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Abstract

We present a novel approach to the tomographic reconstruction of binary objects from few projec-
tion directions within a limited range of angles. A quadratic objective functional over binary variables
comprising the squared projection error and a prior penalizing non-homogeneous regions, is supple-
mented with a concave functional enforcing binary solutions. Application of a primal-dual subgradient
algorithm to a suitable decomposition of the objective functional into the difference of two convex
functions leads to an algorithm which provably converges with parallel updates to binary solutions.
Numerical results demonstrate robustness against local minima and excellent reconstruction perfor-
mance using five projections within a range of 90

Ourapproachis applicable to quite general objective functions over binary variables with constraints
and thus applicable to a wide range of problems within and beyond the field of discrete tomography.
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1. Introduction
1.1. Discrete tomography

Discrete tomography is concerned with the reconstruction of discrete-valued functions
from projections. Historically, the field originated from several branches of mathematics
like, for example, the combinatorial problem to determine binary matrices from its row and
column sums (see the survil4]). Meanwhile, however, progress is not only driven by
challenging theoretical problen{is,10] but also by real-world applications where discrete
tomography might play an essential role (a2, Chapters 15-2})]

The work presented in this paper is motivated by the reconstruction of objects from
few projection directions within a limited range of angles which, from the viewpoint
of established mathematical modgls], is a severely ill-posed problem. For further
information about the specific application area of our wdblgital Substraction An-
giography and its medical relevance we refer [@il]. Mathematically, it is reasonable
to assume in this connection that the functigrto be reconstructed ibinary-valued
This poses one of the essential questions of discrete tomography: how can knowledge
of the discrete range off be exploited in order to regularize the reconstruction
problem?

1.2. Related work

Related work in the field of discrete tomography incl{itie,3,6]where the reconstruc-
tion problem is formulated as an optimal estimation problem based on Markov-random-field
models. Accordingly, stochastic sampling (Metropolis and Gibbs sampling, respectively)
is used in[15,3] for the purpose of optimization which, when properly applied, is notori-
ously slow, whereas a multiscale implementation of a coordinate-wise sequential update
technique (a special version of the well-known ICM-technique) is employgg] ifn this
connection, our parallel and deterministic mathematical programming approach presented
below provides an alternative. Furthermore, our way to enforce a discrete-valued solution
by concave minimization may be considered as a binary steering technique which is less
heuristic than the approach [B].

2. Problem statement
2.1. Projection equations

To each pixek; we assign a valu@ representing the absorption of a particular projection
ray. For the example depictedHin. 1, the valuess, a4, as, ag, anday corresponding to the
ray are simply measured by the lengths of the ray’s sections through the pixel areas (indicated
by black dots). This agrees with our assumption of a binary image to be reconstructed.
Similarly, in the 3D case one would measure the intersections of each projection ray with
each voxek;.
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Fig. 1. Discretization model applied in order to obtain a mathematical formulation of the reconstruction problem.

Accordingly, the projection of a single ray is represented by the scalar praduct=
b, x; € {0, 1}, Vi, and the set of all projection rays yields the linear system

Ax=b, x=(x1,...,x,)" €{0, 1}". (1)
2.2. Linear objective functions

Due to noise in the measurement vediawhen dealing with real data, (1) is likely to
have no feasible solution. In order to take advantage of continuous problem formulations,
Fishburn et al[5] considered the relaxation € [0, 1], i =1,..., n, and investigated the
following linear programming approach:

min (0,x), Ax=>5. 2
xe[O.l]”< *) * @
In particular, the information provided by feasible solutions in terms of additivity and
uniqueness of subsefsc 7" is considered (sef®]).

Gritzmann et al[11] introduced the following linear integer programming problem for

binary tomography:
max (e,x), e:=(L....,1)", Ax<b, ()
xe{0,1)"
and suggested a range of greedy approaches within a general framework for local search.
Compared to (2), the objective function (3) which is callest-inner-fit(BIF) in [11],
looks for the maximal set compatible with the measurements. Also, the formulation of the
constraints is better suited to cope with measurement errors and noise.

