
Bit–Accurate Simulation of Convolution–Based
Filtering on Reconfigurable Hardware

Holger Scherl∗

Friedrich–Alexander–Universität Erlangen–Nürnberg
scherl@informatik.uni-erlangen.de

Markus Kowarschik†

Siemens Medical Solutions
markus.kowarschik@siemens.com

Joachim Hornegger‡

Friedrich–Alexander–Universität Erlangen–Nürnberg
hornegger@informatik.uni-erlangen.de

Abstract

In 3D cone–beam reconstruction of modern medical scanners, the most time–
consuming preprocessing step is typically represented by a 1D shift–invariant filtering
of the projection data. In order to meet the processing requirements of state–of–the–art
medical scanners, we have implemented the convolution–based filtering step in hard-
ware using Field–Programmable Gate Array (FPGA) technology. A significant down-
side to our FPGA–based approach is that it is no longer possible to use floating–point
arithmetic, as is the case for conventional CPU–based implementations. Consequently,
it is necessary to realize the whole processing chain of the convolution using fixed–
point numbers instead. In order to simulate the effects of fixed–point calculations on
the accuracy of the final numerical results, we have developed a highly flexible and
bit–accurate software prototype of the hardware design. It covers both the FFT rou-
tines as well as different scaling strategies of the involved fixed–point data types. In
this paper, we will demonstrate our simulation methodology and present results for the
convolution–based filtering, employing various scaling approaches and bit widths in
the different computation stages. Finally, we arrive at a satisfying configuration for the
FPGA–based implementation. Our simulation results reveal that the numerical results
delivered by the selected implementation are sufficiently accurate in comparison to a
reference code based on double–precision floating–point arithmetic.

∗Department of Computer Science, Institute of Pattern Recognition, D–91058 Erlangen, Germany
†Siemens Medical Solutions, Components Division (CO), D–91052 Erlangen, Germany
‡Department of Computer Science, Institute of Pattern Recognition, D–91058 Erlangen, Germany



1 Motivation
In 3D cone–beam reconstruction, the most time–consuming preprocessing step is typically
represented by a 1D shift–invariant filtering of the projection data. This task can most
efficiently be addressed by applying the convolution theorem, which states that the convo-
lution of any two vectors is given by the component–wise product of their Fourier coeffi-
cients [Ueb97]. Hence, it is required to determine the discrete Fourier transforms (DFTs)
of the input vectors as well as the DFT of the filter kernel [GW02]. After the subsequent
component–wise multiplications of the Fourier coefficients, the inverse DFTs of the prod-
ucts are computed. Of course, the overall efficiency of this scheme results from the use of
computationally efficient Fast Fourier Transform (FFT) algorithms.
In order to meet the processing requirements of state–of–the–art medical scanners, we have
implemented the convolution–based filtering step in hardware using Field–Programmable
Gate Array (FPGA) technology [MB04]. As the name suggests, these logic circuits are
reconfigurable and can thus be programmed specifically for a certain task. The main ad-
vantage of FPGAs is their ability to process data in a massively parallel manner, where the
degree of parallelism is of course restricted by the available resources (e.g., multipliers and
lookup tables) as well as algorithmic constraints. In the case of convolution–based filtering,
many arithmetic operations can be executed in parallel. Therefore, enormous processing
speeds can be achieved, even when using moderate clock rates only.
A significant downside to our FPGA–based approach is that it is no longer possible to
use floating–point arithmetic, as is the case for conventional CPU–based implementations.
Consequently, it is necessary to realize the whole processing chain of the convolution using
fixed–point numbers instead. In order to simulate the effects of fixed–point calculations
on the accuracy of the final numerical results, we have developed a highly flexible and
bit–accurate software prototype of the hardware design. It covers both the FFT routines
as well as different scaling strategies of the involved fixed–point data types. Additionally,
various hardware restrictions of the FPGA architecture had to be considered throughout the
simulation task to achieve optimal performance and to meet the space restrictions on the
chips.
In our paper, we demonstrate our simulation methodology and present results for the
convolution–based filtering, employing various scaling approaches and bit widths in the
different computation stages. Our simulations include different scaling strategies for both
the FFT computations as well as the intermediate processing steps of the convolution chain.
Finally, we will arrive at a satisfying configuration for the FPGA–based implementation.

