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Abstract

In this article we present a new appearance-based approach for the classification and the localization of 3-D objects in
complex scenes. A main problem for object recognition is that the size and the appearance of the objects in the image vary for
3-D transformations. For this reason, we model the region of the object in the image as well as the object features themselves
as functions of these transformations. We integrate the model into a statistical framework, and so we can deal with noise
and illumination changes. To handle heterogeneous background and occlusions, we introduce a background model and an
assignment function. Thus, the object recognition system becomes robust, and a reliable distinction, which features belong to
the object and which to the background, is possible. Experiments on three large data sets that contain rotations orthogonal to
the image plane and scaling with together more than 100 000 images show that the approach is well suited for this task.
� 2005 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

For many tasks the recognition of objects in images is
necessary, for example for visual inspection or for automatic
detection of objects. In doing so, mostly the class as well as
the pose of the object have to be estimated. One main aspect
in object recognition is that the appearance as well as the size
of the objects vary under 3-D transformations, i.e. scaling
or rotations orthogonal to the image plane. An example is
shown in Fig. 1. Therefore the appearance of the objects
has to be stored for the different, possible viewpoints in a
proper way. Especially the large data size has to be reduced.
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Furthermore, for real recognition tasks one has to deal with
the following problems: often the illumination changes, the
objects are situated in heterogeneous background and are
partially occluded. A robust object recognition system has
to handle these disturbances and has to guarantee a reliable
recognition in spite of that.

1.1. Related work

There are two main approaches for object recognition.
First, there exist approaches that apply a segmentation
process and use geometric features like lines or vertices as
features, e.g. Refs.[1–6]. But these methods suffer from
segmentation errors, and they have problems to deal with
objects that have no distinct edges. Therefore many authors,
e.g. Refs.[7–14], prefer the second method, the appearance-
based approach. Here, the features are directly calculated
by the pixel intensities without a previous segmentation
process.
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Fig. 1. Different viewpoints for a stapler. The fixed region that encloses the stapler for all viewpoints distributed on a hemisphere is plotted.
For cluttered background a lot of background features are counted to the stapler.

The several appearance-based approaches differ in the
way they handle 3-D transformations, in the following we
will call these transformationsexternal transformations.
Some authors, who only want to classify objects, eliminate
the pose information and model the varying features for
example byGaussian mixtures[10]. More often the so-
calledview classesare applied, e.g. Ref.[8]. Here adjacent
viewpoints with similar appearance of the object are sub-
sumed to one view class, and an object is represented by
several view classes. Therefore, even for these methods the
pose of the object cannot be estimated exactly. Only the
respective view class can be estimated as for example for
the multidimensional reception field histogramsof Schiele
and Crowley[8]. Besides, if the appearance of the object
varies a lot due to the external transformations, many view
classes are necessary. In contrast, there are only a few au-
thors, e.g. Refs.[7,9,11,12,14], who model the appearance
as well as the pose of an object. So, they can estimate the
class and the pose of an object. The most famous method
is the parametric eigenspaceby Murase and Nayar[7].
Bischof et al. [14] improved its robustness for illumina-
tion changes by using gradient-based filters, Borotschnig
et al. [9] and Gräßl et al.[12] extended it by a statistical
framework.

However, for real environments one has to consider that
the objects are often situated in cluttered background and
are partially occluded. Then, both the features at the border
of the object and of the occluded part of the object change.
The features at the border of the object vary, because the
features are mostly calculated from the pixels of a small
local region. Simple models for the object cannot handle
these problems. For this reason, some authors, e.g. Ref.[15]
for the eigenspace approach, try to findn (out of the to-
tally N) object features that are not affected. For the recog-
nition they only consider thesen features and disregard the
otherN − n features. Since for this method there is the risk
to confuse similar-looking objects, other authors, e.g. Refs.
[11,16], consider all features and employ an explicit back-
ground model with an assignment. For this purpose, many
authors, e.g. Refs.[11,16], use a priori knowledge about the
background during recognition. This might be an advantage,
if the background is known a priori and varies only less.
But for the recognition of objects in arbitrary environments,
these conditions are rarely fulfilled.

But the described approaches share all the same problem:
they model the varying appearance of the object, but they
do not take into account that also the size of the object in
the image varies due to the external transformations. Mostly,
they employ a fixed bounding box or fixed arbitrary formed
region. They choose its size so that the object resides for
all external transformations inside this region. Further, they
define that all features inside this region belong to the object,
as for example for the eigenspace approach. But, for many
viewpoints this region is much bigger than the object and
encloses plenty of background features, as one can see in the
right image ofFig. 1. In this case, a reliable recognition is
not possible, even if the background is modelled explicitly.
If only that region in the image is chosen that belongs for
all external transformations to the object, e.g. Ref.[17], this
region might be too small for a reliable recognition. The use
of view-classes can reduce the problem, but cannot solve it.

1.2. Our approach

We model both the appearance of the object—represented
by local feature vectors derived by the multiresolution
analysis—and also its size in the image (in the follow-
ing called bounding region) as functions of the external
transformations[18]. So, the bounding region encloses the
object tightly for all external transformations. In doing so,
as many object features and as few background features
as possible are considered for the object. Therefore, even
if the size of the object varies a lot due to the external
transformations, a reliable recognition is possible.

To formulate the dependence on the external transforma-
tions, we approximate the bounding region and the object
features by sums of weighted continuousbasis functions.
This representation has a lot of advantages: we can han-
dle also viewpoints between the trained viewpoints. A pose
estimation is possible. Finally, by the use of trigonometric
functions as basis functions the data size can be reduced
strongly. So, we can deal with external rotations as well as
a scaling.

