
Visualizing distances between light field and geometry
using projective texture mapping

M. Winter1, G. Greiner1, F. Vogt2, H. Niemann2, S. Krüger3

1 Computer Graphics Group, Am Weichselgarten 9, 91058 Erlangen, Germany
Email: {winter, greiner}@informatik.uni-erlangen.de

2 Chair for Pattern Recognition, Martensstrasse 3, 91058 Erlangen, Germany
Email: {vogt, niemann}@informatik.uni-erlangen.de

3 Chirurgische Universitätsklinik, Krankenhausstrasse 12, 91054 Erlangen, Germany
Email: sophie.krueger@chir.imed.uni-erlangen.de

Abstract

Visualizing spatial relations between geometry-
enhanced light fields and other geometric objects
can be expedient in a wide range of applications,
and provide valuable information to the viewer. In
this paper, a method is presented that allows visual-
izing the distance between some geometric objects
and an unstructured lumigraph implementation. For
that purpose, it uses a technique related to hardware
shadow mapping, or in a broader sense, projective
texture mapping. Making use of recent graphics
hardware, the method is fast enough to allow in-
teractive frame rates. It also makes use of the data
structures provided by the unstructured lumigraph,
and requires almost no additional pre-processing
steps. The distance visualization works indepen-
dent of the current view, only depending on the cur-
rent light field image, and thus providing very ac-
curate results for the measured distances. Further-
more, it provides support for semi-transparent ge-
ometry.

1 Introduction

Light fields represent an image-based rendering
technique that provides an effective way of gener-
ating arbitrary views out of a given set of images
[1, 2]. Since their introduction in 1996, many new
approaches and enhancements have been published,
considering light fields on their own. However, one
area that is also of great interest and still to be in-
vestigated, is the rendering of light fields in com-
bination with other geometry, and deriving spatial
relationships between these different “objects“.

In medical applications which make use of light
field rendering techniques, such a combination
would be of great value. For example, light fields
can be used to visualize the surface of an operat-
ing field [19], and can be rendered with some ge-
ometric structures that provide additional informa-
tion about the operation field, e. g. occluded organs
under the surface. In this case, it is also of great in-
terest for the surgeon to get information about the
distance between these occluded parts and the sur-
face, as this could provide some helpful information
for planning the surgery procedure.
In the past, investigations in the area of combin-
ing light fields and geometry have been hampered
by the image-based nature of light fields, i. e. the
lack of depth or geometric information which is
necessary to perform combined rendering and reli-
able distance measuring. This restriction was abol-
ished amongst others by the unstructured lumigraph
(ULG) [4], a light field model that employs “real“
geometry for rendering, which can be used for the
derivation of spatial relationships.

Based on the lumigraph’s geometric information,
there are a number of methods to do distance visu-
alization. A quite easy way to visualize distances
between two geometric objects in general is to per-
form a weighted blending when rendering them into
a common graphics context, as done in [18]: Using
the z-buffer values of these objects at each pixel, the
distance between both objects is determined, and
the degree of opacity for the object being in front
is adjusted depending on that distance.
This method provides a very intuitive way to visu-
alize distances. Unfortunately, it is highly view-
dependent, and therefore does not give consistent
results when looking at the scene from different

VMV 2005 Erlangen, Germany, November 16–18, 2005

viewpoints, which may lead to confusion of the sur-
geon.

Another completely different approach to show
distances between arbitrary objects are so-called
distance fields [15]. A distance field is a signed or
unsigned scalar field that is registered to an object:
Each grid value of the field contains the distance to
the nearest point on the object‘s surface. A nice sur-
vey about distance fields can be found in [14].
Demiralp et al. [16] showed how distance fields
can be used to visualize distances between objects
by using a combination of color mapping and iso-
contouring depending on the distance field’s values.
A similar approach was used in [17] for the purpose
to visualize differences between a 3D volume and
its corresponding reconstructed iso-surface.
Though these approaches result in very accurate
distance visualizations, they are quite general meth-
ods and developed for static geometry. This makes
them less useable for storing a light field’s dis-
tance values, as it might change it’s appearance
(and therefore its distance information) in each new
view.

