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Abstract

In this paper, we present a database with emotional children’s
speech in a human-robot scenario: the children were giving in-
structions to Sony’s pet robot dog AIBO, with AIBO showing
both obedient and disobedient behaviour. In such a scenario,
a specific type of partner-centered interaction can be observed.
We aimed at finding prosodic correlates of children’s emotional
speech and were interested to see which speech registers chil-
dren use when talking to AIBO. For interpretation, we left the
weighting and categorization of prosodic features to a statis-
tic classifier. The parameters found to be most important were
word duration, average energy, variation in pitch and energy,
and harmonics-to-noise ratio. The data moreover suggests that
the children used a register that resembled mostly child-directed
and pet-directed speech and to some extent computer-directed
speech.

1. Introduction
To date, research on the vocal expressions of emotions has
mainly focused on adults. Moreover, the vast majority of this
research has been based on acted emotions ([1] or, at best, on
emotions evoked by explicit mood-induction techniques (for
an overview see [2]). In the present study we made use of a
database of emotional speech produced by children, with emo-
tions solely resulting from the experimental context. The gen-
eral framework for the database was human-machine – or to be
more precise, human-robot – communication. The interaction
was embedded in a Wizard-of-Oz task and the robot is Sony’s
(dog-like) AIBO robot. The speech in this study was sponta-
neous in that the children were not told to use specific instruc-
tions but to talk to AIBO as they would talk to a friend. The
different emotional states occured when a child failed or suc-
ceeded in instructing AIBO; while the child was led to believe
that AIBO was responding to his or her commands, the robot
was actually being controlled by a human wizard, thus showing
not only obedient but also disobedient behaviour. On the basis
of these emotions that came as a reaction to AIBO’s ‘behaviour’
we were interested to see how emotional speech is prosodically
coded in children and in the subsequent recognition of these
emotional user states. Note that we used a rather broad con-
cept of ‘emotion-related’ user states, cf. below 2.1, and that in
this paper, we were especially interested in ‘partner-oriented’,
interactive speech, not in emotional speech in general.1

1The fact that non-interactive emotional speech has been by far more
investigated than interactive speech is a scientific artifact caused by re-
searchers choosing clean, but mostly solipsistic speech as object of in-
vestigation. Opinio communis is that speech has originated in and is
mostly used in interaction and not in monologue.

The design of the task also allowed to examine which
speech registers children were using when interacting with the
pet robot dog, and to what extent these speech registers resem-
bled adult speech registers described in the literature. With a pet
robot dog as an interlocutor, the types of possible speech reg-
isters ranged from computer-directed speech over pet-directed
speech, to possibly even child-directed speech. This potential
variation of speech registers lay within the nature of AIBO as an
interlocutor: AIBO is essentially a computer. Informal observa-
tion of the young participants in between recordings indicated,
however, that they much more saw AIBO as a toy or even a pet
than a machine; and while AIBO looks like a dog, the task led
the children to believe that AIBO understands language to an
extent that makes it more similar to a child than a pet [3]. Thus
our scenario provided data for a specific combination of speech
registers: pet robot directed speech produced by children.

The characteristics of child-directed speech and, to some
extent, robot- and pet-directed speech are described in the lit-
erature. Computer- or robot-directed speech is probably the
speech register with the largest inherent variation. Previous
research emphasizes on differences between experienced and
unexperienced users [4]. Particularly relatively unexperienced
users are often found to speak slower, and to use many repe-
titions and shorter sentences. Depending on the type of robot
used as an interlocutor, there is also evidence for robot-directed
speech to show similarities to child-directed speech [3]. The
unique features of child-directed speech comprise of elevated
pitch, a wider pitch range, slower speech rate and hyperarticu-
lation [5]. Pet-directed speech, finally, is often described as be-
ing a secondary or extended form of child-directed speech with
relatively similar prosodic features, but features such as hyper-
articulation, which mainly promote the acquisition of language,
missing [6]. We were interested to see how the prosodic features
found in our data compared to findings from the literature.