To make the system robust with respect to camera noise
and illumination changes, we apply a statistical framework:
the object features are modelled statistically by normal
distributions and the objects are represented by density
functions.



ARTICLE IN PRESS
M.P. Reinhold et al. / Pattern Recognition ( ) – 3

To deal with cluttered background and partial occlusions,
we model the background explicitly by a uniform distribu-
tion. Further, we define anassignment functionthat assigns
each local feature vector inside the bounding region either to
the object or to the background. For the background model
and the assignment function no a priori knowledge is neces-
sary, and each possible background can be handled. By this
framework, even for complex scenes, a reliable localization
and classification is possible.

In the following section we present our object model for
homogeneous background. Particularly, we describe, how
we model the bounding region and the features as functions
of the external transformations, and how we integrate them
into a statistical framework. In Section 3, we outline our
background model, and in Section 4 we present experiments
on three databases that comprehend two and three external
transformations. The experiments are performed on homo-
geneous as well as on heterogeneous background and by
partial occlusion. Finally, we end with a summary and an
outlook in Section 5.

2. Object model

In the following subsections, firstly we will explain
the model for one object class. If there are several object
classes—like for example for the classification in Section
2.6—for each object class the respective parameters have

O
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φ    ext,textφ

φ ∼
cm = c(xm)∼

Fig. 2. Left: the image is covered by a grid for the local feature vectorsc(xm̃), the bounding regionO encloses the object tightly. Object
grid and bounding regionO for internal transformations�int and tint (middle) and for external transformations�ext and text (right).
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Fig. 3. An example of the wavelet multiresolution analysis. Here it is performed two times. Each time the left upper quadrantbs that
contains the low frequencies is filtered in a quadrantbs+1 with lower frequencies and three quadrantsd0...2s+1 that contain the higher
frequencies ofbs .

to be trained. In that case we will mark these parameters
with the index� for the class.

2.1. Features

In our approach, we employ local feature vectors and
represent an object by a set of local features. The main
advantage of local feature vectors is that a local disturbance,
e.g. noise or occlusion, only affects the local feature vectors
in a small region around it. All the other local feature vectors
are unchanged. In contrast to this, a global feature vector
can totally change, if only one pixel in the image varies.

For the calculation of these feature vectors, we lay a grid
with the grid sizers=2s , wherebys is the index for the scale,
on the quadratic imagef, as one can see in the left image
of Fig. 2. In the following we will summarize these grid
locations asX = {xm̃}m̃=0,...,M−1, xm̃ ∈ R2. On each grid
point xm̃ a two-dimensional local feature vectorc(xm̃) is
calculated. For this purpose we perform, corresponding to
the chosen resolutionrs , s-times the wavelet multiresolution
analysis[19] (seeFig. 3) using Johnston 8-TAP wavelets
[11]. The coefficients of the local feature vectorsc(xm̃) are
computed by

c(xm̃) = cm̃ =
(
cm̃,1
cm̃,2

)
=

(
ln |bs,m̃|
ln(|d0s,m̃| + |d1s,m̃| + |d2s,m̃|)

)
. (1)
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This means, the first componentcm̃,1 of a local feature vec-
tor is derived by the low-pass coefficient of the wavelet
transformation at the respective positionbs,m̃. The second
componentcm̃,2 is derived by the respective first high-pass
values that contains information about discontinuities, e.g.
edges. We disregard the higher frequencies; thus, the data
size is reduced, and especially the noise that is mostly lo-
cated at high frequencies is filtered out.

2.2. Object region in the image—bounding region O

For the object model we want to consider only those lo-
cal feature vectors in the image that belong to the object
and not to the background. Since the object normally takes
only a small part of the whole, we define a tightly enclos-
ing bounding regionO ⊂ X. Subsequently, theNO feature
vectors inside this bounding regionO are counted to the
object. In the following they will be calledobject feature
vectorscO,m; the set of these object feature vectors is de-
noted asCO . The training of the bounding regionO will be
described later in Section 2.5.

For the simpler case, when the object is only rotated by
�int ∈ R and translated bytint ∈ R2 inside the image plane,
the appearance of the object does not change. For these
transformations, in the following calledinternal transfor-
mations, the size of the bounding regionO can be modelled
as fixed and can be trained by one image of the object. The
bounding regionO is moved with the same transformations
as the object itself (see image in the middle ofFig. 2). Also,
the object grid inside the bounding region—marked by the
bold points inFig. 2—is transformed in the same way. The
new positionsxm of the object grid are calculated by

xm = R(�int)xm̃ + tint, (2)

wherebyR(�int) ∈ R2×2 is the rotation matrix. If the po-
sitionsxm of the object grid do not coincide with the posi-
tionsxm̃ of the image grid, the object feature vectorscm on
the transformed positionsxm are interpolated of the adja-
cent image feature vectorscm̃.

For the more difficult case, when the object is transformed
by the external transformations�ext ∈ R2 andtext ∈ R, the
size of the object in the image varies; i.e. for some external
transformations a feature vectorcm belongs to the object,
for other external transformations it belongs to the back-
ground. Therefore, we model the size of the bounding region
O as function of these external transformations (see right
image inFig. 2). Thus, it can be warranted that the bounded
region encloses the object tightly for all transformations as
postulated in the Introduction. To formulate this dependency
mathematically, we define for each local feature vectorcm a
function�m(�ext, text). It assigns the feature vectorcm de-
pending on the external transformations to the bounding re-
gion O, i.e. to the object, or to the backgroundX\O. These
functions�m(�ext, text) are trained by images of the object
for different viewpoints. To handle also viewpoints between

the discrete training viewpoints and to reduce the data size,
we model these functions�m(�ext, text) as continuous func-
tions ofN� basis functionsvr with:

�m(�ext, text) =
N�−1∑
r=0

a�,m,rvr , (3)

which will be explained in detail in Section 2.5.
Note, during the recognition phase the size of the bound-

ing regionO for a pose is calculated by these trained func-
tions �m(�ext, text). Therefore, no segmentation is neces-
sary during the recognition. See Section 2.6.