In [20,21], we considered the relaxation of (3) € [0, 1], Vi, supplemented with a

standard smoothness prior enforcing spatial coherency of solutions

Z Z (xi —xj)%, (4)

i=1 je (i)
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where. /(i) denotes grid positions in a 4-neighborhood (6-neighborhood in the 3D-case)
around position. In order to incorporate this prior into the linear programming approach
(3), we had to use a corresponding approximation by means of auxiliary variables along
with a randomized post-processing step for computing binary solutions.

2.3. Nonlinear objective functions

The main objective of this paper is to focus directly on a larger class of objective functions
over binary variables. As a prototype problem, we consider the quadratic integer program-
ming problem

) 1 n
min S qllAx—blF+a) D (i—xp*t, O<ueR, (5)
xe(0.) i=1 jeN (i)

where /(i) denotes grid positions in a neighborhood around

Obijective function (5) combines the squared projection error with a standard smoothness
prior enforcing spatial coherency of solutions. While similar functionals are common in
connection with image restoratid4], the integer constraint; € {0, 1}, Vi, renders the
optimization problem a combinatorially difficult one.

In Section 3, we develop a relaxation of (5) based on the constrgings [0, 1], Vi,
and an additional concave functional enforcing integer solutions. A corresponding mathe-
matical programming approach is developed in Section 4 which allows to treat large-scale
problems and parallel implementations. Numerical results demonstrating the feasibility of
the approach are discussed in Section 5.

3. Relaxation and convex—concave regularization

Dropping constant terms, the objective function in (5) reads

E(x) := 3(x, Ox) + (g, x), (6)

Q:=ATA+uL, (7)

(x, Lx) =) > (xi—x))7 8
i=1 jeN (i)

g:=—A"b. (9)

The functionE in (6) is convex because the matrixin (7) is positive semidefinite. As a
consequence, we cannot expect to obtain an integer-valued minimize{O, 1}" based

on the relaxation mipE(x), x € [0, 1]" c R". Therefore, we supplement our objective
function with a term enforcing integer solutions and associate with the integer programming
problem

min  E(x), (10)
x€{0,1}"
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the nonlinear problem

min  F(x; w), F(x;p:=Ex)+ %,u(x, e—x), O<pueR, (11)
x€[0,1]"
with e := (1,...,1). Note that this family of functionals, parametrized pycontains
two terms regularizing the underconstrained problem of minimizing the squared projection
error || Ax — b||%: the convex smoothness ter%mx, Lx) with weighto that penalizes non-
homogeneous reconstructions, and the concave éerm, e — x). The rationale for the
latter term is given in the following proposition (sg13] for a proof).

Proposition 1. Suppose that E is Lipschitzian on an open&eb [0, 1]* and twice con-
tinuously differentiable o0, 1]". Then there exists a, € R such that for allu> p:

(i) (10)and(11)are equivalent
(i) F(x)is concave o0, 1]".

This connection between integer programming and concave minimization is well-known.
Its applicability depends on how severely the concave minimization problem suffers from
local minima. Numerical results indicate (Section 5) that (11) is fairly well-behaved in this
respect.

The reason, we believe, is the convexity of the functidaebtarting with a sufficiently
small parameter valug, we can easily computeglobal minimum ofF in (11). Next, we
gradually enforce the integer constrainte {0, 1}, Vi, by locally minimizing F'(x; w) for
each value of an increasing sequefice — Ios Whereu, equals an upper bourj€l] of
the largest eigenvalue ¢fin (7). A corresponding algorithm will be derived in the following
section. The concave term which becomes “active” thro{ygh does not introduce any
bias, i.e. prefer one local minimum over another one. Finally, due to Proposition 1, we obtain
a local integer-valued minimum € {0, 1}" of F(x; w) which is also a local minimum of
E(x), sinceF (x; u) = E(x) for x € {0, 1}".

4. D.C. programming

The objective of this section is to derive an algorithm for minimizing; 1) in (11). The
presence of both convex and concave terms suggests a mathematical programming approach
to the minimization of the difference of two convex functio €. programming We
sketch a corresponding approdiéfi,18]in Section 4.1 and work out its application to the
optimization problem (11) in Section 4.2.