For an algorithm that performs an accurate and
reliable distance visualization between an unstruc-
tured lumigraph and other geometry, the following
requirements should be met:

• The algorithm should make use of the methods
and data structures that are provided by the un-
structured lumigraph, aside from depth or ge-
ometric information. That way, computational
overhead is minimized, and better results can
be expected.

• The visual results must be in line with the cur-
rent light field image, but should be fairly in-
dependent from the current camera position.
This means that e. g. when looking at a light
field “from behind“, the distance visualization
must still work with the light field.

• For the area of application described above,
the geometry usually is expected to be “be-
hind“ the light field, in order to represent ar-
teries, veins or organs occluded by the light
field image. Therefore, an accurate blending
between light field and geometry is needed.

• Often, it is preferable to have semi-transparent
geometry in order to also get distance informa-
tion of occluded parts of the geometry, so the
algorithm should support transparent geome-
try, too.

• The algorithm should be fast and require vir-
tually no pre-processing.

In this paper, we describe a method that uses
a kind of enhanced shadow mapping in order to
visualize distances between geometric objects and
light fields rendered by an unstructured lumigraph.
The method was developed to work in coopera-
tion with the ULG renderer implementation from
the lgf3 framework [7], and employs its depth data
structures to perform accurate distance visualiza-
tion. Additionally, we suggest how to combine a
light field generated by that renderer and some ge-
ometry into a common rendering context.

This paper is organized as follows: Section 2
gives a short overview about previous publications
on light field rendering and shadow mapping, Sec-
tion 3 describes the implementation of the light
field renderer that is used in combination with our
method. In Section 4, the actual visualization al-
gorithm is described in detail, as well as its combi-
nation with light field rendering. Finally, Section 5
shows some performance results of the algorithm’s
implementation, and a summary is given in Sec-
tion 6.

2 Previous work

Light field rendering is a topic of research in the do-
main of image-based rendering techniques that has
grown more and more popular over the last years.
The basic approach of light fields is that the scene
information is captured by some images, and new
views can be reconstructed by using a combination
of these images. The first methods for rendering
two-plane light fields were published in 1996, using
either a hand-held camera [1] or a specialized mo-
tion control platform [2] for image aquisition. After
that, more sophisticated algorithms have been de-
veloped, like free form light fields [3] or light field
mapping [5], which also make use of approximated
surface geometry in order to achieve better results.
Buehler et al. introduced the unstructured lumi-
graph [4] which was designed to be very flexible
in its requirements concerning the visual and ge-
ometric information about a scene: It should be
possible to generate new views using either accu-
rate surface meshes with little visual information, or
many scene images combined with almost no geo-
metric data. Evers-Senne et al. developed a system
for both capturing and rendering light fields using

666

view-dependent local geometry that is generated
from computed depth maps [6]. Similar techniques
can be found in the lgf3 framework [7], whose
hardware-accelerated ULG renderer was used for
this work to render the light field part.

Shadow mapping is a method for shadow cre-
ation that is heavily used in the game and film indus-
try [9]. The basic shadow mapping approach was
published by Williams et al. [8]. There a screen-
based rendering technique is described that utili-
tizes a z-buffer: In a first rendering pass, the scene
is rendered from the light’s viewpoint into that z-
buffer, which afterwards contains the shadow map
that captures the depth values of the scene. In the
second pass, the scene is rendered from the origi-
nal viewpoint, where each pixel is transformed into
the depth map’s space, and a comparison is done
between the pixel’s z-value and the shadow map’s
corresponding value. Depending on this compari-
son, the pixel is either lit or in shadow.
Using more recent graphics hardware, it is possi-
ble to implement shadow mapping using hardware-
accelerated projective texture mapping [10]. This
technique uses automatic texture coordinates gen-
eration and a texture matrix to compute texture co-
ordinates that enable the impression that a texture is
projected from a point in space onto the geometry’s
surface, like an overhead projector.
Since then, many interesting increments and im-
provements have been added to shadow mapping,
like adaptive, perspective or multiple-depth shadow
maps [11, 12, 13], but these techniques are out of
the scope of this paper.

3 ULG renderer implementation

For the visualization technique that is presented
here, we use an implementation of the unstructured
lumigraph that is available in the lgf3 framework
[7]. This implementation uses some own data struc-
tures and components for handling light fields that
will be explained briefly in the following, as some
of these structures will be used by our method, too.
Figure 1 gives a survey of these structures.

