figure 8: 2D-3D distance D̃(k) (12) after k itera-
tions (λ = 1.5, τ = 2, α = 5).
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Figure 9: Top: orthogonal projection of the defor-
mation field u(x) of the center volume slice. Bot-
tom: difference image T GT − T (x − u(x)) . The
non-rigid deformation between the reference and
template is about five voxel in diagonal volume di-
rection ( λ = 1.5, τ = 25, α = 5). The computed
deformation field represents the synthetic applied
non-rigid diagonal deformation direction.

Reference Template

k = 199, Φ = 50 k = 100, Φ = 50

k = 0, Φ = 50 k = 1, Φ = 50

k = 100, Φ = 50 k = 199, Φ = 50

Figure 10: Top: reference and template center vol-
ume slice (cvs). The added non-rigid deforma-
tion is about six voxel in diagonal volume direc-
tion. The two vessels appear merged in the cvs
because there is a branch. 2nd row: after regis-
tration are the vessels moved back such that both
vessels are shown seperately in the cvs. 3nd row:
difference image (left) and DR

u of cvs (right). Bot-
tom: difference image and DR

u after k iterations
(λ = 1.5, τ = 25, α = 5).

666

Manuscript




