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Abstract

In many industrial and medical applications, glass-
fiber endoscopes are used to acquire images from
complex hollows for diagnostic and interventional
purposes. For a complete exploration and under-
standing of a hollow cave, 3-d reconstruction is nec-
essary. In contrast to other endoscopy-based re-
construction scenarios, in our case the images are
immensely degraded by the glass-fiber honeycomb-
pattern. Thus, we propose a reconstruction scheme
for fiberscopical obtained image sequences, which
has been enhanced by a data driven preprocessing
step as well as a knowledge driven post-processing
step. By example of a 3-d reconstruction of a
straight circular tube from monocular fiberscopic
images, these extensions are analyzed and evalu-
ated.

1 Introduction and Objective

Many applications in the domain of industrial and
medical image processing make considerable use
of flexible endoscopes - so called ’fiberscopes’ or
’boroscopes’ - to gain visual access to holes, hol-
lows, antrums and cavities that are difficult to enter
and examine. Common to both application fields
are usually very small natural or man-made entry
points to the observed scene - with diameters be-
low 4 mm - as well as the complexity of the hol-
low itself, forbidding the use of rigid lens-based en-
doscopes. Typical examples in the field of indus-
trial machine inspection are complex drill holes or
coolant bores in turbine blades [11, 8, 1, 12].

In the medical domain, fiberscopes are applied

for diagnostic tasks, such as laryngoscopy [29, 2],
bronchoscopy [5, 20], as well as for minimal-
invasive surgery-scenarios [16, 30, 15].

1.1 Introduction to Fiberscopes

Due to the nature of light transmission into the ob-
served cavity and image transmission out of the cav-
ity by the sole use of glass fibers, the acquired and
observed image scene is sub-sampled by the amount
of glass fibers that form the flexible image conduc-
tor. The amount of fibers depends on the diame-
ter of the endoscope and the physical dimensions of
the fibers. Typical numbers of glass fibers for im-
age transmission in such flexible endoscopes are in
the range between 3,000 and 50, 000 fibers, where
each of the glass fibers carries only one intensity in-
formation. In comparison, the spatial resolution of
cameras begin at the low end with 307,200 pixels,
commonly used by web-cams, or television cameras
with a resolution of approximately512×728 pixels.
At the high end, modern cameras for application in
industrial and medical fields are available starting at
one mega-pixel and currently range up to 12 mega-
pixels. Thus, using fiberscopes in combination with
cameras and the goal to observe, acquire, digitize
and reconstruct a complex scene of a cavity, a crude
sub-sampling is made on the tip of the fiberscope,
while an over-sampling takes place, where the im-
age transmitted by the glass fibers is acquired with
a camera. An image of a test-chart, observed with
a fiberscope is depicted in Fig. 1, with sub-regions
enlarged to show the typical fiber-effect. It can be
seen, that each group of pixels - denoting the inten-
sity of an image point transmitted by a glass fiber
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Figure 1: Typical view through a fiberscope (left)
onto a test chart. Enlarged sections (center and
right) depict the homogeneous honeycomb structure
from the glass fiber transmission

- is surrounded by a dark ring. This is due to the
transmission property of glass fibers. Every opti-
cal fiber consists of a core with a high refractive
indexn1 and a cladding with a lower refractive in-
dexn2. Light rays, which enter the fiber at one end,
are guided along the core by total internal reflec-
tions at the core-cladding interface. This total in-
ternal reflection can be described by Snellius’ law:
sin αT = n2/n1, whereαT denotes the critical an-
gle of total reflection. The reflected light rays fol-
low the bends in the fiber and exit it at its other end.
For fiberscopes, bundles of optical fibers are com-
bined with appropriate end terminations and protec-
tive sheathing to form light guides.

The elastic image conductor of current available
fiberscopes consists of a sorted bundle of fibers
made of glass or quartz crystal. According to
the desribed core-cladding relationship, fibers show
a homogeneous alignment of bright transmission
points, surrounded by a dark borders over the en-
tire image, the so-called ’comb’ structure (see Fig.
1, center and right).

1.2 Objective

Within the scope of our project, the future goal is
the reconstruction of complex hollow spaces from
monocular fiberscopic views . In contrast to other
work, where rigid rod-lens endoscopes for scene ex-
ploration are applied [22, 26, 10], the reconstruction
process in our work is strongly dependend on the
prepocessing steps to eliminate the honeycomb ar-
tifacts, as depitected in Fig. 1.

