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Abstract

Ego-motion estimation with a head-mounted cam-
era requires accurate tracking of a small number of
features at a very high frame rate. We propose to
solve this task with a hybrid feature tracking ap-
proach. First, the frame-to-frame feature transla-
tion is estimated with an efficient block matching
method. Then, an iterative gradient descent estima-
tion of affine motion between the first frame and the
current frame is used to refine the translation esti-
mate, prevent feature drift, and detect outliers.

We evaluated the individual algorithms with re-
spect to performance criteria like basin of conver-
gence, robustness, and accuracy. We also conducted
experiments on image sequences of real scenes in
order to compare the proposed approach with our
existing feature tracking system, which is based on
the well known Kanade-Lucas-Tomasi tracker.

1 Introduction

A wide range of algorithms in computer vision rely
on input data generated by feature tracking. One
recent example is the real-time system for structure
and motion reconstruction presented in [6]. Its re-
quirements include the tracking of a large number
of features at video frame rate.

Ego-motion estimation for augmented reality is
another possible application for feature tracking. In
[8], the vision-based part of the system processes
video images captured by a helmet-mounted cam-
era. The position and orientation of the user’s
head is then reconstructed from six or more fea-
ture points. With this setup, even small movements
of the user’s head can cause large movements in
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the image plane. As inter-frame movements can be
reduced by increasing the frame rate of the cam-
era, [5] presented a custom-built high-speed CMOS
camera, which is capable of capturing small se-
lectable subregions of the complete image at a rate
of more than 2500 frames per second.

For tracking a large number of features like in the
first application scenario, we use a tracking system
based on the Kanade-Lucas-Tomasi tracker [4, 10].
A description of our tracking system can be found
in [12]. After the initial multiscale frame-to-frame
translation estimation, our system simultaneously
computes both affine motion and linear illumination
parameters between the first frame and the current
frame [3]. This estimation is performed according
to the inverse compositional approach proposed in
[1] for increased efficiency.

In contrast to the first application scenario, ego-
motion estimation with the custom-built CMOS
camera requires the tracking of a small number of
features at a very high frame rate. This objective is
impeded by the time-consuming computation of the
multiscale image gradients for each video frame.
Furthermore, the high-speed camera is optimized
for capturing small image windows, which conflicts
with the multiscale translation estimation. There-
fore, we propose to replace the gradient descent
translation estimation with an efficient block match-
ing algorithm, which entails considerably less com-
putational overhead per video frame. Moreover, we
can easily combine this approach with the existing
affine motion estimation, which only requires gra-
dient information when new features are added.

Block matching and gradient descent have al-
ready been used together for tracking by [11], but
our approach is conceptually simpler and funda-
mentally different. [7] presents a tracking system
based on feature matching, which does not attain
subpixel accuracy. An analysis of the equivalence
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of block matching and gradient descent translation
estimation can be found in [2]. Fundamental perfor-
mance limits in image registration with reference to
gradient descent estimation are discussed in [9].

After a short overview of our feature tracking
system in the next section, we describe all imple-
mented motion estimation algorithms in Sect. 3. Fi-
nally, the results of the in-depth evaluation of the in-
dividual algorithms and the complete tracking sys-
tem are presented in Sect. 4.

2 Feature Tracking System Overview

The requirements for a feature tracking system can
be categorized into four performance criteria. In our
context, the basin of convergence of a motion es-
timation algorithm describes the maximum feature
movement in the image plane that can be reliably
estimated. Usually, a higher basin of convergence is
achieved at the expense of the computation speed of
the tracker, which is crucial for real-time systems,
but less important for off-line systems. The robust-
ness criterion subsumes the ability of the feature
tracker to cope with adverse conditions, like image
noise or changing illumination. For many applica-
tions, the accuracy of the estimated feature coor-
dinates determines the accuracy of the final output
and should therefore be as high as possible.

The basic structure of our real-time feature track-
ing system is illustrated in Fig. 1. In the preprocess-
ing component, image noise is reduced by applying
a Gaussian filter. This operation is especially bene-
ficial to gradient descent motion estimation. In ad-
dition, a Gaussian image pyramid including both in-
tensity and gradient images is computed, if required
by the subsequent components of the system.

For feature selection, an interest image is com-
puted with the interest operator described in [10].
Then, a very efficient hierarchical search structure
is used to select the features with the best interest
values, so that lost features can be replaced regu-
larly even under real-time constraints.