We point out that we deliberately choose a mathematical formulation general enough
to encompass not only problem (11) but also other combinations of terms and constraints
discussed in Section 2.

The following notation and basic concepts of convex analji9% will be used for a
function f : R” — Rand a seC C R":

domf ={x € R"| f(x) < + o0} effective domain off,
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F*(y) = sup{(x,y) — f(x)} (conjugate function

xeR"
OfxX)={v| fx)>fX) + (v,x —x),Vx} subdifferential of f atx,

0, xeC

Yoo, xgC (indicator function ofC).

oc(x) = {

Recall that whenis proper, lower-semicontinuous (LSC), and convex, thenf** =(f*)*
and:

Of®) ={yf(x)=f(x)+ (y,x —X), Vx} 12)
= argmax {(y,x) — f*(»)} (13)
Of M =1 ffM=f*O)+(x,y =), Vy} (14)
=argmax {(y, x) — f(x)} (15)

4.1. DC-algorithm

Letg, h : R" — R be proper, LSC and convex,

domg c domi, domh* C domg*, (16)
and

f(x) =g(x) — h(x). 17)
Consider the optimization problem

igf{g(x) —h(x)}. (18)

Using conjugate functions, we write

inf{g(x) — h(x)} = inf {g(x) - S;Jld(x, y) — h*(y)}}
= inf ir;f{g(X) =[x, y) =M1}
and obtain the dual problem of (18):
igf{h*(y) - g} 19)

We use the following primal-dual subgradient algoritfi8]:

DC-algorithm(DCA):
Choosex® € domg arbitrary.
Fork=0,1,... compute:

Y e don@b), (20)
e @g*(yk). (21)

The investigation of DCA irj18] includes the following results:
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Proposition 2 (Pham Dinh and Hoai Af18]). Assumeg,  : R* — R be proper LSC
and convexand(16). Then

(i) the sequenceia’}, {y*} according to(20), (21)are well-defined
(i) {g(x¥) —h(x¥)} is decreasing
(iii) every limit pointx* of {x¥} is a critical point ofg — A.

Step (21) corresponds to the affine majorization definedybye 0n(x*) of the
concave—hence “difficult"—part in (18). From (12), we have

inf{g() — h(0} < inflg(o) — (A" + (¥, x — )]},
thus, by (15)
e argmin {g(x) — [h(x5) + (¥, x — x5)])
=0g"(y")
which is a convex optimization problem. Similarly, frorfi € 0g*(y*¥~1) and (14) follows
inf{h*(y) — g* (M} Inf{h* (y) — [g*O*H + (xF, y = yFH1),
thus, by (13)

y* € argmin (h*() — [g" G + (x5, y = YA
= 0h(x*)

Again we point out that this optimization problem is convex.
4.2. Application to the relaxed problem
Both the application and the efficiency of the algorithm (20), (21) depend on the choice

of the decomposition (17), which is not unique. In this paper, we decompose the functional
F(x; u) = g(x) — h(x; w) in (11) as follows:

g(x) = 3(x, AIx) + dc(x), C=[0,1]" (22)
h(x; @) = 3(x, (A — Q)x) — (q.x) — su(x, (¢ — X)) (23)
=3, [(A+ w1 — Qlx) — (g + 3pe. x) (24)

with A equal to an upper bound of the largest eigenvalu®@.of
Note that bothg andh are convex. Sincé is smooth,0h(x) = {Vh(x)} and step (20)
amounts to evaluate the gradient

W= V(b (25)
=[(Z+ w1 — Q1" — (g + 3pe). (26)
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Functiong, on the other hand, is non-smooth due to the constramtC, and we have to
solve problem (15)

e 3g*(vh) (27)
= argmin, {g(x) — (y*, x)} (28)

. 2
= argmin, {Enxn2 — Ok x) + 5c(x)} (29)
=argmin {g(x) + dc(x)}. (30)