Thus, in this context the objective of the pre-
sented work is
• to propose the established method of Heigl [6]

for camera pose estimation and 3-D scene re-
constuction, which has been extended by

• a data driven spectral filtering prepocessing

step to eliminate the honeycomb structures,
and

• a knowledge driven extension of the recon-
struction to eliminate false point positions. Fi-
nally,

• the achieved preliminary reconstruction re-
sults will be presented and subjectively evalu-
ated with respect to the honey-comb removing
filtering approach at the beginning of the pro-
cessing chain and the elimination of bad track-
ing points in the progress of reconstruction.

The remainder of this article is organized as fol-
lows: After briefly reviewing work from literature
about endoscopy-based scene reconstruction (sec-
tion 2), we will propose our enhanced reconstruc-
tion scheme (section 3) including the steps im-
age filtering, calibration and distortion, tracking,
self-calibration and reconstruction as well as some
knowledge-driven extensions. Section 4 resumes
the proposed approaches and presents results for
different experimental settings. We end this work
with a discussion and conclusion of the obtained re-
sults in section 5.

2 State of the art

To our knowledge there are not many publications
with respect to 3-D reconstruction of tubes or com-
plex hollows based on monocular fiberscopical ac-
quired images. Even though literature has ad-
dressed several 3-D-reconstruction schemes based
on image sequences obtained with rigid endoscopes
or video-endoscopes for various applications, no
work about scene reconstruction from fiberscopic
images is known.

Vogt et al [26, 25] introduced a reconstruction
and lighfield-visualisation of the abdomen, based
on a roboter-mounted rigid endoscope. Similar
work has been known from Thorm̈aehlen et al
[22, 21], based on image sequences obtained from
a video-endoscope in the colon. The scene recon-
struction is done in two steps, first the movement
of the videoscope itsself is approximated, and sec-
ondly a 3-d reconstruction is calulated. A recon-
struction scheme for tubes – similar to our appraoch
– has been suggested by Kübler et al [10], which is
also based on video-endoscopic images and uses an
external localisation system for affine motion infor-
mation. The 3-d-reconstruction itsself is based on a
piece-wise ring-model of the tube.

The closest work to our own investigations has
been proposed by M̈uller et al [13, 14], who use a
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fiberscope to measure the stenosis of the trachea,
based on an active illumination approach. For this
method, a cone mirror is used to project a ring-
shaped laser beam to the inner walls of the trachea
and thus illuminating the tracheal wall in a piece-
wise manner for measurement and reconstruction.

3 Method

Our proposed method consists of four major steps.
The first step (section 3.1) consists of an adaptive
filtering approach, making the feature and corre-
spondence detection more robust. The second step
deals with the calibration and distortion correction,
which will be discussed in section 3.2. The third
step consists of the correspondence-calculation and
feature-tracking (section 3.3). This part also in-
cludes the 3-D-reconstruction process as well as
self-calibration. Finally, in section 3.4, the forth
step is outlined, dealing with two knowledge-driven
extensions of the reconstruction process, that en-
hance the results significantly. While the calibra-
tion and reconstruction steps (2. and 3.) are based
on known methods, they are not applictable in this
context without data-driven image filtering (step 1)
and knowledge driven exception handling (step 4).

3.1 Filtering

To eliminate the honey-comb stuctures in fiber-
scopic images (Fig. 2 left), which disturb the
feature-extraction process for the 3-D reconstruc-
tion, a spectral filtering approach is applied. Based
on the spectrum of a fiberscopic image, the Nyquist-
Shannon Sampling Theorem is applied to obtain pa-
rameters for an optimal band-rejection mask gen-
eration. This approach runs in a fully automatic
mode and is independent to scale and resolution of
the image conductor, as well as type and resolu-
tion of the image sensor. Several types of band-
rejection masks can be generated by this process,
including simple rotation invariant masks as well as
star-shaped rotation variant masks, which contain
information about orientation between fiberscope
and sensor. This filtering approach enables a – sub-
jectively – complete elimination of the fiberscopic
comb structure for and is adaptive to any arbitrary
endoscope and sensor combinations [27]. Fig. 2
right shows the filtering result from Fig. 2 left.