The basic principle of the motion estimation
component is illustrated in Fig. 2. First, the frame-
to-frame translation of a feature is estimated with an
iterative gradient descent algorithm. Starting from
the estimated position, we perform an affine motion
estimation between the first frame, i.e., the refer-
ence frame of the feature, and the current frame. In
our experience, this is necessary to better detect out-
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Figure 1: System structure of the tracking system.
Rectangles denote different types of data, ellipses
denote system components.
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Figure 2: Illustration of motion estimation.

liers and to prevent the features from slowly drifting
away from their correct position [12]. In order to in-
crease the robustness of the tracker, we also apply a
linear illumination model in this step.

The basin of convergence of the iterative gradi-
ent descent translation estimation can be dramati-
cally improved by employing a coarse-to-fine multi-
scale strategy on a Gaussian image pyramid. In this
work, we propose to replace this approach for trans-
lation estimation with an efficient block matching
algorithm. Although the block matching algorithm
is slower than the gradient descent approach per
feature, it does not require the initialization of the
Gaussian image pyramid and can therefore reach
much higher frame rates when tracking a low num-
ber of features. Both approaches will be described
in more detail in the next section.

Finally, outlier detection enforces a fixed thresh-
old for the maximum sum of squared differences
error of corresponding feature window intensities
computed by the affine motion estimation. Ad-
ditionally, we check the singular values of the
affine distortion matrix to reject features that are
extremely distorted [12]. As the feature tracker is
completely data-driven, it can never reliably detect
all outliers. One example are features that span
across depth discontinuities and therefore do not
represent a fixed 3-D feature in the scene.
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3 Motion Estimation Algorithms

In this section, we describe the motion estimation
algorithms of the proposed tracking system. In our
system, the translation estimation algorithms com-
pute the displacement of a feature from the previous
frame to the current frame, whereas the affine mo-
tion estimation algorithms compute the final feature
position with the feature windows of the first frame
and the current frame. We also present modifica-
tions of the motion estimation algorithms with in-
creased robustness to illumination changes.

3.1 Gradient Descent Motion Estimation

The main idea of the gradient descent algorithms is
to iteratively minimize the mean squared difference
of the corresponding pixel intensities in two feature
windows. Let f(x) and fc(x) denote the intensity
values of the reference frame and the current frame,
respectively. The quadratic reference feature win-
dow is represented by a set W of image coordinates
x = ( x, y )T . Then, the motion parameter update
∆p is determined in the inverse compositional ap-
proach by minimizing

ε =
∑

x ∈W

(f(g(x,∆p)) − fc(g(x,p)))2 . (1)

In the context of our tracking system, the parameter-
ized warp function g(x,p) represents either trans-
lation

gt(x, pt) = x + d , d ∈ IR2
, pt = ( d1, d2 )T

or affine motion

ga(x,pa) = Ax + d , A ∈ IR2×2
, d ∈ IR2

,

pa = ( a11−1, a12, a21, a22−1, d1, d2 )T
.

The parameter vector pa is defined such that the
zero vector yields the identity transformation.

After a first-order Taylor expansion of (1) around
g(x,0) and the introduction of

h(x) =

(

∇f(x)
δg

δp

)T

and
H =

∑

x ∈W

h(x) h
T (x) ,

we finally get

∆p = H
−1

∑

x ∈W

h(x) (fc(g(x,p)) −f(x)) .

The rule for updating the motion parameters is

g(x,pnew) = g(g(x,∆p)−1
, p) .

The inverse compositional approach is more effi-
cient than the standard approach, because the matrix
H−1 does not depend on the current frame or the
current motion parameters. Consequently, it only
has to be computed once per feature for affine mo-
tion estimation, and once per feature and frame and
resolution hierarchy level for translation estimation.
In both cases, a considerable amount of computa-
tion time can be saved.

As the presented gradient descent algorithms di-
rectly use intensity values in their computations,
they are very susceptible to illumination changes.
Therefore, we employ a linear model αf(x) + β

to adapt both contrast and brightness of the feature
windows. Combining the linear model with the ob-
jective function in (1) results in

ε =
∑

x ∈W

(αf(g(x, ∆p)) + β − fc(g(x,p)))2 .

With another first-order Taylor expansion, we get

ε =
∑

x ∈W

(

αf(x) + α∇f(x)
δg

δp
∆p + β

−fc(g(x,p))
)2

.

After the definition of two vectors and one matrix

q =
(

α ∆p
T
, α, β

)T

,

k(x) =

(

∇f(x)
δg

δp
, f(x), 1

)

T

,

K =
∑

x ∈W

k(x) k
T (x) ,

the least-squares solution can be written as

q = K
−1

∑

x ∈W

k(x) fc(g(x,p)) .