2.3. Statistical model

To handle illumination changes and low-frequency noise,
we interpret the local feature vectorscm as random vari-
ables and apply a statistical model. First, we assume that
the object feature vectorscO,m inside the bounding region
O are statistically independent of the features vectors out-
side the bounding region. Therefore we can disregard the
feature vectors outside the bounding regionO for the object
model. Further, we suppose that the single object feature
vectorscO,m and their components are statistically indepen-
dent and normally distributed. We decided for this simple
model, although in reality neighboring object feature vectors
cO,m might be statistically dependent. But considering the
full neighborhood relationship, e.g. by a Markov Random
Field, leads to a very complex model. Modelling a depen-
dency between neighboring object feature vectors in a row
[11] gave worse results than the assumption of statistical
independence. Besides, by the statistical independence non-
uniform illumination changes can be handled very well, for
example when the direction of the lighting varies and some
parts of the object get brighter, whereas on the same time
other parts get darker.

Thus, an object can be described by the probability density
p to observe the object featurescO,m:

p(CO |B,�, t) =
∏

xm∈O
p(cm|�m, �m,�, t)

=
∏

xm∈O

∏
q=1,2

p(cm|�m,q, �m,q,�, t), (4)

where� = (�ext,�int)
T, t = (text, tint)

T and the parame-
ter B comprehends the trained means�m = (�m,q)q=1,2
and trained standard deviations�m = (�m,q)q=1,2 of the
componentscm,q of the feature vectors. In the following
p(CO |B,�, t) in Eq. (4) will be calledobject density p.
Note: Because of the flexible size of the bounding region
O, it depends on the external transformations�ext andtext,
which feature vectors are taken into account for the object
densityp(CO |B,�, t).

If there are only internal transformations, the means�m,q

and standard deviations�m,q of the feature vectorscm are
constant, because the appearance of the object does not
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change. But under external transformations the appearance,
also the means�m,q vary. So, we model�m,q as functions of
the external transformations:�m,q = �m,q(�ext, text). Sim-
ilar to the functions�m(�ext, text), they are trained by im-
ages from different viewpoints, and they are represented as
sum ofN� weighted continuous basis functions:

�m,q(�ext, text) =
N�−1∑
r=0

a�,m,q,rvr . (5)

In contrast to �m,q we model the standard devia-
tions �m,q as constant: for the chosen features the
standard deviation �m,q is approximately indepen-
dent of the external transformations, when the bright-
ness of the illumination changes uniformly. Also for
other illumination changes, this assumption gives good
results.

2.4. Modelling the external transformations

In the last two subsections we mentioned that we model
the bounding region functions�m(�ext, text) (Eq. (3)) and
the means�m,q(�ext, text) (Eq. (5)) as functions of the ex-
ternal transformations. In this subsection we will explain this
in detail. Although we have only discrete viewpoints for the
training, we model�m and �m,q as continuous functions,
because in reality they are continuous. So, we can handle
viewpoints between the trained viewpoints and estimate the
respective transformations exactly. Besides, the data size can
be reduced, because we only need to store the coefficients
of the approximation functionsvr and not the single views.

We apply trigonometric functions as basis functionsvr .
The trigonometric functions are well established in function
approximation even for several degrees of freedom[20]. By
these functions we can model a scalingtext as well as rota-
tions�ext. Also, a periodic rotation like a turntable rotation
can be represented. Furthermore, they are approved in im-
age compression and coding[21]. Therefore, even complex
objects can be described by a low number of basis functions.

For a periodic transformation, like a 360◦ turntable rota-
tion �table, we use the sine–cosine-decomposition. So, for
the basis functionsvr of Eqs. (3) and (5) are (in this exam-
ple for one external degree of freedom denoted asz):

vr (z) =
{1 for r = 0,

cos((r + 1)/2 · z) for r = 2i − 1,
sin(r/2 · z) for r = 2i,

(6)

with i ∈ N and 0�r�N� − 1 (Eq. (3)), respectively,
0�r�N� − 1 (Eq. (5)). For a non-periodic transformation
like a scalingtext or a rotation�<180◦, we employ only
the cosine-decomposition (also in this example for one ex-
ternal degree of freedom denoted asz):

vr (z) = cos(r�z/ZT ), (7)

wherebyZT is the maximal range of the transformation.
This implies that the function is reflected onz = 0 and so
gives an even function with a period of 2ZT .

Since these decompositions are separable for several di-
mensions, it is easy to extend them to two or three dimen-
sions. For example, if there is a full, i.e. 360◦, turntable ro-
tation �table, modelled by 5 basis functions, and a scaling
text with the maximal transformation rangeZT , modelled
by 3 basis functions, we get the following 5× 3= 15 basis
functions, concatenated as vectorv:

v = (v0 v1 · · · v14)
T

=

( 1 cos(�text/ZT ) cos(2�text/ZT )

cos(�table) cos(�table) · cos(�text/ZT ) cos(�table) · cos(2�text/ZT )

sin(�table) sin(�table) · cos(�text/ZT ) sin(�table) · cos(2�text/ZT )

cos(2�table) cos(2�table) · cos(�text/ZT ) cos(2�table) · cos(2�text/ZT )

sin(2�table) sin(2�table) · cos(�text/ZT ) sin(2�table) · cos(2�text/ZT ) )T.

(8)

For three external degrees of freedom the extension is anal-
ogous.