Figure 2: Left: Original image with honey-comb
distortions, acquired with a glass-fiber endoscope,
right: filtered and enhanced image

3.2 Calibration and Distortion Correction

Optical imaging systems utilizing lenses exhibit
geometric distortions in the acquired images due to
liabilities in lens manufacturing. Especially, when
considering wide-angle lenses – as can be found in
endoscopes – usually a strong barrel distortion is
observable, which necessitates a correction, since
quantitative information is derived from the ac-
quired images. These distortions have to be taken
into account during the camera calibration process
to minimize the model fit error and improve calibra-
tion accuracy.

The internal camera geometry and optical char-
acteristics of the imaging system are determined by
a well-known calibration technique by Zhang [32],
modelling the imaging process by a pinhole camera,
and incorporating the perspective projection of 3-D
world coordinates onto the 2-D imaging plane. Ac-
cording to this model the mapping of a scene point
X = (X, Y, Z)T to its ideal 2-D image in sensor
coordinatesu = (u, v)T is given by

λũ = A (R t ) X̃ (1)

whereũ denotes the augmented vector by adding
1 as the last element and̃X respectively.λ repre-
sents a scalar factor that is due to the homogenous
coordinate notation.

The3× 3 rotation matrixR and the3× 1 trans-
lation vectort express the position and orientation
of the camera with respect to the origin of the (user-
defined) world coordinate system, and are generally
referred to as theextrinsic parameters.

In contrast to the pose of the camera, theintrinsic
parametersrefer to the components of the3 × 3
camera matrixA describing the image formation
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process:

A =

α f γ u0

0 f v0

0 0 1

 . (2)

Its four degrees of freedom are given by thefocal
lengthf and theprincipal point u0 = (u0, u0)

T

of the camera, theaspect ratioα of a pixel and the
angle of skewγ between the two axes of the CCD
sensor array, which is frequently set to zero, justi-
fied by the virtually orthogonal image axes in most
modern CCD cameras.

3.2.1 Camera Lense Distortion

In real optical systems, including endoscopes [19],
[24], [31], [3], the idealized pinhole model is often
not sufficient to describe the mapping from camera
to image coordinates precisely, due to imperfections
of the lens(es). These liabilities in lens manufacture
are typically modelled byradial andtangentialdis-
tortion, which is usually described by four coeffi-
cients [7], [9]: two radial distortion coefficientsκ1,
κ2, and two tangential onesρ1, ρ2.

Let (u, v) be true pixel image coordinates, that
is, coordinates with ideal projection, and(û, v̂) be
corresponding real observed (distorted) image co-
ordinates. Taking into account two expansion terms
gives the following:

û = u + u(κ1r
2 + κ2r

4)

+ (2ρ1uv + ρ2(r
2 + 2u))

v̂ = v + v(κ1r
2 + κ2r

4)

+ (2ρ2uv + ρ1(r
2 + 2v))

wherer2 = x2 + y2. The second terms in the
above relations describe radial distortion and the
third ones tangential distortion. The center of the
radial distortion is the same as the principal point.
Becausêu = u0+αfu andv̂ = v0+fv, whereu0,
y0, α andf are components of the camera intrinsic
matrix A, the resulting system can be rewritten as
follows:

û = u + (u − u0)[κ1r
2 + κ2r

4

+2ρ1y + ρ2x(r2 + 2x2)] (3)

v̂ = v + (v − v0)[κ1r
2 + κ2r

4

+2ρ2x + ρ1y(r2 + 2y2)] . (4)

These parameters extend the set of camera pa-
rameters and are reasonably assigned to the intrinsic

camera parameters, because they affect the image
formation.

The calibration procedure described in [32] cal-
culates both the extrinsic and intrinsic parameters
of the imaging system - however only the latter are
required for distortion correction as can be seen in
equation (3) and (4).

3.3 Tracking, Self-Calibration and Recon-
struction

Once an undistorted image stream is available, cam-
era pose estimation and 3-D reconstruction using
standard approaches can be attempted. The pro-
cedure employed here uses point features based
structure-from-motion. Thus, the first step is to de-
tect point features in the first image of the image
sequence and to track them through the sequence,
replacing lost features in each image. The detection
and tracking algorithm is based on the well-known
Shi-Tomasi-Kanade tracker [23, 18]. Additionally,
the tracker contains a number of extensions such
as illumination compensation, outlier detection and
“feature drift prevention” for long image sequences,
which are explained in detail in [33].

