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ABSTRACT

In traditional classification problems, the reference needed for train-
ing a classifier is given and considered to be absolutely correct.
However, this does not apply to all tasks. In emotion recognition
in non-acted speech, for instance, one often does not know which
emotion was really intended by the speaker. Hence, the data is
annotated by a group of human labelers who do not agree on one
common class in most cases. Often, similar classes are confused
systematically. We propose a new entropy-based method to evalu-
ate classification results taking into account these systematic con-
fusions. We can show that a classifier which achieves a recognition
rate of “only” about 60 % on a four-class-problem performs as well
as our five human labelers on average.

1. INTRODUCTION

An essential aspect of pattern recognition is the classification of
patterns. Besides the search for applicable features, a lot of work
has also been done to develop new and to improve existing au-
tomatic classification techniques. Well known are, for instance,
artificial neural networks, or support vector machines which be-
came very popular in the last few years. In the case of supervised
learning, the classifiers are trained to map a set of features onto
a given reference class. The standard method to evaluate an au-
tomatic classifier is to calculate the recognition rate which is the
percentage of correctly recognized samples. The basic assumption
is that this reference class is given and that it is non-ambiguous.

In our work on the recognition of emotions on the basis of
emotional speech, we face the problem that it is not clear at all
which emotions the people expressed when they were recorded.
The corpus on which the experiments were done in this paper con-
sists of children playing with the Sony robot Aibo. The kids were
asked to direct the Aibo along a given route; they were not asked
to express any emotions. Nevertheless emotional behavior can be
observed in these recordings. As these emotions are not acted by
professional actors, but are emotions as they appear in daily life,
they are called “realistic”. From the application developers’ point
of view, it is very important to deal with such realistic behavior.
However, one side effect is that one has to cope with relatively
weak emotions in contrast to full-blown emotions of acted speech.
As the recorded persons do not have to play a given emotion and
due to the fact that it is often not feasible to ask them afterwards
what kind of emotion they felt during the recordings, one employs
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human labelers to label the data set. Normally, only in a few cases,
all available labelers agree on one common label. In our corpus,
in most cases, only three out of five labelers agreed. Yet this is not
a problem of bad labeling but rather a consequence of the fact that
we are dealing with a realistic classification problem which also
raises real difficulties for humans. Accordingly, the expectations
of the automatic classifier measured in recognition rates must be
lowered.

In order to be able to calculate recognition rates at all, hard
decisions are needed for the reference as well as for the classifier’s
output. If a metric can be imposed on the label space, the labels
of all labelers can be averaged. This is well possible, for example,
if the tiredness of persons is labeled on a scale from 1 to 10. If
two labelers judge someone with ’8’ as very tired and one labeler
says only ’5’, the reference would be ’7’. But this does not work
for categorical emotion labels like anger, bored, etc. as the mean
of anger and bored is not defined. In those cases, the state-of-the-
art is to use a majority voting to create the reference. Proceeding
this way, we achieve recognition rates of about 60 % on our corpus
with four emotion classes which is a state-of-the-art result for a
task set-up like that. Nonetheless, the assessment of the emotion
classification success should not be done without considering how
well humans would perform this task. Depending on the number
and type of classes, human labelers confuse certain classes with
each other more than other classes. In general, the more similar
classes are, the more they are confused. This confusion should be
considered in the evaluation of a classifier. If the automatic classi-
fier makes the same “mistakes” as many humans do, then this fault
cannot be as severe as if the classifier mixes up two classes that are
never confused by humans. Instead, the question is if such system-
atic confusions are faults at all since “of all things the measure is
man” as already Protagoras said more than 2400 years ago.

In this paper, we would like to propose a new entropy-based
measure to judge a classifier’s output taking systematic confusions
made by humans into account.