As this amounts to minimize strictly convex function over the convex st the global
minimumx**+1 is unique and satisfig49]

0e Vg(x)+ dc(x)
= xFL — YK £ 000 (K. (31)

Lete; =(0,...,0,1,0,...,0)",i =1, ..., n, denote théth unit vector, ando(x), I1(x)

the sets of indices whesemeets the boundary &, i.e.i € Io(x) (resp./1(x)) if x;, =0
(resp.x; = 1), Vi. Thenddc (x* 1) is the polyhedral convex cone generated by the vectors
{—eiticryr+r) and{ei};cp (r+1)- Thus, from (31), we compute the global minimum

0, yF<o0
athy =11 =2, =1 (32)
1yk, otherwise

The iteration rules (26) and (32) show why the decomposition (22), (24) is useful. For fixed
value of the parameter, a local minimum ofF (x; u) in (11) can be computed by iterating
the steps (26) and (32), both of which are computationally cheap and suitable for parallel
implementations. In particular, we only need a sparse matrix vector product in (26) but no
inversion of the matrixQ.

To summarize, we obtain the following overall algorithm for solving the binary tomog-
raphy reconstruction problem by means of (11):

Algorithm.

(1) Choosé =0, u®=0,x%= e, uy
(2) Inner loop

fork =0, 1, ... compute (26), (32) until convergende*} — x
(3) Outer loop

if x, € {0, 1)" then stop; else incremept™ = 1/ + 4, putx® =, and repeat (2).

W

Condition (16) is satisfied because obviously dom dom#% and domi*=domg*=R".
Consequently, the results stated in Proposition 2 hold.

Remark. For the specific decomposition (22), (24), the algorithm above turns out to be a
special instance of the Goldstein—Levitin—Polyak projection mefhpd

A= poixk —dfV PR, ), k=0,1,..., (33)
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where P¢[-] denotes the unique projection onto the convexGséh general, the damping
parameter* has to be chosen with care in order to achieve convergence. In this connection,
our approach proves convergence for the chofce 1/..

5. Numerical results

We demonstrate the feasibility and the typical behavior of our approach with two examples
of size 64x 64 and 256x 256. The algorithm was implemented in C++ and run on a
Pentium 4 with 3 GHz. The smaller image was reconstructed from only three projections
with horizontal, diagonal and vertical rays, whereas for the larger one five projectidghs at 0
22.5°, 45, 67.5°, and 90 were used. Both problems led to highly underdetermined linear
systems (1), with 4096 unknowns and 224 equations for the 64 image and 65536
unknowns and 1453 equations for the 26@56 example.

Parameten was set to 0.1. For a fixed value pfthe stopping criterion of the inner loop
was||xk*+1 — x¥||2 < &in with e =0.0001 for the 64 64 image and. =0.0025 for the larger
one. After convergence of the inner loppvas incremented with , =0.00005 p, and the
program terminated (convergence of the outer loop) when each componemasfwithin
a neighborhood ofyt = 0.001 around either O or 1: maxq. . ,{min{x;, 1 — x;}} < éout.

In both cases the algorithm was able to reconstruct the original image @yl 5).

Fig. 6shows the errojf Ax — b||, after each iteration step. The overall computational time
for the results (Figsd(f) and5(f)) was about 99 s for the small image and 379 s for the large
image.

The typical distribution of the computational costs and convergence as a functids of
discussed iffrigs. 2and3. (Figs. 4—6

16000

iterations BT-algorithm——

14000f
12000
10000

8000f

iterations

6000
4000¢f
2000F

O 1 1 1 1 1 1 1 1
0 005 0.1 015 0.2 025 0.3 0.35 0.4 045
mu

Fig. 2. Number of iterations of the inner loop as a functiopdfecorded for the reconstruction showrfig. 4).
Most computational work has to be done within a small interval of “critical” valugs @futside this interval, that
is for further increasing values of most local decisions have already been made, andxgaglickly converges
to either O or 1 (cfFig. 3.
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Fig. 3. Number of pixels{x;} as a function ofu which do satisfy the outer loop convergence criterion
min{x;, 1 — x;} <¢jn (recorded for the reconstruction shown Hig. 4). After a critical u-phase shown in
Fig. 2 most local decision have already been made, and gaghickly converges to either 0 or 1.