The basic structure of the ULG implementation
used here is called a light field. A light field in this
context means a kind of triangular mesh that con-
tains so-called views at its vertices. These views
represent camera positions from where the differ-
ent images of the light field were recorded. Each

view has several so-called layers associated with
it: A radiance layer that contains the actual visual
image, a depth layer for optionally holding a depth
map of the current view, a confidence layer that pro-
vides validity information for each image pixel of
the corresponding radiance layer, and a mesh layer
that may store a depth mesh for the current image.

Figure 1: Some components and data structures
used in the lgf3 framework for storing light field
information

3.1 Light field rendering

In order to generate a new view out of the views
that are provided by the light field, the ULG ren-
derer works as follows (Note that we will only con-
sider the use of mesh layers for depth information;
Nevertheless, depth layers are supported as well):

• First, a global ranking is performed among all
views of the light field, using some approaches
described in [6]: Each view is ranked accord-
ing to its orthogonal distance to the new view,
and the angle between both view’s viewing di-
rections. Afterwards, only the “best“ n views
are employed for generating the new view.

• For each selected view, its corresponding
depth mesh is rendered into a depth buffer,
with the modelview and projection matrices
set according to the settings of the new view.

• After the depth buffer has been filled with all
meshes, it is sampled uniformly from the new
view’s position for creating a new depth mesh,
the so-called screen mesh. Figure 2 shows
such a screen mesh from both the view’s po-
sition and a side view.

• Finally, for each view, this screen mesh is ren-
dered from the new view’s position, and the

666

radiance information of the current view is ap-
plied to the mesh by using projective texture
mapping. The final image is generated by
blending and accumulating all render passes.

Figure 2: The screen mesh seen from the view’s
position (left) and from a side view (right). Ar-
eas where no depth mesh was rendered are col-
ored black, others white. The mesh’s corresponding
view is depicted as a gray dot.

4 The distance visualization algorithm

The algorithm that is proposed here is based on
the technique of projective texture mapping; More
precisely, it is closely related to the shadow map-
ping algorithm. As described in [10], hardware
shadow mapping basically works in two rendering
passes: In the first pass, the scene is rendered from
the light’s position in order to get the shadow map
which is the depth map for that scene; In the second
pass, this shadow map is projected onto the scene by
using the technique of projective texture mapping.
During that mapping, an additional depth compar-
ison between each fragment’s depth value and the
depth map’s corresponding value is done in graph-
ics hardware, giving a boolean result whether the
fragment’s position is in the shadow or not. This
result can be used in further post-processing steps,
like register combiners or fragment shaders, to com-
pute the fragment’s final color.

4.1 Overview of the algorithm

Our visualization method can now be described as
follows: Instead of rendering a depth map of the

scene, the algorithm employs the views and their
depth maps or depth meshes that are provided by
the light field structure. If depth meshes are to be
used, these are rendered into depth maps one time in
a pre-processing step. One important point here is
that the depth maps are no “real“ depth maps copied
directly from a depth buffer, but contain linearized
values in the range [0..1]. This is done to reduce
computational costs in the rendering step.
The algorithm also uses the results of the global
view ranking performed by the ULG renderer, in or-
der to know the views that are used for rendering the
current light field image. Each selected view is then
assigned a texture matrix that contains all transfor-
mations needed for projective texture mapping from
this view’s position.
With these informations, the algorithm’s visualiza-
tion procedure is initialized in the following way
(cf. Figure 3): For each view selected by the global
ranking, the corresponding depth map and texture
matrix is bound to a separate texture unit, and au-
tomatic generation of texture coordinates is set up
for that unit, thus enabling projective texture map-
ping of each view’s depth map onto the geometry’s
surface (Figure 3a). Then, the visualization is done
by rendering the geometry using a fragment shader.
For each fragment, this shader performs multiple
depth comparisons at once, one for each selected
view, similar to the hardware shadow test. How-
ever, instead of returning a boolean depth result like
in shadow mapping, these comparisons result in a
distance value, which is used to access a color tex-
ture that maps distances to colors (Figure 3b-c).