2. ENTROPY-BASED MEASURE

According to Shannon’s information theory [1], the entropy is a
measure for the information content. We propose to use the en-
tropy to measure the unanimity of the labelers. If all reference
labelers agree on one class, the entropy will be zero. Otherwise,
the more the labelers disagree, the higher the entropy will be. In
the following, we assume to have N labelers Ln who have labeled
a data set of S samples Xs. For each sample, each of our label-
ers has to decide in favor of one of K classes Ck. However, the
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approach is also easily portable to soft labels where all classes get
scores from a continuous range of values and all scores for a sam-
ple sum up to one. The hard decisions of any number of labelers
can be converted into one soft reference label as it is depicted in
Fig. 1 for a four-class-problem (K = 4) with ten labelers. The
more the labelers disagree the flatter is the distribution of the soft
label.

labeler class
1 A
2 E
3 A
4 N
5 A
6 E
7 A
8 A
9 N

10 E

→

A M E N
0.5 0.0 0.3 0.2

Fig. 1. Conversion of the hard decisions of ten labelers into a soft
reference label l ref . The four classes are ’Anger’, ’Motherese’,
’Emphatic’, and ’Neutral’

Our suggestion is to leave out each labeler (we can also use
a more general term “ decoder” ) in succession. If labeler n is left
out, then the resulting soft reference label for sample Xs is denoted
l ref(n̄, s), with n̄ indicating the omitted labeler.

Now, we add another decoder. This can be an automatic clas-
sifier, but also the remaining human labeler who was omitted in
the reference, so that direct comparisons between a classifier and
a human labeler are possible. In order to avoid dependency on the
number of labelers, the new decoder is not considered in the same
manner as the other reference labelers. Instead, the hard decision
of the new decoder for sample Xs (also converted into a soft label
ldec(s)) is weighted 1 : 1 with the reference label l ref(n̄, s):

l(n̄, s) = 0.5 · l ref(n̄, s) + 0.5 · ldec(s) (1)

Then, the entropy can be calculated for the given sample Xs:

H(n̄, s) = −

K∑

k=1

lk(n̄, s) · log
2
(lk(n̄, s)) (2)

Taking the example of Fig. 1, the entropy will decrease com-
pared to the reference labels if the decoder decides in favor of
’Anger’ as ’Anger’ is what the majority of labelers said. Other-
wise, if the decoder chooses ’Emphatic’, the entropy will increase
but not as much as if the decoder decides in favor of ’Neutral’ since
30 % of the labelers agree that this sample is ’Emphatic’ and only
20 % said the sample is ’Neutral’. As none of the labelers decided
for ’Motherese’, choosing this class yields the highest entropy.
This makes sense since ’Motherese’ seems to be definitely wrong
in this case. Note that if using hard decisions, ’Anger’ would be
the only correct class although 50 % of the labelers disagree.

The next step is to average the computed entropy value for Xs

over the left-out labelers:

H(s) =
1

N

N∑

n=1

H(n̄, s) (3)

We say that our classifier performs not worse than an average
human labeler on sample Xs, if the entropy from Eq. 3 with our

classifier as the new decoder does not exceed the entropy where
the additional decoders were always humans. By plotting two cor-
responding histograms of H(s) for the entire corpus, we obtain a
visual means for the assessment of the performance of the classifier
on this corpus: the closer the histogram for the machine classifier
is to the histogram for the human labelers, the better the classifier
is. In general, nothing is known about the distributions approx-
imated by these histograms. However, if instead of plotting en-
tropy values of individual samples we average them over series of
several samples, then, according to the central limit theorem, the
resulting distributions will be approximately normal, and thus, de-
scribable in terms of its means and variances. In our experiments
we used series of 20 samples.

The overall entropy mean itself can be used for comparison
and is computed by averaging H(s) over all samples of the data
set:

H =
1

S

S∑

s=1

H(s) (4)