The binary constraint; € {0, 1} is satisfied for each pixel with accuraey:. Conse-
guently, no rounding scheme as a post-processing step is necessary.

To substantiate the robustness of our approach against local minima, we focused on a
4 x 4 toy problem for which exhaustive enumeration of all binary vectoes {0, 1} is
feasible. A reconstruction problem was created using horizontal and vertical projection rays
(which corresponds to row and column sums), aneas again set to.Q. Fig. 7 shows as
possible solutions the subset of all 34 binary images consistent with the given projection
constraintsdx = b.

The images (1)—(34) iRig. 7 are ordered according to the respective valueg @f) in
(6). Note that lower function values corresponds to smoother images, i.e. the amount of
horizontally and vertically connected structures decreasdés(agincreases. The recon-
struction computed by our algorithm is depicted as image (35)gn7. It coincides with
image (2) and minimize& (x) among all 34 consistent solutions.

6. Conclusion and further work

We presented a novel framework for solving combinatorial binary reconstruction prob-
lems of discrete tomography. Based on a given objective functional over binary variables
for measuring the quality of reconstructions, the main components of the approach are (i) a
smoothness prior to achieve spatial coherent reconstructions, (ii) concave regularization for
enforcing binary solutions, and (iii) a sound mathematical programming approach based
on primal-dual subgradient minimization.

Numerical results show an excellent performance for reconstruction problems using three
or five projection directions within 30 We also illustrated the robustness of the approach
with respectto local minima. At present, however, we have no proof regarding a performance
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(a) Original 64 x 64 image (b) Iteration result with =0

© 1 =0.024

(e) u=0.11 (f) Result after termination

Fig. 4. (a) Original image64 x 64), (b)—(f) Reconstructions from three projectiai®s, 45°, 90°). Each image
shows the reconstruction result after termination of the inner loop for a fixed vajue of
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(a) Original (b) Ttcration result with g =0

sk
|
© 2=0.06 o p=013

Yo XYo,

(&) ©=032 () Result after termination

Fig. 5. (a) Ground truth 256« 256 image, (b)—(f) Reconstructions from five projectioi®s, 22.5°, 45°,
67.5°,90°). Each image shows the reconstruction result after termination of the inner loop for a fixed value
of u.
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0.7 T T T T T T
error |Ax-b|
0.6 1

0.5¢ ]

0.4} 1

Error

0.3} ]

0.2 1

0 5 10 15 20 25 30 35
iterations
(64 x 64 problem)

25 T T T T T T T T
error |Ax-b|

15} 1

Error

05 1

0 5 10 15 20 25 30 35 40 45
iterations
(256 x 256 problem)

Fig. 6. Projection errof Ax —b|| after each outer loop iteration for both examples. Note that error does not decrease
monotonously, due to enforcing the integer constrgint {0, 1}, Vi, during the iteration.

bound of combinatorial solutions. Finally, we showed that suitable decompositions of the
objective function into the difference of convex functions lead to a two-step iteration, both
steps of which are computationally cheap and allow for parallel implementations.

So far, we applied the approach to the particular objective function (5). However, our
formulation is sufficiently general to include many variations of (5) by combining terms dis-
cussed in Section 2 and further constraints. Note, for example, that Proposition 1 also holds
for objective functions defined on any binary subgetl}” N C, and that the formulation
(20), (21) in terms of subgradients admits using general non-smooth objective functions.

Finally, we point out that, typically, the decomposition (17) is not unique but allows to
derive various instances of the subgradient minimization scheme with different properties
of algorithms and corresponding implementations. Explorations of these possibilities will
be the objective of our future work.
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Fig. 7. (1)—(34) show imagewith the same horizontal and vertical projections. The images are ordered according
to their objective valuet (x). Image (35) is the reconstruction result of our algorithm which, indeed, minimizes
E. This result also illustrates the robustness of the approach against poor local minima.
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