The integration of the linear illumination model
increases the number of parameters from two to
four for translation estimation and from six to eight

666



for affine motion estimation. As working with
a larger parameter space potentially decreases the
basin of convergence of the estimation, we closely
evaluate the relative advantages and disadvantages
of integrating the linear illumination model in the
next section.

3.2 Block Matching

We propose to replace the gradient descent trans-
lation estimation with a block matching algorithm
for translation estimation, because it has significant
advantages for a number of application scenarios.
Most importantly, unlike the gradient descent trans-
lation estimation, which requires the computation
of a multiscale pyramid for intensity and gradient
images, block matching has no computational over-
head per video frame. Consequently, it is perfectly
suited for high-speed tracking of a small number of
features. Furthermore, its basin of convergence can
be directly controlled by specifying the size of the
search window. This is an advantage for applica-
tions where the maximum frame-to-frame displace-
ment of feature points is known a priori. Finally,
several similarity measures for block matching are
robust against illumination changes, and this robust-
ness is achieved only at the cost of slightly longer
computation times.

In order to achieve a more concise notation, we
define fb(x) = fc(x + d) and denote the mean
intensity values of the feature windows by f̄ and f̄b.
We evaluate three similarity measures for the block
matching algorithm, which are the normalized sum
of squared differences

sssd =

∑

x
(f(x) − fb(x))2

√

∑

x
(f(x))2

∑

x
(fb(x))2

,

the normalized cross correlation

scorr =

∑

x
f(x)fb(x)

√

∑

x
(f(x))2

∑

x
(fb(x))2

,

and the normalized correlation coefficient

scoef =

∑

x

(

f(x) − f̄
) (

fb(x) − f̄b

)

√

∑

x

(

f(x) − f̄
)

2 ∑

x

(

fb(x) − f̄b

)

2

,

also known as zero mean normalized cross correla-
tion.

Figure 3: Illustration of similar feature windows
common in man-made environments.

Of course, block matching also has drawbacks
compared with gradient descent translation estima-
tion. As mentioned above, for a large number
of features, gradient descent is considerably faster.
What is more, our efficient algorithm only matches
feature windows at integer pixel positions. Al-
though it is generally possible to achieve sub-pixel
accuracy by interpolating the intensities of the tem-
plates, we use a faster but less accurate approach
that applies bi-quadratic interpolation to the simi-
larity values in the neighborhood of the discrete op-
timum. The obtained accuracy is sufficient for our
purposes, because the final translation estimate is
determined with the affine motion estimation.

Finally, block matching is prone to mismatch-
ing features, especially when the search window is
very large and the template size is small. This prob-
lem arises frequently when man-made objects, like
office buildings, and artificial textures, like block
letters (cf. Fig. 3), are part of the video sequence.
Gradient descent translation estimation only suf-
fers from this problem when the frame-to-frame dis-
placement is too large, i.e., when a similar feature
is at least as close to the expected position as the
correct feature.

In order to approximate the behavior of gradi-
ent descent estimation, we implemented a mismatch
prevention scheme. From the set of all local op-
tima in the search window whose similarity value
is below a dynamic threshold, we choose the opti-
mum that is closest to the expected position. Cur-
rently, we compute the threshold as the mean value
of the 4-neighborhood of similarity values around
the global optimum.

4 Experimental Evaluation

In this section, we evaluate the performance of the
described algorithms individually and within the
complete tracking system. In both cases, the video
frames were captured at a resolution of 640×480
pixels with a Sony DFW-VL 500 camera. All com-
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putation times were measured on a computer with a
Pentium 4 2.4 GHz cpu and 1 GB RAM.

4.1 Evaluation of Individual Algorithms

For the quantitative evaluation of the motion es-
timation algorithms, we had to generate accurate
ground truth data for a high number of features.
Consequently, we chose to capture test images of
four static scenes with a static camera. For each
scene, we captured one base image, one image that
was identical to the base image up to image noise,
and two images that were exposed slightly brighter
and darker than the base image, respectively.