Given a set of featuresui,j which are visible in
all imagesfi of a sequence, the camera’s extrinsic
parameters, i. e., its pose given by the rotationRi

and translationti of equation (1), and the 3-D po-
sitionsXj of the features can be calculated using a
factorization method. In this case the paraperspec-
tive factorization by Poelman and Kanade [17] is
used.

The result is refined using a non-linear optimiza-
tion of the back-projection error as proposed in
[4]. Since the internal parameters of the camera are
known from the previous step, they need not to be
estimated here. Thus, the affine reconstruction ob-
tained by the factorization method can be upgraded
to an euclidean one by constructing a projection ma-
trix Pi from A, Ri, andti, i. e.,

Pi = A(Ri|ti) , (5)

and minimizing the back-projection error by adjust-
ing Ri, ti, andXj . For an estimated projection
˜̂ui,j = P̂i

˜̂
Xj the error is calculated as the differ-

ence to the corresponding true image featureui,j ,

εi,j = ui,j − ûi,j . (6)

ûi,j denotes the estimated image feature˜̂ui,j in
cartesian coordinates. The total back-projection er-
ror for imagefi is thus defined asεT

i εi, εi being the
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concatenation of allεi,j in a single column vector.
The camera parameters are optimized for each im-
age seperately, and each iteration is alternated with
an iteration of the 3-D point position optimization.
The Levenberg-Marquardt extension of the Gauß-
Newton algorithm is used for optimization.

Especially for the low-quality endoscopic images
used here, the condition that the features are visible
in all images is only valid for few images at a time.
Therefore, this initial reconstruction is only applied
to a short subsequence, and the reconstruction of the
remaining images is added using the iterative pro-
cedure described in [6]. The camera parameters for
an image neighbouring the already processed image
subsequence are estimated again by non-linearly
minimizing the back-projection error of the already
known 3-D features. The parameters of this camera
Pk are initialized using the parameters of an adja-
cent, known camera posePk±1. After the estima-
tion of each camera pose, newly appearing features
are triangulated in order to compensate for features
which move out of the field of vision of the cam-
era. 3-D points with a back-projection error above
a certain threshold are discarded. Thus, the recon-
struction is extended image by image to the whole
image sequence. Since only six parameters have to
be estimated for each camera pose (three for the ro-
tation and three for the translation), this process is
quite robust and yields good results even for very
noisy input data such as in the case at hand.

3.4 Knowledge-driven Extensions

To test the proposed method for 3-D-reconstruction
based on monocular, fiberscopic images, reference
objects with known shape and geometry have been
used for analysis, such as straight, cylindric bore
holes. Fig. 3 shows a sequence of images taken at
several steps inside the bore. The endoscope has
a straight view along the moving axis. In Fig. 4
detected and tracked points (as described in section
3.3) are marked by colored dots.

Due to the image acquisition process with
glassfiber-endoscopes, the images are degraded and
thus falsly tracked features in some of the so-called
trails lead to misplaced 3-d positions. To elim-
inate such falsly calculated 3-d-point correspon-
cences from the reconstruction process, we apply
knowledge driven extensions. From our example
of a straight, cylindrical bore hole we can deduce
two kinds of necessary restrictions to the observable
movement. One restriction is object dependent, the
other depends on the imaging device.

Figure 3:Three images of sequence taken by flexible
endoscope while stepping into bore.

3.4.1 Object-dependent extensions

Based on the knowledge about the observed ob-
ject (a straight cylindrical tube), we can introduce
restrictions to the region of interest where tracked
points are considered as valid. Most endoscopes are
designed for a specific minimal working distance.
Thus, objects depicted below this distance appear
unsharp. Hence, we do not consider image points
in areas with a large distance from the optical cen-
ter.

Secondly, the area around the vanishing point –
which is the center of the bore hole and is always
close to the optical axis – does not contribute to the
intended reconstruction. Additionally, low contrast
and tiny details make tracking risky in this area.
Therefore, this is the second object-driven subset of
tracked points that has to be eliminated.