To calculate the values of�m(�ext, text) and�m,q(�ext,

text), the basis functionsvr are employed in Eq. (3), respec-
tively, Eq. (5). We apply the same basis functionsvr for all
the functions�m(�ext, text) and �m,q(�ext, text), only the
coefficientsa�,m,r , respectively,a�,m,q,r vary. So, the func-
tion values�m(�ext, text) and �m,q(�ext, text) can be cal-

culated fast: for a given pose(�(�)
ext, t

(�)
ext ) of an object, the

basis functionsvr (�
(�)
ext, t

(�)
ext ) have to be evaluated only once

in advance, and for the single functions�m and�m,q the re-
spective coefficientsa�,m,r anda�,m,q,r are multiplied by
the already calculated values of the basis functions.

2.5. Training of the parameters

In the last subsections we explained the object model, now
we will describe the estimation of the model parameters,
especially the coefficientsa�,m,r anda�,m,q,r , by training
images of the object. Firstly, the bounding regionO will be
trained, and subsequently, based on it, the statistical param-
eters of the object model are estimated. We will explain the
training for the general case of arbitrary transformations. If
there are only internal transformations�int and tint and no
external transformationstext and�ext, the method will sim-
plify, because then�m and�m,q are constants.

2.5.1. Training of the bounding regionO
The coefficientsa�,m,r (Eq. (3)) of the bounding region

functions�m(�ext, text) are trained byNt,� images of the
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object taken from different viewpoints with the respec-

tive transformation parameters(�(�)
ext, t

(�)
ext ). The viewpoints

should be uniformly distributed over the whole trans-
formation space, and the distance between two adjacent
viewpoints should be small. In a first step, for each single
viewpoint the decision is taken, which local feature vectors
cm belong to the object and which to the background. If,
for example, the object is located in front of a darker back-
ground, this assignment can be performed by the following
simple threshold operation:

�̆m(�
(�)
ext, t

(�)
ext ) =


0 (background) for cm,1(�

(�)
ext, t

(�)
ext )

<Sc,

1 (object) for cm,1(�
(�)
ext, t

(�)
ext )

�Sc.

(9)

In Eq. (9), the surrogate function̆�m(�
(�)
ext, t

(�)
ext ) is only de-

fined on the discrete training viewpoints(�(�)
ext, t

(�)
ext ). The

thresholdSc is chosen manually, and it depends on the
brightness of the background and the object.

Now, these discrete functions̆�m(�
(�)
ext, t

(�)
ext ) are ap-

proximated by the continuous functions�m(�ext, text) =∑N�−1
r=0 a�,m,qvr . The coefficientsa�,m,q are computed by

minimizing the squared approximation error for the training
samples

â�,m = argmin
a�,m

Nt,�−1∑
�=0

�̆m(�
(�)
ext, t

(�)
ext) −

N�−1∑
r=0

a�,m,r v
(�)
r

2

.

(10)

Note, the numberN� of basis functions is much smaller
than the numberNt,� of training samples.

By the function approximation the values of�m(�ext, text)

are no longer restricted to the discrete values 0 and 1 of Eq.
(9), but each can take a value between 0 and 1. Therefore
we define a thresholdS� and use the following assignment
for calculating the bounding regionO for a given pose
(�ext, text):

xm ∈
{
X\O (background) for �m(�ext, text)<S�,

O (object) for �m(�ext, text)�S�.
(11)

A possible choice for the thresholdS� could beS� = 0.5,
the mean of the original values 0 and 1 in Eq. (9). In the
experiments in Section 4 we choose the lower value 0.35 for
S�, because so even for objects whose bounding region is
“difficult” to approximate the complete object reside inside
the bounding region.

This learned bounding regionO (for the chosenS�) is
used for the training of the means�m and standard deviations
�m as well as during the recognition process.

2.5.2. Training of the statistical parameters
After the training of the bounding regionO the statistical

parameters, i.e. the means�m, concatenated written as�,
and standard deviations�m, concatenated written as�, can
be estimated. For that purposeNt,� images from different
viewpoints are taken. As before, the viewpoints should be
uniformly distributed, and the distance between neighbor-
ing viewpoints should be small. For each viewpoint two or
more images with different illuminations should be used to
estimate the statistical parameters, especially the standard
deviation.

For each viewpoint(�(�)
ext, t

(�)
ext ) the respective trained

bounding regionO(�
(�)
ext, t

(�)
ext ) is calculated, and the density

about all observations is maximized:

(�̂, �̂) = argmax
(�,�)

Nt,�−1∏
�=0

p(C
(�)
O

|B,�(�), t(�)). (12)

Since the single feature vectorscm as well as their compo-
nents are assumed to be statistically independent, each mean
�m,q(�ext, text) and standard deviation�m,q can be calcu-
lated independently and Eq. (12) can be transformed to

(�̂m,q, �̂m,q)

= argmax
(�m,q ,�m,q )

∏
�

p(c
(�)
m,q |�m,q, �m,q,�

(�), t(�))

∀� : x(�)m ∈ O(�
(�)
ext, t

(�)
ext ). (13)

Note: Mostly, a feature vectorcm does not belong to the ob-
ject for all external transformations, so normally, the num-
berNt,�,m of training samples of this feature vectorcm is
smaller than the total numberNt,� of training images.

With �m,q(�ext, text)=∑N�−1
r=0 a�,m,q,r vr we can trans-

form Eq. (13) and get the following term for estimating the
coefficientsa�,m,q,r , concatenated written as vectora�,m,q :

â�,m,q = argmin
a�,m,q

∑
�

c
(�)
m,q −

N�,m−1∑
r=0

a�,m,q,r v
(�)
r


2

∀� : x(�)m ∈ O(�
(�)
ext, t

(�)
ext ). (14)

The numberN�,m of basis functions for�m has to be re-
duced, if the numberNt,�,m of training samples for a feature
vectorcm is very small.