We extracted a total of 2000 features windows
from the base images of the four scenes shown in
Fig. 4. The motion estimation algorithms were eval-
uated by tracking these features from the base im-
ages to one of the other images of the same scene.
As the correct feature positions in these images are
identical to the feature positions in the base im-
ages, we simulated feature movement by telling the
tracker to start its search at a specified displacement
from the correct position. Although the perfor-
mance of the algorithms for distorted feature win-
dows cannot be determined in this way, we think
that the accuracy of the available ground truth data
outweighs this disadvantage. Additionally, the eval-
uation of the complete tracking system in the next
subsection was performed on more realistic video
data, so that any shortcoming of the individual al-
gorithms related to feature distortion or resampling
artifacts would be detected there.

If not explicitly stated otherwise, the experiments
in this subsection were conducted with the follow-
ing settings. All images were preprocessed with a
3×3 Gaussian filter, the features were detected us-
ing a window size of 5×5, and the feature window
size was 11×11. In many experiments, we evalu-
ated the basin of convergence of the individual al-
gorithms. In this regard, a tracking trial was con-
sidered a success if the position estimate of an algo-
rithm was within one pixel of the true position.

In order to improve readability, we use abbrevi-
ations in the figures of this section. These abbre-
viations are bm for block matching, and ssd, corr,
and coef for its respective similarity measures. Fur-
thermore, we write gd for gradient descent, trans
for translation estimation, affine for affine motion
estimation, and ill for the linear illumination model
described in the last section.

Figure 4: Base images for evaluation of individual
motion estimation algorithms.

Figure 5: Basin of convergence of motion estima-
tion algorithms for maximum feature displacement
of ten pixels, brighter intensities denote higher per-
centage of successful tracking. Algorithms from
left to right: bm coef, gd trans, gd trans + ill,
gd affine, gd affine + ill.

In our first experiment, we evaluated the basin
of convergence with respect to the 2-D feature dis-
placement. We tracked each of the 2000 features
from its base image to the corresponding image
with fixed illumination, simulating the displace-
ments as described above. In Fig. 5, the percent-
age of successful tracking attempts is encoded as a
gray value, with pure white representing 100 per-
cent. The initial feature displacement is encoded in
the pixel positions of the shown images. It is zero in
their center, and as high as ten pixels at their edges.
A search range of eight pixels was chosen for the
block matching approach.

The main purpose of this experiment is to demon-
strate the shape of the different basins of conver-
gence. It resembles the rectangular search window
for the block matching approach and is approxi-
mately circular for the gradient descent algorithms.
It can also be seen that adding the linear illumina-
tion model reduces the size of the basin of conver-
gence of the gradient descent algorithms.

As the basins of convergence are very regular, we
only consider the distance of the feature displace-
ments for the remaining experiments of this subsec-
tion. To this end, we displace the features along the
coordinate axes and their diagonals, which yields
eight trials for each displacement distance for each
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Figure 6: Basin of convergence of motion estima-
tion algorithms for fixed illumination.

Figure 7: Test images for evaluation of robustness
to illumination changes for one of four scenes.

feature. In Fig. 6, the results of the first experiment
are plotted according to this scheme. In the range
of eight to twelve pixels, the block matching ap-
proach successfully tracked the features displaced
along the diagonals of the coordinate axes, because
only they were still within the search window. The
basin of convergence is generally larger for trans-
lation estimation than for affine motion estimation,
which has more unknown parameters.

The remaining experiments evaluate the algo-
rithms on images with varying illumination. One
example for the changes in illumination, which
were obtained by changing the aperture of the cam-
era, can be seen in Fig. 7. The middle image is the
base images providing the reference features. As
the illumination changes are fairly large, the fol-
lowing experiments represent more or less the worst
case of what has to be expected for frame-to-frame
tracking on real video sequences.

The results of the experiment of Fig. 6, but now
conducted on images with varying illumination, are
presented in Fig. 8. As can easily be seen, the per-
formance of the gradient descent algorithms with-
out illumination compensation suffers significantly.
The block matching with the normalized correla-
tion coefficient and the gradient descent algorithms
with illumination compensation are obviously not
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Figure 8: Basin of convergence of motion estima-
tion algorithms for varying illumination.
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Figure 9: Basin of convergence for block matching
with different similarity measures.

affected by the illumination changes, as their results
are almost identical to those of Fig. 6.

In the third experiment, we evaluated the perfor-
mance of block matching with the different simi-
larity measures described in the previous section.
Here, we used a larger search range of 16 pixels.
The results of the normalized sum of squared dif-
ferences are the worst. With the normalized cross
correlation, block matching performs significantly
better. Many features that were classified as mis-
matches were only off by one or two pixels. This
phenomenon does not occur with the normalized
correlation coefficient. Thus, it is the best similarity
measure for our purposes.