Figure 3: The visualization algorithm at a glance:
a) Rendering is initialized with the selected views’
depth maps being projected onto the surface. b) Us-
ing a fragment shader, depth comparisons are done,
resulting in distance values for all surface points.
c) Distances are mapped to colors using a color tex-
ture.

666

4.2 Shading in detail

The distance visualization itself is done by ren-
dering the designated geometry using the fragment
shader. This shader works as follows: First, for each
view vi, the distance between the current fragment
and the view’s depth map is computed. For that pur-
pose, a projective depth texture lookup is done us-
ing the automatically generated texture coordinates
ti for that view, resulting in a lookup value ci. Then,
a validity test of this lookup result is done, depen-
dent on various aspects, which will be discussed
later. If this test fails, the corresponding view is
discarded for the following steps. Next, the world
space distance between the z-values of ti and ci

has to be computed, where positive distance values
should stand for “ti > ci“. For that purpose, these
z-values first have to be transformed into real depth
values, using equation (1) for ci and equation (2)
for ti (remember that the z-value of ci already is
linearized).

d1,i = zi(fi − ni) + ni (1)

d2,i =
ni

1 − zi(1 − ni

fi

)
(2)

After this transformation, both values d1,i and d2,i

lie in the range [ni..fi] between near and far plane,
and thus are comparable. However, a simple d2,i −
d1,i isn’t sufficient, since the perspective distortion
of these values is not yet taken into account. To fix
this situation, one has to compute a distortion factor
as depicted in Figure 4: The left figure shows the
depth value d1,i from ci indicated as a white point
on the depth map’s surface, and d2,i from ti as a
black point. The value do,i = d2,i − d1,i repre-
sents the distance between these two points in or-
thographic view, which is what has been computed
until now. However, as a perspective mapping is
used, we have to find the length of dp,i, which is
shown on the right side.
Finding the right formula for dp,i is straighforward:
Using a plane E at distance 1 to the view’s position,
and the theorem on intersecting lines, one can eas-
ily figure out that dp,i = do,i ·fd,i, where fd,i is the
distortion factor. In order to compute this value, a
ray is shot from the view’s position to ti and stopped
at the intersection with the aforementioned plane E.
Then, the value of fd,i equals to the length of this
ray.
Putting it all together, the searched distance dp,i be-
tween ti and ci can be calculated using equation (3),

where vl,i, vr,i, vb,i and vt,i come up to the left,
right, bottom and top border values of the current
view’s camera frustum related to plane E.

dp,i = (d2,i−d1,i)

∣

∣

∣

∣

∣

(

tci,x(vr,i − vl,i) + vl,i

tci,y(vt,i − vb,i) + vb,i

1

)∣

∣

∣

∣

∣

(3)
Having computed the distances dp,i of the current
fragment for all views vi, the shader selects the
maximal value dmax among the distances that have
not been discarded. Using this value, the shader per-
forms a lookup into a user-defined color texture that
maps distances to color values, and modulates the
fragment’s original color with the lookup result. If
no value for dmax could be determined, e. g. due to
missing valid distance values, the fragment’s color
is modulated with the “highest“ color texture en-
try corresponding to the furthermost distance that is
supported.

Figure 4: Computation of the distortion factor for
transforming distances from orthographic (left) to
perspective projection (right). The black and white
points represent the depth values of ti and ci, re-
spectively.

4.3 Validity tests

As mentioned before, a view vi may be discarded
during shading for various reasons. One reason
might be that the corresponding texture coordi-
nates ti that were generated lie outside the range
[0..1]× [0..1], for which no valid depth information
is available.
Another reason is that there can be invalid areas
in the depth map, like areas marked in the confi-
dence map or areas outside the corresponding depth
mesh’s border (cf. Figure 2, left). In order to find
these areas and handle them, each depth map con-
tains an additional alpha channel where a valid

666

pixel has a = 1.0, otherwise zero. Invalid texture
lookups can thus be found by testing if a < 1.0
Figure 5 exemplifies this: The figure shows a depth
map with “untouched“ areas, i. e. where the depth
value is 1.0, that is used for distance visualization.
The top row shows the result without using an alpha
channel: All areas are used for visualization, result-
ing in wrong mapping at the frustum’s borders (top
right). The bottom row demonstrates the usage of
alpha values (white points) and linear interpolation
to exclude all areas with a < 1.0, which results in
correct distance mapping (bottom right).