2 Convolution–Based Filtering
In order to perform a convolution–based filtering, the DFT of each one–dimensional in-
put signal has to be computed. The actual convolution in Fourier space is performed by
component–wise multiplication of its Fourier components with that of the filter kernel.
Finally, the IDFT of this product has to be computed. We focus on convolutions of block–
scaled 16 bit data both for the input and output signals. As vector lengths, both 2048 (2K)



and 4096 (4K) are considered. In order to avoid aliasing artifacts, the input signals have to
be zero–padded up to 4K or 8K, respectively [GW02]. An important property is that the
DFT of an even and real–valued sequence is again real–valued [Ueb97]. This property is ex-
ploited in our implementation of the convolution since the filter sequence is assumed to be
real–valued as well as even. Thus, the convolution of two input–vectors can be performed
simultaneously with only one convolution chain. In our implementation we use power of
two FFT algorithms only (Radix2). In the course of each stage, the FFT algorithm passed
through the entire data set. It operates on pairs of complex numbers of the sequence at a
time and replaces them by the calculated results (so–called butterfly operations).

3 Simulation Approach
In order to simulate the convolution chain using fixed–point data types, we based our soft-
ware prototype on the SystemC library [Ini]. This library offers the possibility to use vari-
ables with limited accuracy, thus facilitating the simulation of configurable bit–widths of
the involved data types. The simulation itself can be divided into two different parts. First,
the involved FFT and IFFT (inverse Fast Fourier Transform) computations have to be sim-
ulated with different input and output bit–widths and with an appropriate scaling strategy.
In a second step, the intermediate computing stages have to be implemented taking into
account the input and output bit–widths of the FFT and the IFFT. In order to keep the
input signals properly scaled within the FFT computations, we selected two different ap-
proaches. We will refer to them as block–floating point mode and unscaled precision mode,
respectively.

3.1 Block–Floating Point Mode
In the block–floating point mode, the complexity of scaling is integrated almost completely
into the FFTs. As we move from stage to stage through the calculation, the magnitudes
of the numbers in the sequence generally increase, which means that they can be properly
scaled by right shifts. In this case, we test after each butterfly computation, whether an
overflow has occurred. Whenever an overflow has occurred, the entire sequence (part of
which will be new results, part of which will be entries yet to be processed) is shifted
right by one bit and the computations are continued at the point at which the overflow has
occurred. It can be shown that there are only two overflow events possible within each FFT
stage [Wel69]. One advantage of this approach is that only a minimum of computations is
required for scaling purposes in between the FFT computations.
The processing chain looks as follows. The 16 bit entries of the block–scaled input vectors
are padded with zeros to a length of 24 bit. Then, the FFT and the multiplication with the
DFT of the filter kernel (32 bit numbers in our case) are performed. After the multiplication,
the resulting numbers are 56 bit wide. We simply chop off the trailing 32 bits to apply the
IFFT with again 24 bits on input. Finally, the results of the IFFT (24 bit each) are truncated
to 16 bits for the output. For improved accuracy, we also tried out this approach with 35 as
the input and output bit–width of both the FFT and the IFFT.



3.2 Unscaled Precision Mode
The scaling inside the FFT blocks is done differently in unscaled precision mode. Within
each FFT stage, the bit–width of the results is increased by one. Therefore, during the com-
putations, overflows cannot occur anymore. Analogously, this strategy can be understood
as introducing a global right shift before each stage without loosing the least significant
bit. In contrast to the previous approach, this technique exhibits the disadvantage that the
output sequence of the FFT may not be properly scaled anymore. Therefore, a more ad-
vanced scaling technique is needed in between the FFT and the IFFT block. We will refer
to our implemented technique as dynamic scaling. During the dynamic scaling, the mini-
mum number of irrelevant bits to the right of the sign bit of all numbers of the current data
vector is computed. Afterwards, all vector elements are left–shifted by that number, and
the block exponent is adapted appropriately. This results in a simplification of the hardware
implementation of the FFT and IFFT routines, which in turn leverages their optimization
for processing speed. The loss of efficiency in the dynamic scaling stages in between the
FFT and the IFFT can easily be accounted for by the use of pipelining in the hardware
implementation [HP03].
The processing chain now involves the computation of the FFT of input vectors of (zero-
padded) 24 bit numbers using the unscaled precision mode. Therefore, the output bit–width
after the FFT block is 37 bit for the case of a 4K convolution (or 38 bit for the case of an
8K convolution). Due to FPGA hardware constraints related to the internal architecture
of multipliers, the values of the output sequence are truncated to 35 bits, and a dynamic
rescaling is performed right before the multiplication stage. The 67 bit wide entries of the
resulting product vector (recall that the DFT of the filter sequence is given as a vector of
32 bit numbers) are truncated to 36 bits, and a dynamic rescaling is performed again. Then,
the vector entries are truncated to the input bit–width of the IFFT (i.e., 24 bit). After the
IFFT, a final dynamic rescaling is introduced before truncating the vector entries to the
required output bit–width with minimal loss of accuracy.