3. THE AIBO-EMOTION-CORPUS

This entropy-based measure is useful in all those cases where a
large discrepancy amongst the human reference labelers exist. In
this paper, we demonstrate the evaluation of different decoders
considering the example of emotion recognition in speech of chil-
dren. All experiments are done on a subset of our Aibo-Emotion-
Corpus which consists of 51 children at the age of 10 to 13 years.
The children were asked to direct the Aibo robot along a given
route and to certain objects. To elicit emotions, the Aibo was op-
erated by remote control and misbehaved at predefined positions.
In addition, the children were told to address Aibo like a normal
dog, especially to reprimand or to laud it. Besides that, we pressed
the children slightly for time and put up some danger spots where
Aibo was not allowed to go under any circumstances. Neverthe-
less, the recorded emotions are relatively weak, especially in con-
trast to full-blown emotions of acted speech. The corpus consists
mainly of the four emotions ’Anger’, ’Motherese’, ’Emphatic’,
and ’Neutral’ which were annotated at word level by five experi-
enced graduate labelers. Before labeling, the labelers agreed on a
common set of discrete emotions. For a more detailed description
of the corpus, please refer to [2]. As ’Neutral’ is the most frequent
“ emotion” by far, we downsampled the data until all four classes
were equally present according to the majority voting of our five
labelers. At least three labelers had to agree. Cases where less than
three labelers agreed were omitted as well as those cases where
other than the four basic classes were labeled. In the final data set,
1557 words for ’Anger’, 1224 words for ’Motherese’, and 1645
words each for ’Emphatic’ and for ’Neutral’ are used. The inter-
labeler consistency can be measured using the multi rater kappa
statistic. The formula is given e. g. in [3]. For our subset, the kappa
value is only 0.36 which expresses the large disagreement of our
five labelers. It is generally agreed that kappa scores greater than
0.6 indicate good agreement. There exists also a weighted version
of the multi rater kappa statistic which weights confusions accord-
ing to a given distance measure between the two confused classes
[4]. This approach demands that the four classes are arranged on
a linear scale. We assigned 2 to ’Neutral’ to put ’Neutral’ in the
center, 1 to ’Motherese’, 4 to ’Anger’, and ’3’ to ’Emphatic’ as
we consider ’Emphatic’ as a sort of pre-stage of ’Anger’. Doing
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this, we get a weighted kappa value of 0.48. The divers versions of
kappa are not the only methods to evaluate the inter-labeler agree-
ment. For an overview, please see [5]. As mentioned above, our
low kappa value is not due to bad labeling. Rather, we are dealing
with a difficult classification problem where even human labelers
disagree about certain classes. On the one hand, our emotions are
relatively weak what makes it hard to decide whether a given word
is emotional or not. The consequence is a high confusion rate of
the three emotion classes with ’Neutral’. On the other hand, ’Em-
phatic’ as a pre-stage of ’Anger’ is not only hard to distinguish
from ’Neutral’ but also from ’Anger’.

4. MACHINE CLASSIFICATION OF EMOTIONS

The experiments described in the following are all conducted with
artificial neural networks. Because of the small data set, we do
“ Leave-One-Speaker-Out” experiments: each of the 51 speakers
is used once for testing, while 40 of the remaining speakers are
used for training, and the other 10 speakers for validation of the
neural networks. As features we use our set of 95 prosodic fea-
tures and 30 part-of-speech features. Details of these features can
be found in [6, 7]. The total number of features is reduced to 95
using principal component analysis (PCA). Two different machine
classifiers are trained: machine 1 is trained with soft labels, ma-
chine 2 with hard labels. The results in terms of traditional recog-
nition rates are given Tab. 1 and Tab. 2 together with a confusion
matrix of the classes. Note that in both cases, the output of the
classifiers are hard decisions in order to be able to compute recog-
nition rates. The majority voting of all five human labelers serves
as hard reference. The average recognition rate per class is with
59.7 % slightly higher for machine 2 which is trained with hard
labels than for machine 1 which achieves 58.1 %.

A M E N Σ RR
A 791 47 261 458 1557 50.8 %
M 56 559 27 582 1224 45.7 %
E 214 23 947 461 1645 57.6 %
N 100 94 161 1290 1645 78.4 %
∅ 58.1 %

Table 1. Machine decoder 1 (trained with soft labels): confusion
matrix and recognition rates (RR) evaluated using hard decisions
for the classes ’Anger’, ’Motherese’, ’Emphatic’, and ’Neutral’

A M E N Σ RR
A 899 90 303 265 1557 57.7 %
M 110 697 68 349 1224 56.9 %
E 273 43 1076 253 1645 65.4 %
N 215 201 266 963 1645 58.5 %
∅ 59.7 %