Figure 5: Doing distance visualization without re-
specting invalid areas in depth map results in wrong
color mapping (top). Correct mapping is done by
setting alpha to zero for invalid depth entries, indi-
cated as white points (bottom).

4.4 Enhancing techniques

The algorithm described above works very well, but
can be quite slow on some configurations (cf. Sec-
tion 5); Especially the fragment shader is very ex-
pensive due to its heavy usage of texture units. Ad-
ditionally, recent graphics hardware limits the num-
ber of available texture coordinates per vertex to
eight, thus also limiting the number of usable views
in the shader. Therefore, several techniques have
been considered and implemented in order to accel-
erate and generalize the basic algorithm.

The first approach is to simply use less views for
distance visualization when the camera position is

moving, i. e. when the user changes his viewpoint.
In order to reduce visual discrepancy, the views
were discarded beginning with their lowest ranking
position. This approach is easy to implement and
quite fast, but at the cost of accuracy, especially if
the missing views provide a significant portion of
depth information.

Another similar approach is to use a composite
view for the distance visualization. For that pur-
pose, before doing the visualization, a new view is
computed out of the views that would be used oth-
erwise, and a composite depth texture is generated
by rendering the corresponding depth meshes from
the new view’s position. The composite view’s po-
sition and viewing direction are computed by av-
eraging the corresponding values of the original
views. Then, the camera frustum for the view is
constructed such that it contains all frustums from
the old views (see Figure 6). This way, it is guar-
anteed that the depth meshes of these views will
be rendered completely inside the new view’s depth
texture.
This approach is very fast, as it reduces the num-
ber of used views to one, and the time for generat-
ing the composite view including depth texture for
each new frame is negligible. Furthermore, one ma-
jor advantage of this approach is that it abolishes
the restriction of being limited to the number of
available texture coordinates. However, it suffers
from the same problems as the previous approach,
although the visual differences are much less obvi-
ous than when simply excluding views. Figure 7
shows a comparison of the visualization results be-
tween a composite view and its corresponding sep-
arate views.

Figure 6: The new camera’s frustum containing the
original frustums

666

In addition to changing the number of views, one
other possibility to gain more performance is to
change the rendering resolution when moving the
camera position: The screen’s viewport is scaled
down by a certain factor s, then the normal ren-
dering process is performed. After rendering, the
resulting image is copied into a texture, and drawn
over the whole screen, using either nearest-neighbor
look-ups or linear interpolation.
This method provides the best consistency with the
corresponding still image, and it allows fair render-
ing speed. As it is a different approach to the ones
described before, it can be combined with them to
achieve even higher frame rates.

4.5 Combining light field and geometry

Looking at the working method of the ULG ren-
derer described in Section 3, one can easily rec-
ognize that a simple combination of the unstruc-
tured lumigraph and the textured geometry is pos-
sible by rendering both into the same graphics con-
text with depth test enabled, since the actual light
field is implemented as a screen mesh that can be
rendered like “ordinary“ geometry. However, this
simple combination is useless if the geometry is to
be placed behind the opaque light field, which is the
typical case for the medical scenario described in
the introduction. Using the straightforward solution
of first rendering the geometry, and afterwards ren-
dering the light field with blending enabled, wasn’t
an option either, because the distance visualization
is considered an add-on to the ULG renderer and
therefore should be dependent on its rendering re-
sults, not the other way around.
Therefore, a more sophisticated approach was de-
veloped that performs an “intelligent“ blending be-
tween light field and geometry using the stencil
buffer. This approach works as follows:

• First, the light field’s screen mesh is rendered
the normal way into depth and color buffers

• Second, the geometry is rendered into the sten-
cil buffer with depth test disabled, resulting in
a silhouette stencil of the whole geometry

• Next, the geometry is rendered into the depth
and color buffers with depth test enabled. Ad-
ditionally, all stencil values are cleared where
the corresponding fragments passed the depth
test. After this step, only those stencil values
are marked where the geometry is occluded by
the light field.

• Now, the depth buffer is cleared, and the ge-
ometry is rendered again, employing a user-
defined blending function that makes the color
buffer content (the light field) appear semi-
transparent. Additionally, rendering is re-
stricted to those areas that are still marked in
the stencil buffer.