The standard deviation�m,q can be estimated by the fol-
lowing maximum likelihood estimation:

�2
m,q = 1

Nt,�,m

∑
i

{
c
(�)
m,q − �m,q

(
�i

ext, t
i
ext

)}2

∀� : x(�)m ∈ A
(
�
(�)
ext, t

(�)
ext

)
. (15)

2.6. Localization and classification

By the described framework objects can be localized and
classified in images. For the classification, for each object
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(             )features ,t
cm∼

interpolate
cm

φ(ρ) (ρ) ξm,� ext , ≥ Sξφ(ρ)
ext
(ρ)t( )

�,m,q ext ,φ(ρ)
ext
(ρ)t( )

)(
⇒ xm ∈ O� ext,φ(ρ)

ext
(ρ)t( )

µ
=  ∑ r  a   ,�,m,q,r   rυ µ

,φ(ρ) (ρ)tp CO,� B� ,|

Fig. 4. Evaluation of the density function for one pose hypotheses(�(�), t(�)).

class�, with � = 1, . . . , K, an own object model is learned
as depicted in the last subsection. It comprises the bounding
regionO� (i.e. the functions��,m) and the statistical pa-
rameterB� (i.e.��,m and��,m). Consequently, each object
is represented by its density functionp(CO,�|B�,�, t).

The densityp(CO,�|B�,�
(�), t(�)) for a certain class

and a pose hypotheses(�(�), t(�)) is computed as shown
in Fig. 4: first, the feature vectorscm̃ are calculated as
described in Section 2.1. Subsequently, the respective

bounding regionO�(�
(�)
ext, t

(�)
ext ) is computed by the func-

tions�m,�(�
(�)
ext, t

(�)
ext ). Afterwards, the local feature vectors

cm are interpolated by the feature vectorscm̃ according

to the internal transformations (�(�)
int , t(�)int ), and the means

��,m,q(�
(�)
ext, t

(�)
ext ) are calculated by the basis functionsvr

according to the external transformations(�(�)
ext, t

(�)
ext ). Fi-

nally, the densityp(CO,�|B�,�
(�), t(�)) can be evaluated.

For a reliable localization and classification, it has to be
considered that the numberNO� of object vectorscO�,m de-
pends on the object and the viewpoint, i.e. it can vary
much. For the example inFig. 1 in the Introduction, the
stapler seen from the side takes about 8400 pixels in the
image, whereas seen from the front it only takes 4000 pix-
els. So a simple maximum likelihood estimation on the
density functionp(CO,�|B�,�, t) does not work: the den-
sity p(cm|��,m, ��,m,�, t) of a single object feature vector
cO�,m is normally smaller than 1. For this reason objects
and viewpoints with a small numberNO� of object feature
vectors are wrongly preferred, as we showed in Ref.[18].
Therefore, we normalize the density function by theNO� th
root, i.e. the geometric mean of the densities of the single
object feature vectorscO�,m. For the localization, when the
class of the object is known, we perform a maximum like-
lihood estimation over all possible transformations on the
normalized density function:

(�̂�, t̂�)

= argmax
(�,t)

NO,�

√
p(CO,�|B�,�, t)

= argmax
(�,t)

NO,�

√ ∏
xm∈O,�

p(cm|��,m, ��,m,�, t). (16)

For the classification, for each class� the potential pose
(�̂�, t̂�) is estimated analogous to Eq. (16), and the decision
is taken for the class� with highest density value:

(�, �̂, t̂)= argmax
�

NO,�

√
p(CO,�|B�, �̂�, t̂�)

= argmax
�

{
argmax
(�,t)

NO,�

√
p(CO,�|B�,�, t)

}
. (17)

2.6.1. Search algorithm
Normally, Eqs. (16) and (17) cannot be solved analyti-

cally. Therefore we apply a search algorithm. To speed it
up, the estimation of the potential pose(�̂, t̂) of each object
class is performed hierarchically. The algorithm starts with
a global searchon a coarse resolutionrsc , continued by a
local search. The result is refined on a finer resolutionrsf .

For the global search the expressions in Eqs. (16) and
(17) are evaluated on discrete points of then-dimensional
transformation space (n�6) spanned by the possible rota-
tions�= (�int,�ext)

T and translationst = (tint, text)
T. The

computationally expensive global search can be accelerated.
On the one hand, the search algorithms is very robust; so
thesearch gridcan be chosen very coarsely, for example for
a 360◦ turntable rotation�table a distance between the dis-
crete points��table= 10◦ is sufficient. On the other hand,
the algorithm can be strongly sped up by reusing already
calculated values[18]: the size of the bounded regionO�,
i.e. the values��,m, and the values of the means�m,q of the
local feature vectorscm depends only on the external trans-
formations�ext andtext and are independent of the internal
transformations�int and tint. Whereas the interpolation of
the feature vectorscm depends only on the internal transfor-
mations�int and tint. Further, for the internal translations
tint we translate the object grid according to the rotated co-
ordinates axes in steps respective to the resolutionrs . So,
each interpolated feature vector can be used for many inter-
nal translations and all external transformations, as visible
in the right image ofFig. 5. Consequently, we interpolate
the required area of the grid for each internal rotation�int
only once and store it. Then, we calculate the size of the
bounded regionO and the means�m of the local feature
vectorscm for each external transformation once and com-
bine it with the stored values of the interpolated grid. In



8 M.P. Reinhold et al. / Pattern Recognition ( ) –

ARTICLE IN PRESS

Fig. 5. Left: “naive” algorithm: for each possible internal trans-
formation all the feature vectors have to been interpolated; right:
“improved” algorithm: translating the object grid according the ro-
tated coordinates axes in steps respective to the resolutionrs , the
most feature vectors can be reused.

doing so, the global search can be accelerated, for example
by the factor 50–100 for the experiments in Section 4.