3.4.2 Device-dependent extensions

To capture image sequences through a commer-
cially available fiberscope, we apply an industrial
CCD-Sensor. The camera is connetected via a C-
mount adapter to the endoscope’s ocular. The im-
age aperture – due to the ocular of the endoscope
– is responsible for the circular keyhole that nar-
rows the visible sector. This abrupt change between
the circular image and its dark surrounding irritates
the applied feature tracker and thus leads to false
anchors in connected chains of trails. To eliminate
false trail-anchors, the region of interest (ROI) is re-
stricted to inside the aperture circle.

To use a trail for the reconstruction of the corres-
ponding 3-D point, all sections containing point lo-
cations outside the specified regions of interest have
to be removed. This is done by cutting the trail at
its start or its end point. If trails both begin and end
outside of the defined ROI, they are removed com-
pletely. The bottom sections of figure 4 illustrate
the reduced tracked point set.
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Figure 4: 2nd image from figure 3 with marked
tracking points (top). Enlarged sections showing
false tracking positions (center) and resulting track-
ing points after limiting by object-dependent and
device-dependent region of interest.

4 Experiments and Results

The extensions to the tracking and reconstruction
algorithm – as explained in Section 3.4 – are able
to restrict point trails to specific regions of interest.
The effects of these object- and device-dependent
restrictions are illustrated in Fig. 5. The top point
cloud depicts the profile of the reconstructed cylin-
der, as viewed from the front along theZ-axis. It
can be observed as a high blurring around a virtual
circle. In the lower point cloud in Fig. 5, the approx-
imately16, 000 feature points were reduced accord-
ing to the proposed model- and sensor-dependent
restrictions to the region of interest. The factor of
eliminated false correspondendes is around10%.

Figure 5:Profile view of a reconstructed point cloud
of cylindric bore hole from unprocessed image data
(top). In addition, trails for reconstruction were re-
duced by cutting them to the region of interest ac-
cording to section 3.4 (bottom).

After this correction-step, the points form a more
precise circular arrangement.

In section 3.1, an adaptive spectral filtering
approach to reduce the honeycomb-structure of
fiberscopic images was described. This filtering
approach was applied to the fiberscopic image-
sequence recorded in the straight, cylindrical bore
hole. The effect of applying this specific filter as
preprocessing step to fiberscopic image material be-
fore localizing and tracking features can be seen in
figure 6. The top reconstruction is calculated from
points that were localized and tracked in images af-
ter our proposed filtering. Compared to the recon-
struction from the unfiltered image sequences, as
depicted in Fig. 5, the result already shows a more
condensed distribution, and less variance of recon-
strcuted points. Finally, using the knowledge-driven
extensions from section 3.4 and restricting the point
set by approximately10% to the region of interest,
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the final reconstruction (see center and lower part of
Fig. 6) show the best results.

5 Discussion

Within the scope of our project ’Reconstruction of
complex hollow spaces from monocular fiberscopic
views’ [28], the reconstruction process for such hol-
lows strongly depends on the quality and contents of
the input sequence. Since the images are degraded
by the fiberoptics of the flexible image conductors,
a data driven spectral filtering must be applied be-
fore the reconstruction process can take place. If we
compare the point cloud calculated from unfiltered
image data (Fig. 5 top) with the point cloud cal-
culated from the spectral filtered data (Fig. 6 top),
it can be seen that deviation of the points with re-
spect to the ciruclar profile of the boundary of the
straight tube has been reduced. The same holds
for the knowledge driven post-processing point-
elimination step: A comparison of the point cloud
calculated from regular image data (Fig. 5 top) with
the point cloud calculated from the post-processed
data (Figs. 5 and 6 bottom) shows, that the variance
of the points with respect to the the boundary of
the tube is further decreased. Thus, the proposed
filtering and extensions of the 3-D-reconstruction
method yield subjectively better results compared
to a plain reconstruction scheme. Work in progress
currently deals with an objective evaluation scheme
of these results by fitting a cylindrical model to the
point cloud and calculating the mean and standard
deviation of the points with respect to the cylinder
model.
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Figure 6:Profile view of reconstructed point cloud
of cylindric bore hole from filtered image data ac-
cording to section 3.1 (top). In addition, trails for
reconstruction were reduced by cutting them to the
region of interest according to section 3.4 (center).
Bottom: Side view from the reconstructed bore hole
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