Table 2. Machine decoder 2 (trained with hard labels): confusion
matrix and recognition rates (RR) evaluated using hard decisions
for the classes ’Anger’, ’Motherese’, ’Emphatic’, and ’Neutral’

The intention of this paper is to compare these two machine
classifiers with an average human labeler as described in Sec. 2.
But prior to this, we present results for different naive classifiers.
In Fig. 2 (left), entropy histograms for an average human labeler
and a random choice classifier, which randomly chooses one of

four classes, are shown. As expected, the mean entropy H from
Eq. 4 for the simple classifier (1.050, Tab. 3) is much higher than
for the average human labeler (0.722). Accordingly, the histogram
of the random choice classifier is shifted to the right. This naive
classifier clearly performs worse than one of our labelers on av-
erage. On the right side of Fig. 2, the histograms of two other
naive decoders are shown. One classifier decides always in fa-
vor of ’Neutral’, the other one always for ’Motherese’. Analyzing
the data set, it is obvious that human labelers are often not sure
whether they should label a word as emotional or as neutral due
to the weak emotions we are dealing with. Consequently, decid-
ing for ’Neutral’ conforms more to the human labeling behavior
than deciding for a certain emotion class. This fact is reflected in
our entropy values as well. The mean entropy for the classifier
that always chooses ’Neutral’ is 0.843 which is better than random
choice. In contrast, always deciding for ’Motherese’ is even worse
(1.196).

decoder entropy measure

human majority voting 0.542
human labeler 0.721
machine 1 0.722
machine 2 0.758
choose always ’N’ 0.843
choose always ’E’ 1.049
random choice 1.050
choose always ’A’ 1.127
choose always ’M’ 1.196

Table 3. Different decoders and their classification results w. r. t.
our entropy measure

In the comparison with the two machine classifiers, the en-
tropy measure H shows that the decoder machine 1 performs as
well as an average human labeler, albeit it yields an average recog-
nition rate per class of “ only” 58.1 %. The mean entropy is with
0.722 almost identical with the value attained by the human label-
ers (0.721). Our second machine decoder machine 2, even though
it is slightly superior to machine 1 in terms of recognition rates,
performs a little worse than machine 1 in terms of the mean en-
tropy (0.758). The reason becomes obvious if one looks at the
confusion matrices in Tab. 1 and Tab. 2. Both neural networks are
trained in such a way that all four classes should be recognized
comparably well. This works better if hard labels are used for
training as in the case of machine 2. In contrast, machine 1 tends
to favor ’Neutral’, and this is exactly what humans do in our data
set. This is why the entropy measure, being a rather intuitive one,
prefers machine 1 over machine 2, even though its overall recog-
nition rate is slightly lower.

The reference for calculating recognition rates is the majority
voting of all five labelers. This majority voting can also be in-
terpreted as decoder. In Fig. 3 (right), this decoder is plotted in
comparison with an average human labeler. The mean entropy of
0.542 specifies the minimum entropy which can be achieved by a
machine decoder. Thus, a machine classifier can very well be bet-
ter than a single human on average. The results show that we are
as good as one of our human labelers on average, but that there is
also enough room for further improvements.
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Fig. 2. Comparison between an average human labeler and three naive classifiers: a decoder which selects randomly one of the four classes
(left) and two decoders which always choose ’Neutral’ and ’Motherese’ respectively (right)
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Fig. 3. Comparison between an average human labeler and our machine decoder 1 (left) and the majority voting of our five human labelers
respectively (right)

5. CONCLUSION

We proposed a new entropy-based measure which makes a com-
parison between human labelers and machine classifiers possible.
Even more important for the evaluation is the fact that systematic
confusions of human reference labelers are taken into account as in
most of our cases the reference is far from being non-ambiguous.
For instance, slight forms of ’Anger’ are often confused with ’Em-
phatic’ or with ’Neutral’ since it is very hard to distinguish among
these emotions – even for humans. From the application’s point
of view, deciding for a very similar class cannot be that wrong in
those cases. Our measure automatically punishes those classifica-
tion faults that also occur in human classification less than those
faults that are never done by humans. Traditional recognition rates
are not capable of this distinction.
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