The result of this global search (on the discrete points
of the transformation space) is refined by a local search
(Downhill–Simplex algorithm[22]), first on the coarse res-
olution rsc and then on the finer resolutionrsf . Because of
the continuous basis functionvr , even every viewpoint be-
tween the trained viewpoints can be estimated.

3. Background model

The simple object model of the last section works well as
long as the objects are located in homogeneous background
and are not occluded. But for real recognition tasks, these
conditions are rarely fulfilled: the objects mostly reside in
cluttered background, and very often they are partially oc-
cluded, as one can see inFig. 6. Because of these reasons,
the object feature vectorscO,m at the border of the object
as well as of the occluded part of the object are changed.
Therefore, the object model of Section 2 does not fit for these
feature vectors, and the assumption that all feature vectors
cm inside the bounding regionO� belong to the object is
violated. Because of this reason we extend the object model,
to handle heterogeneous background and partial occlusion.

3.1. Background model and assignment function

The main points of this extension are the explicit
background modelB0 and theassignment function�� ∈
{0,1}NO� that assigns each feature vectorcm inside the
bounding regionO either to the background (��,m = 0) or
to the object (��,m = 1).

The background is modelled as uniform distribution over
all possible values of the feature vectors. The two main
advantages of this model are: firstly, a priori, i.e. during
the training of the objects, nothing has to be known about
the background in the recognition phase. Secondly, every
possible background can be handled by the same background

Fig. 6. Example of heterogeneous background and occlusion.

model. Besides, because of the uniform distribution, the
background densityp(cm|B0) is identical for all positions,
and thus it is independent of the transformations� and t.
The simple density functionp(CO,�|B�,�, t) for an object
(Eq. (4)) of the last section is extended, and now it comprises
also the background modelB0:

p(CO,�|B�,�, t) = p(CO,�|B0,B�,�, t). (18)

For the assignment function�� we assume that the a priori
probabilities for the assignment to the background and to
the object are equal. Therefore, no expensive training of the
a priori probabilities is necessary. During the recognition
process the assignment�� for a certain object and pose is
chosen so that the densityp(CO,�|B�,�, t) is maximized:

p(CO,�|B�,�, t) = max
��

p(CO,�|��,B0,B�,�, t), (19)

p(CO,�|B�,�, t)

⇒ �̂� = argmax
��

p(CO,�|��,B0,B�,�, t) (20)

herebŷ�� is called theoptimal assignment.
The assumption that also neighbored assignments

��,m are independent leads to

p(CO,�|B�,�, t)

=
∏

xm∈O
max
��,m

p(CO,�|��,m,B0,B�,�, t)

=
∏

xm∈O
max{p(cm|��,m = 0,B0),

p(cm|��,m = 1, �m, �m,�, t)}, (21)

p(CO,�|B�,�, t)

⇒ �̂�,m = argmax
��,m

{p(cm|��,m = 0,B0),

p(cm|��,m = 1, �m, �m,�, t)}. (22)

This means, the decision, whether a local feature vector
belongs to the background or to the object, is taken according
to the higher density value.
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featurescm∼ 

assignment:

ζ� ,m = 0 or ζ�,m = 1

〈〈

,φ(ρ) (ρ)t( )

ξm,� ext , ≥ Sξφ(ρ)
ext
(ρ)t( )

⇒ xm ∈ O� ext,φ(ρ)
ext
(ρ)t( )

interpolate
cm

�,m,q ext ,φ(ρ)
ext
(ρ)t( )

)(

µ
=  ∑ r  a   ,�,m,q,r   rµ

,φ(ρ) (ρ)tp CO,� B�,|

|

)( ,φ(ρ) (ρ)tp cm|ζm = 1, B�,υ

Fig. 7. Evaluation of the density function for one pose hypotheses(�(�), t(�)) with background model.

3.2. Localization and classification

Using the background model, now, the pose and class of
an object can be estimated in spite of heterogeneous back-
ground and occlusion. The evaluation of the density function

p(CO,�|B�,�
(�), t(�)) for a pose hypotheses(�(�)

ext, t
(�)
ext )

is illustrated inFig. 7. As one can see, it is similar to the
simple object model in the last sectionFig. 4. The only dif-
ference is the additional estimation of the assignment�̂�,m
for each feature vectorcm in the respective bounding region

O�(�
(�)
ext, t

(�)
ext ).

Therefore for the localization and the classification nearly
the same equations as in the last section can be used, only
the estimation of the assignment is added. Thus, the equation
for the localization is

(�̂�, t̂�, �̂�) = argmax
(�,t,��)

NO,�

√
p(CO,�|��,B0,B�,�, t).

(23)

The equation for the classification is

(�, �̂, t̂, �̂�)

= argmax
�

{
argmax
(�,t,��)

NO,�

√
p(CO,�|��,B0,B�,�, t)

}
.

(24)

Also, the same search algorithm as for the simple object
model is applied.

4. Experiments and results

We verified our approach presented in the last two sections
on three data sets: the DIROKOL database (13 objects under

arm

text

φ

tableφ

Fig. 8. Left: turntable and camera arm; right: the three external
transformations: scalingtext, turntable rotation�table and tilt angle
of the camera�arm.

two external transformations), the 3D-REAL-ENV database
(10 objects under two external transformations) and the 3D3
database (two objects under three external transformations).
These are difficult test sets: the appearance and the size of
the objects vary much, and partially the objects are very
small in the image. The data sets contain images with dif-
ferent illuminations, heterogeneous background and partial
occlusion.