Figure 8 illustrates the resulting combination of an
ULG light field and a geometric object, rendered
with distance visualization and using the blending
approach described above.

5 Results

The visualization method was implemented and
tested on a P4 with 2.20GHz and 1GB memory, us-
ing a Quadro FX 1000 with 128MB video memory.
Table 1 shows the frames per second for different
test scenarios that were achieved on this configura-
tion: The first line shows the number of views that
were used for each test cycle; The next one illus-
trates the performance of the ULG renderer on its
own for each number of views. In the line “ULG +
vis“, the results of the combined rendering of both
light field and geometry using distance visualization
are given, and the last two lines show the results for
some enhancing techniques, namely the composite
view and scaled rendering using a factor s = 2, as
depicted in Section 4.4.
One can recognize that the most performance loss
in combined rendering is caused by the fragment
shader and its heavy usage of texture resources: The
performance decreases radically with the number of
used views. In contrast, when combining the sepa-
rate views into a composite view, the frame rate re-
mains almost constant, because there only one view
is used for visualization. As can be seen in the last
line, scaled rendering is not nearly as efficient as
expected, showing again the bottle neck in the frag-
ment shader.

Figure 2 shows the results for the same test sce-
narios on a P4 with 3.0GHz and 1 GB memory, us-
ing a GeForce 6800 with 128MB memory. Here,
it is recognizable that the fragment shader is much
better supported by the graphics hardware, which
results in good performance values for the visual-
ization itself. In addition, the acceleration tech-
niques provide some performance gain, especially
when the number of used views increases.

666

Table 1: The performance values for a P4, 2.20GHz
/ Quadro FX 1000 (in fps)

views 3 5 8
ULG 16.2 14.3 11.1

ULG + vis 4.5 2.5 1.4
ULG + vis (composite) 7.4 7.1 6.4

ULG + vis (scaled) 4.7 2.8 1.4

Table 2: The performance values for a P4, 3.00GHz
/ GeForce 6800

views 3 5 8
ULG 24.1 21.8 19.0

ULG + vis 17.9 14.0 9.7
ULG + vis (composite) 17.7 16.2 13.0

ULG + vis (scaled) 18.2 15.9 12.0

6 Conclusion

We have presented a method for visualizing dis-
tances between geometry-enhanced light fields and
arbitrary geometry that is easy to implement and
fast enough to allow interactive frame rates. The vi-
sualization is done using an enhanced approach of
shadow mapping that makes use of recent graphics
hardware.

One major drawback is its excessive usage of tex-
ture units and texture coordinates, as these are lim-
ited resources even on today’s graphics hardware.
However, these limitations can be avoided by com-
bining views (cf. Section 4.4), though this technique
does not provide exactly the same results. There-
fore, a possible improvement of the visualization
method is to develop a more sophisticated combin-
ing algorithm that minimizes visual differences be-
tween the composite view and its embedded views.

References
[1] Steven J. Gortler, Radek Grzeszczuk, Richard Szeliski, and

Michael F. Cohen “The Lumigraph“, 23rd annual con-
ference on Computer graphics and interactive techniques,
ACM Press, pp. 43-54 , 1996

[2] Marc Levoy, and Pat Hanrahan, “Light field rendering“,
23rd annual conference on Computer graphics and inter-
active techniques, ACM Press, pp. 31-42, 1996

[3] Hartmut Schirmacher, Christian Vogelgsang, Hans-Peter
Seidel, and Günther Greiner, “Efficient Free Form Light
Field Rendering“, Proceedings of the Vision Modeling and
Visualization Conference 2001, Aka GmbH, pp. 249-256,
2001

[4] Chris Buehler, Michael Bosse, Leonard McMillan, Steven
Gortler, and Michael Cohen, “Unstructured lumigraph ren-
dering“ 28th annual conference on Computer graphics and
interactive techniques, ACM Press, pp. 425-432, 2001

[5] Wei-Chao Chen, Jean-Yves Bouguet, Michael H. Chu,
and Radek Grzeszczuk, “Light field mapping: efficient
representation and hardware rendering of surface light
fields“, ACM Transactions on Graphics. 21 (3), ACM Press,
pp. 447-456, 2002