4 Results
Throughout the evaluation of the accuracy of our different scaling approaches, we used pro-
jection images that are generated with the simulation tool DRASIM that had been provided
by Siemens Medical Solutions. We used two phantom descriptions: the Head Phantom and
the Thorax Phantom. Descriptions of these phantoms can be found on the FORBILD web-
site [Gro]. In order to measure the accuracy of our results, we compared each computed
signal to the corresponding one that was computed using a reference code based on double–
precision floating–point arithmetic. For the bit comparison of two numbers, we counted the
number of vanishing most significant bits of their absolute difference. Then, for each result
vector, both the minimum and the average of the determined corresponding leading bits are
used.
In Table 1, the measured accuracies using the block–floating point scaling strategy are
given. The achieved accuracy is about 9 to 10 bits both for 24 bit and 35 bit FFT structures.
The loss of several valid bits results from the bit truncation after the multiplication with



Head phantom Thorax phantom
4K convolution (block–floating point)

24 bit FFT 10 (10.98) 11 (11.00)
35 bit FFT 10 (11.38) 11 (11.35)

4K convolution (block–floating point improved)
24 bit FFT 11 (11.98)
35 bit FFT 14 (14.98)

8K convolution (block–floating point)
24 bit FFT 10 (10.44) 9 (9.96)
35 bit FFT 10 (10.65) 10 (10.43)

Table 1: Simulation results for block–floating point scaling strategy

Head phantom Thorax phantom
4K convolution (unscaled precision)

23 bit FFT 14 (14.98) 15 (15.00)
24 bit FFT 14 (14.98) 15 (15.00)

8K convolution (unscaled precision)
22 bit FFT 14 (14.84) 14 (14.95)
24 bit FFT 14 (14.84) 14 (14.95)

Table 2: Simulation results for unscaled precision scaling strategy

the DFT of the filter sequence. Therefore, we extended the scaling strategy of the block–
floating point mode after the multiply stage by performing first a truncation to 35 bits and
second by a dynamic rescaling afterwards. Then, the sequence is truncated to match the
input size of the IFFT. Now, the results are as expected for the 35 bit case, but not much
better for the 24 bit case (see block–floating point improved in Table 1).
Because of its advantageous structure with regard to hardware implementation and effi-
ciency, we turned our attention more on the unscaled precision arithmetic. Table 2 shows
the measured accuracies. The results demonstrate that our preferred approach yields very
good accuracy in comparison with the double–precision floating–point results. The mea-
sured accuracy does not change even when we tweak the input bit width of the FFTs to
match optimally the hardware restrictions both in the 4K convolution case with an optimal
input bit–width of 23 bits and in the 8K convolution case with an optimal input bit–width
of 22 bits.

5 Conclusions
We focused on the simulation of bit–accurate convolution–based filtering using fixed–point
data types exclusively. In this paper, we have presented a simulation framework that allows



to investigate, if the selected scaling strategies yield sufficient accuracy with different pos-
sible bit–widths of the involved data types.
The constraints on the results represent a trade–off between available resources within the
FPGA and the accuracy of the involved computations. However, our simulation results
demonstrated that the numerical results delivered by our unscaled precision scaling strate-
gies are sufficiently accurate for our target application. On output, at least 14 bits of the
16 bit block–scaled result could be gained in comparison to the computation with double–
precision floating–point arithmetic.

References
[Gro] Phantom Group. http://www.imp.uni-erlangen.de/phantoms.

[GW02] R.C. Gonzales and R.E. Woods. Digital Image Processing. Prentice Hall, 2.
edition, 2002.

[HP03] J.L. Hennessy and D.A. Patterson. Computer Architecture: A Quantitative Ap-
proach. Morgan Kaufmann, 3. edition, 2003.

[Ini] The Open SystemC Initiative. http://www.systemc.org.

[MB04] U. Meyer-Baese. Digital Signal Processing with Field Programmable Gate Ar-
rays. Springer, 2. edition, 2004.

[Ueb97] C.W. Ueberhuber. Numerical Computation 2. Springer, 1997.

[Wel69] P.D. Welch. A fixed–point fast fourier transform error analysis. IEEE Transac-
tions on Audio and Electroacoustics, 17(2), 1969.