The images of the size 256× 256 pixels were taken
with the setup illustrated inFig. 8. The objects were put
on the turntable, with 0◦ ��table�360◦, and the robot arm
with the camera was moved from horizontal to vertical, i.e.
0◦ ��arm�90◦. So, we have two external rotations that
form a hemisphere. Additionally for the 3D3 database, we
varied the camera distance with a scale factor 1.5. Thus, we
got three external transformations. The illumination changes
are generated by switching lamps on and off so that the
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Fig. 9. The DIROKOL database: on the one hand, office tools like staplers, hole punches, cans, and on the other hand, hospital objects like
NaCl-bottle, pillbox, cups and cutlery.

Fig. 10. The 10 objects of the 3D-REAL-ENV database.

brightness as well as the direction of lighting vary in the
images.

For the DIROKOL database (seeFig. 9) from each object
3720 images were taken. Three different lighting conditions
were applied so that the illumination of adjacent viewpoints
is different. The training set comprises half of the data set,
i.e. 1860 images for each object, so the angle between two
adjacent training viewpoints is 4.2◦. For the tests we took
the other half of the data set, i.e. the 1860 images not used
for the training.

For the training of the 3D-REAL-ENV database (see
Fig. 10) we applied 1680 viewpoints, i.e. the angle between
two adjacent viewpoints is 4.5◦. Two different illuminations

were used. So, we got 3320 training images of each ob-
ject. For the tests, 3× 288 additional images of each ob-
ject were taken on positions and with an illumination dif-
ferent from the training. On each of these positions one
image with homogeneous and two with real heterogeneous
background are taken. Besides for each object four real
scenes are arranged. That are altogether 40 scenes for this
database.

For the 3D3 database (seeFig. 11) we additionally used
six different camera distancestext, 20 cm� text�30 cm
with �text = 2 cm. For each camera distancetext we ap-
plied 960 viewpoints. For each viewpoint two different
illuminations were utilized. These are altogether 11520
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Fig. 11. 3D3 database. The white and the white–green stapler, each from the side withtext = 20 cm and from above withtext = 30 cm.

Fig. 12. Upper row left: two examples of background images. In thetwo images rightan object is pasted in the background: gray can and
spoon. Lower row left: two examples of objects of the 3D-REAL-ENV database in “real” heterogeneous background, right: two examples
of “real scenes”.

images for each object. As for the DIROKOL database
the training set comprises half of the data set, i.e. the an-
gle between two adjacent training viewpoints is 8.5◦. The
tests were performed on the 5760 images not used for the
training.

For the experiments with heterogeneous background, we
took 313 images of office scenes and pasted the objects in-
side these images, examples can be seen inFig. 12. We used
this method, because it is very time-consuming to produce
a sufficient number of representative scenes for each object
of the databases. For the same reason we generated the oc-
clusion artificially. Exemplarily, for each object of the 3D-
REAL-ENV database 576 images with real heterogenous
background (not pasted) and four real scenes were taken
(seeFig. 12).

We performed for the DIROKOL and the 3D3 database
the following four different test scenarios: homogeneous
background, heterogeneous background, homogeneous
background with 20% occlusion and heterogeneous back-

ground with 20% occlusion. For the homogeneous back-
ground we tested with and without background modelling,
whereas for all the other experiments we tested the ob-
ject recognition system only with background modelling.
For the 3D-REAL-ENV database the following four dif-
ferent test scenarios are used: homogeneous background
(“artificial”), heterogeneous background (“real”), heteroge-
neous background and real scenes. Here, we always applied
the background model.

To model the external rotations, we employed a
sine–cosine-decomposition with 13 basis functions for
the turntable rotation�table and a cosine-decomposition
with 4 basis functions for the camera arm rotation�arm;
that are altogether 13× 4 = 52 basis functions for
the DIROKOL and the 3D-REAL-ENV database. For
the 3D3 database, we additionally employed a cosine-
decomposition with 3 basis functions for the scaling. So,
totally we get 13× 4 × 3 = 156 basis functions for this
database.
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Table 1
Recognition rates DIROKOL and 3D3 database

DIROKOL 3D3

Localization Classification Local. Classif.

1–10 1–13 1–10 1–13

Homog. without backm. 98.4% 95.7% 99.9% 99.7% 98.8% 100%
Homog. with backm. 97.4% 94.7% 99.8% 99.3% 99.0% 100%
Heterog. 82.3% 64.9% 88.5% 69.1% 76.9% 95.4%
Homog.+20% occl. 94.1% 88.4% 93.2% 91.5% 64.6% 99.3%
Heterog.+20% occl. 69.6% 54.7% 67.2% 54.2% 50.9% 87.4%
Time 1.7 s 1.7 s 16.9 s 22.0 s 8.0 s 16.1 s

DIROKOL: 1–10 means without cutlery, 1–13 means all 13 objects. For the experiments with occlusion only 120 test images (DIROKOL)
and 720 test images (3D3) of each object were used.

Table 2
Recognition rates 3D-REAL-ENV database

3D-REAL-ENV Localization Classification

All Only
right
classf.

Homog. 99.1% 99.1% 100%
Artificial heterog. background 79.7% 87.8% 82.2%
Real heterog. background 79.7% 84.9% 86.1%
Real scenes 77.5% 84.4% 80.0%
Time 1.7 s 1.7 s 17.0 s

All means localization evaluated independently of the classifi-
cation result,only right classf.means localization only evaluated
for the right classified objects. All experiments are performed with
background modelling.