[6] J.-F. Evers-Senne, and R. Koch, “Image Based Interactive
Rendering with View Dependent Geometry“, Eurographics
2003 Proc., Volume 22, Issue 3, September 2003

[7] Christian Vogelgsang, “The lgf3 Project: A Versatile
Implementation Framework for Image-Based Modeling
and Rendering“, PhD Thesis, Arbeitsberichte des Instituts
für Informatik, Friedrich-Alexander-Universität Erlangen-
Nürnberg, Band 38 (1), May 2005

[8] Lance Williams, “Casting curved shadows on curved sur-
faces“, Proceedings of the 5th annual conference on Com-
puter graphics and interactive techniques, ACM Press,
pp. 270-274, 1978

[9] William T. Reeves, David H. Salesin, and Robert L.
Cook, “Rendering antialiased shadows with depth maps“,
Proceedings of the 14th annual conference on Computer
graphics and interactive techniques, ACM Press, pp. 283-
291, 1987

[10] Mark Segal, Carl Korobkin, Rolf van Widenfelt, Jim Foran,
and Paul Haeberli, “Fast shadows and lighting effects using
texture mapping“, ACM SIGGRAPH Computer Graphics,
Volume 26 , Issue 2, ACM Press, pp. 249-252, 1992

[11] Randima Fernando, Sebastian Fernandez, Kavita Bala,
and Donald P. Greenberg, “Adaptive shadow maps“, SIG-
GRAPH 2001 Conference Proceedings, Addison Wesley,
August 2001

[12] Marc Stamminger, and George Drettakis, “Perspective
Shadow Maps“, Proceedings of ACM SIGGRAPH 2002,
ACM Press/ ACM SIGGRAPH, July 2002

[13] Christian Azambuja Pagot, João Luiz Dihl Comba, and
Manuel Menezes de Oliveira Neto, “Multiple-Depth
Shadow Maps“, XVII Brazilian Symposium on Computer
Graphics and Image Processing, pp. 308-315, 2004

[14] Miloš Šrámek, “Distance Fields in Visualization and
Graphics“, VISKOM, Austrian Academy of Sciences

[15] Sarah F. Frisken, Ronald N. Perry, Alyn P. Rockwood,
and Thouis R. Jones, “Adaptively sampled distance fields:
a general representation of shape for computer graphics“,
Proceedings of the 27th annual conference on Computer
graphics and interactive techniques, ACM Press/Addison-
Wesley Publishing Co., pp. 249-254, 2000

[16] Cagatay Demiralp, G. Elisabeta Marai, Stuart Andrews,
David H. Laidlaw, Joseph J. Crisco, and Cindy Grimm,
“Modeling and Visualization of Inter-Bone Distances in
Joints“, Visualization ’01 Work in Progress Proceedings,
pp. 24-25, October 2001

[17] Mario Botsch, David Bommes, Christoph Vogel, and Leif
Kobbelt, “GPU-based Tolerance Volumes for Mesh Pro-
cessing“, 12th Pacific Conference on Computer Graphics
and Applications, pp. 237-243, 2004

[18] André Neubauer, Stefan Wolfsberger, Marie-Thérèse
Forster, Lukas Mroz, Rainer Wegenkittl, and Katja Bühler,
“STEPS - An Application for Simulation of Transsphe-
noidal Endonasal Pituitary Surgery“, Proceedings of IEEE
Visualization 2004, pp. 513-520, October 2004

[19] F. Vogt, S. Krüger, J. Schmidt, D. Paulus, H. Niemann, W.
Hohenberger, and C. H. Schick, “Light Fields for Minimal
Invasive Surgery Using an Endoscope Positioning Robot“,
Methods of Information in Medicine, 43(4), pp. 403-408,
2004

666

Figure 7: Visual differences between a composite view and its embedded views: The upper row illustrates
the visualization result using separate views (left) as well as the corresponding camera frustums (right).
The lower row shows the same scenario using a composite view, where the corresponding view frustum is
drawn in white color (right).

Figure 8: A combination of light field and geometry using distance visualization, presented together with
the employed color map (bottom) and the original geometric object (upper right). The color map is set such
that the left end of the map corresponds to a penetration depth of 0cm, and the right side to 10cm.

666