2. Database and Processing
Our data was collected from 51 German children (age 10 - 13,
21 male, 30 female) from two different schools. Recordings
took place in classrooms. The only persons present in the room
were the child, the supervisor, who gave the instructions, the
wizard (behind the children, pretending to be doing the record-
ings) and a third assistant. Each recording session took some
30 minutes. Due to the experimental setup, these recordings
contained a huge amount of silence (due to the reaction time
of AIBO), which caused a noticeable reduction of recorded
speech after raw segmentation; we eventually obtained about
9.2 hours of speech. The basic idea of this study was to combine
a new type of corpus (children’s speech) with ‘natural’ emo-
tional speech within a Wizard-of-Oz task. The ‘behaviour’ of
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AIBO was hence carefully planned to evoke a maximum range
of emotions while still allowing comparisons across children.
The wizard caused AIBO to perform a pre-determined sequence
of actions, which took no account of what the child said. For the
sequence of AIBO’s actions, we tried to find a good compro-
mise between obedient and disobedient behaviour: we wanted
to provoke the children in order to elicit emotional behaviour
but at the same time we did not want to run the risk of them
breaking off the experiment. The children believed that AIBO
was reacting to their orders - albeit often not immediately. It
was, in fact, the other way round: AIBO always strictly fol-
lowed the same screen-plot, and the children had to align their
orders to its actions.

2.1. Labelling Emotions

Five labellers annotated independently from each other each
word as neutral (default) or as belonging to one of ten other
classes which were obtained by inspection of the data. Our
choice of labels was strictly data driven; at the beginning, data
of different children were annotated and discussed iteratively,
until we found our final set of labels. Then, the whole database
was processed. We do not claim that our labels represent chil-
dren’s emotions in general, only that they are adequate for the
modelling of these children’s behaviour in this specific scenario.
We resorted to majority voting (henceforth MV): if three or
more labellers agreed, the label was attributed to the word; if
four or five labellers agreed, we assumed some sort of proto-
types. The following raw labels were used; in parentheses, the
number of cases with MV is given: joyful (101), surprised (0),
emphatic (2528), helpless (3), touchy, i.e. irritated (225), angry
(84), motherese (1261), bored (11), reprimanding (310), rest,
i.e. non-neutral, but not belonging to the other categories (3),
neutral (39177); 4705 words had no MV, all in all, there were
48408 words. This does not mean that user states such as sur-
prised, helpless, or bored were hardly labelled at all – it only
means that there was no clear agreement between the labellers
when to use these labels. More details can be found in [7].

In [8] we considered for classification only labels with more
than 50 MVs, resulting in a 7-class problem. Joyful and angry
belong to the ‘big’ emotions, the other ones belong to ‘emotion-
related/emotion-prone’ user states. The state emphatic has to be
commented on separately: based on our experience with other
emotional databases [9], any marked deviation from a neutral
speaking style can (but need not) be taken as a possible indi-
cation of some (starting) trouble in communication. If a user
gets the impression that the machine does not understand her,
she tries different strategies – repetitions, reformulations, other
wordings, or simply the use of a pronounced, marked speaking
style. Such a style does thus not necessarily indicate any devi-
ation from a neutral user state but it means a higher probability
that the (neutral) user state will possibly be changing soon. Of
course, it can be something else as well: a user idiosyncrasy,
or part of a particular speech register – ‘computer talk’ – which
some people use while speaking to a computer, and which of-
ten resembles foreigner-directed speech, child-directed speech
or even elderspeak, speech to elderly people hard of hearing.

In this paper, we concentrated on those labels which clearly
denote interactive speech, namely motherese and reprimand-
ing; these two constitute, in a NonMetrical MultiDimensional
Scaling solution [7] the items with positive values on a dimen-
sion that we call ‘interaction’. Neutral constitutes a baseline.
By that we do not want to say that the other user states labelled
are not interactive – they are, simply by being used in a com-

municative setting – but they are less interactive. An indication
is, for instance, that verbs denoting these two user states are, at
least in German, more transitive, having more slots to fill, than
the other ones.