In addition to the external transformations, we consid-
ered the internal translationstx andty , i.e. we searched the
whole image for the object. So, the transformation space had
four dimensions for the DIROKOL and the 3D-REAL-ENV
database (tx , ty ,�arm,�table) and five for the 3D3 database
(tx , ty ,�arm,�table, text). The coarse resolution (see Sec-
tion 2.6) wasrsc = 23 = 8 pixels, the finer resolution was
rsf = 22 = 4 pixels.

The results of the experiments for the DIROKOL database
and the 3D3 database are presented inTable 1, the results
for the 3D-REAL-ENV database inTable 2. A localization
is counted as wrong, if the error for the internal translations
tx or ty is bigger than 10 pixels or the error for the exter-
nal rotations�table or �arm is bigger than 15◦ or the error
for the scalingtext is bigger than 2 cm. That corresponds
to the accuracy of a human observer and it is also suffi-
cient for many technical applications. InTable 1the local-
ization results are evaluated independently of the classifica-

tion results. InTable 2the localization results are evaluated
independently as well as dependently on the classification
results.

The recognition rates for the objects in front of a ho-
mogeneous background are very high, mostly 96–100%,
with and without background modelling. As one can see in
Fig. 13, the trained bounding regionO encloses the object
very tightly. In contrast to this, the fixed region ofFig. 1,
here plotted dashedly, is too big. By the use of the vari-
able bounding region, for heterogeneous background recog-
nition rates around 80% could be reached. The results for
the “artificial” heterogeneous background, the “real” hetero-
geneous background as well as for the scenes are compara-
ble. Only the cutlery in the DIROKOL database was often
not found in the heterogeneous background. But also for a
human observer, it is difficult to detect the cutlery in the
heterogeneous background as one can see in the right image
in Fig. 12.

For homogeneous background and 20% occlusion the
recognition rates of the DIROKOL database are mostly
greater than 90%. Even for the difficult task that the ob-
jects are located in heterogeneous background and 20% of
them are occluded, the recognition rates for the DIROKOL
database nearly reach considerable 70%. Also for the 3D3
database, the localization rate amount 50%, although there
are two internal and three external transformations.Fig. 14
illustrates that the background model and the assignment
function � works reliably. In spite of heterogeneous back-
ground and occlusion, the hole punch is localized well. Most
of the feature vectors at the border and of the occluded part of
the object are assigned to the background, whereas the oth-
ers are principally assigned to the object. The average com-
putation time for one localization with known object class
is 1.7 s on a Pentium IV with 2.4 GHz for the DIROKOL
and for the 3D-REAL-ENV database and 8.0 s for the 3D3
database, because here the transformation space comprises
one dimension more.
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Fig. 13. The same viewpoints for the stapler as inFig. 1. The trained bounding regionO is plotted in gray. For comparison the fixed region
of Fig. 1 is plotted dashedly.

Fig. 14. From left: hole punch partially occluded in heterogeneous background; pose estimated by the object recognition system; respective
trained bounding regionO; these feature vectors marked gray (inside the bounding region) are assigned to the object; the others are assigned
to the background.

5. Conclusions and outlook

5.1. Conclusions

In this article we presented a powerful statistical,
appearance-based approach for classification and localiza-
tion of 3-D objects in complex scenes. We modelled the
region of the object in the image, i.e. the bounding region
O, as a function of the external transformations. Also, the
local object features were modelled as functions of the ex-
ternal transformations. We formulated the dependency on
the external transformations by sums of continuous basis
functions, i.e. sine–cosine- and the cosine-decomposition.
For robustness, we applied a statistical framework that also
includes a background model and an assignment function.

In the experiments, we showed that the trained, variable
bounding regionO encloses the object for the external trans-
formations very tightly. This is a great advantage over other
approaches, e.g. Refs.[7,9,10,14,15,17], which use a fixed
bounding region and so have problems to handle the varying
size of the objects. By the normalization of the density func-
tion by theNO� th root, i.e. the geometric mean of the den-
sities of the single object feature vectorscO�,m, also objects
whose size differ much can be recognized. Besides by the
use of the trigonometric basis functions, 52 basis functions
are sufficient to model all viewpoints on a hemisphere. The
background model and the assignment function��,m work
well: by heterogeneous background and occlusions, the sin-
gle feature vectors inside the bounding region are reliably

assigned to the object or to the background. In spite of non-
uniform illumination changes, heterogeneous background
and occlusions, we got good recognition rates on three data
sets that comprises two and three external transformations.
Our approach is even suitable for real scenes.

5.2. Discussion and outlook

The initial global search seems to be expensive. But also
other appearance-based approaches, even the eigenspace-
approaches of Murase and Nayar[7,17], Bischof et al.[14]
and Leonardis and Bischof[15], starts with an exhaus-
tive search in the whole image. Mostly, they shift the tem-
plate only one pixel each time. Additionally, for the robust
eigenspace-approach[15], one has to apply for each object
class an own eigenspace, and one has to evaluate several hy-
potheses for each possible internal transformation. Whereas
for our approach the “search grid” for the global search can
be coarse: the bounding region can be shifted�x = �y = 8
pixels, and for the external transformations we only need
to evaluate a limited number of hypotheses, for example 36
hypotheses for a 360◦ turn table rotation. In the future we
will develop this algorithm further.

Here we presented results on single object recognition:
The object with the highest density value according to Eqs.
(17) and (24) is recognized. However, by the use of the tight
bounding regionO and the assignment function�, our ap-
proach is capable to classify in multiobject scenes. The main
idea is to mask out the feature vectors assigned to already
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recognized objects and to perform a second recognition on
the same image, until no further object is detected. Some
results on this approach can be found in Ref.[23].
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