Previous experiments have shown that the max-
imum feature displacement is rather small for gra-
dient descent translation estimation. This problem
can be solved by using a coarse-to-fine multiscale
strategy on a Gaussian image pyramid. As illus-
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Figure 10: Basin of convergence for gradient de-
scent translation estimation with different numbers
of hierarchy levels.

trated in Fig. 10, the basin of convergence approxi-
mately doubles for every additional level. With four
hierarchy levels, displacements of up to ten pixels
can be reliably tracked, and the top-level image has
a size of only 80×60 pixels. Consequently, using a
higher number of hierarchy levels is not advisable.

The accuracy of motion estimation algorithms is
another important performance criterion. Experi-
ments conducted on the images with illumination
changes yielded an average translation error of 0.18
pixels for gradient descent translation estimation
with illumination compensation, and 0.17 pixels for
block matching with the normalized correlation co-
efficient, and 0.22 pixels for gradient descent affine
motion estimation with illumination compensation.
Even better results have to be expected under less
demanding conditions.

Several conclusions can be drawn from the exper-
iments presented in this subsection. Firstly, gradi-
ent descent translation estimation should always be
used with a coarse-to-fine multiscale strategy to im-
prove its basin of convergence. Secondly, although
the linear illumination model decreases the basin of
convergence of gradient descent motion estimation,
we strongly encourage its use for affine motion es-
timation. The accuracy of all evaluated translation
estimation algorithms is so high that the starting po-
sition for affine motion estimation lies well inside
its basin of convergence. Lastly, both basin of con-
vergence and estimation accuracy of gradient de-
scent translation estimation and block matching are

Figure 11: From left to right: frames 1, 50 and 100
of the test video sequence.

gd trans bm coef
# features atl time atl time

10 91.6 6.2 91.6 2.8
30 97.2 8.3 97.2 6.2

100 96.0 15 95.5 16
300 92.0 35 91.7 43

Table 1: Average trail length (atl) and computation
time per frame in milliseconds for four different
numbers of features.

comparable, so that a decision for one or the other
can be based on the computation speed, which will
be analyzed in the next subsection.

4.2 Tracking System Experiments

For the experiment described in this subsection, we
evaluated two translation estimation algorithms in
the context of our tracking system. We used a test
video sequence with 100 frames, three of which
can be seen in Fig. 11. We combined both transla-
tion estimation algorithms with the gradient descent
affine motion estimation with illumination compen-
sation. Due to the good quality of the video, we did
not apply a preprocessing filter. For the gradient de-
scent translation estimation, we used the multiscale
approach with three levels. For block matching, we
set a search range of eight pixels.

The results of our tracking system experiment are
summarized in Tab. 1. In our case, an average trail
length of 100 means that all features were success-
fully tracked through the complete sequence. But
this is not possible, because features are occluded
and leave the field of view, which happens in almost
every video sequence with moving objects. As the
average trail length achieved with both algorithms
is roughly the same, the tracking results are more
or less equal. This fact was also endorsed by man-
ual inspection of the tracking results. Although the
illumination changes between the frames shown in
Fig. 11 are rather dramatic, the much smaller frame-
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to-frame changes can obviously be handled by the
pure translation estimation algorithm.

A much larger difference between the algorithms
can be observed when analyzing their computation
times. For ten features, the block matching ap-
proach is more than twice as fast as the gradient de-
scent algorithm. Although block matching requires
more computation time per feature, the large over-
head for computing the Gaussian image pyramid
considerably slows down the gradient descent algo-
rithm. The turning point is reached at 100 features,
where both configurations are capable of tracking at
a rate of more than 50 frames per second.

5 Conclusion

We proposed to combine an efficient block match-
ing approach with gradient descent estimation of
affine motion to form a feature tracking system that
is specialized on high-speed tracking of a small
number of features. In order to make the tracker
more robust to illumination changes, we detailed
how to efficiently combine gradient descent motion
estimation with a linear illumination model.

In our experiments, we first evaluated the individ-
ual algorithms for motion estimation. Testing dif-
ferent similarity measures for block matching, we
found the normalized correlation coefficient to be
ideal for our purposes. The comparison of block
matching and gradient descent translation estima-
tion indicated that both approaches perform sim-
ilarly with respect to their basin of convergence,
robustness, and estimation accuracy. Finally, tests
with our complete tracking system showed that the
proposed combination of block matching and gradi-
ent descent improves the computation speed of our
very efficient standard system by more than a factor
of two, when only a small number of features have
to be tracked.
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