2.2. Prosodic Features

For spontaneous speech it is still an open question which
prosodic features are relevant for the different classification
problems, and how the different features are interrelated. We
tried therefore to be as exhaustive as possible and used a highly
redundant feature set leaving it to the statistic classifier to find
out the relevant features and to do the optimal weighting of
them. For the computation of the prosodic features, a fixed ref-
erence point had to be chosen. We decided in favour of the
end of a word because the word is a well-defined unit in speech
recognition, and because this point can be more easily defined
than, for example, the middle of the syllable nucleus in word ac-
cent position. 95 relevant prosodic features modelling duration,
energy and F0, were extracted from different context windows.
The context was chosen from two words before, and two words
after, around a word; by that, we used a sort of ‘prosodic five-
gram’ and were able to model a speaker- or at least utterance-
specific baseline. However, in our experience context features
are - most probably because of sparse data - not that easy to
interpret; in this paper we therefore confined our analyses to
features computed for the single words.

In pilot experiments using the present database, it turned
out that formant-based features as for instance described in [10]
could not be computed robustly enough, as adding them to the
feature vector never improved classification performance (cf.
section 4). In addition to our usual feature vector, we thus de-
cided only to use five harmonics-to-noise-ratio features which
were computed frame-wise for each voiced frame and all voiced
parts of a word, as well as features modelling jitter and shimmer.
For the computation of our features, we assumed 100% cor-
rect word recognition and used forced alignment for the spoken
word chain. A full account of the strategy for the feature selec-
tion or for the choice of a word-based computation is beyond the
scope of this paper; details are given in [9]. Here, we wanted to
concentrate on acoustic, mostly prosodic features; thus we did
not take into account our usual part-of-speech features, cf. [9].
This is a short account of the features used:

• length of filled/unfilled pauses before and after the word

• for energy, duration, and F0: a reference feature based
on average values for all words in a turn

• for energy: maximum, mean, absolute value, normalized
value, and regression coefficient with mean square error

• for duration: absolute and normalized

• for F0: minimum, maximum, mean, and regression co-
efficient with mean square error

• harmonics-to-noise-ratio (HNR) features: mean, stan-
dard deviation, minimum, maximum, and range

• for jitter and shimmer: mean and variance

3. Classification and Interpretation
We did not use the acoustic features as such as predictors, but
principal components (PCs) based on these features. By that,
we could reduce the number of predictors even more, and these
predictors are orthogonal to each other; this facilitates interpre-
tation. To use all features yields sometimes less classification
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performance than selecting those features that are at the same
time relevant and not too much correlated with other features.
This loss is, however, not too severe. If we reduce the num-
ber of predictors to a considerable extent, classification perfor-
mance goes down. However, by that it is possible to boil down
a large number of predictors to a small one which can be in-
terpreted more easily. There is thus always a certain trade-off:
the clarity of interpretation is negatively correlated with classi-
fication performance. In this paper, we were not interested in
optimizing classification performance. We confined ourselves
to the reduction of the number of predictors and their interpre-
tation: PC analyses were computed yielding 11 PCs with an
eigenvalue greater than 1.0 which were used as predictors in an
LDA; the ‘semantics’ of these PCs will be described below. We
only put the three classes motherese, neutral, and reprimanding
into the classifier. For a realistic classification, this was contra-
factual as we blinded out the other labels. For interpretation,
this enabled us, however, to concentrate on those user states we
were interested in for the current study. In Table 1, the confu-
sion matrix for our three classes is given; class-wise computed
recognition rate (mean of diagonal) CW is 65.9.2

Table 1: Confusion Matrix for the Three Classes in Percent Cor-
rectly Classified, Leave-one-out, with resp. Frequencies #

label moth. neut. repr. #

motherese 52.6 33.2 14.2 1261
neutral 22.7 67.5 9.8 39177
reprimanding 8.4 13.5 78.1 310

For n classes, n-1 functions had to be computed; functions
at group centroid are given in Table 2. The higher the abso-
lute value, the more important is this function for the respective
class. The algebraic sign indicates whether higher or lower val-
ues are more important. Obviously, neutral is really in between
the two other classes, with values close to zero. Motherese and
reprimanding display opposite values, for function 1 low for
motherese and high for reprimanding, and for function 2, nega-
tive for motherese and positive for reprimanding.

Table 2: Functions at Group Centroids

label 1 2
motherese .467 -.838
neutral .032 .021
reprimanding 2.141 .782

In Table 3, the correlation of the eleven PCs with both func-
tions is given; we only interpreted values with a ‘reasonable’
value > 0.1, i.e. the first three PCs given in Table 3 are im-
portant for the first function, the fourth to the eights PCs are
important for function 2, the rest is rather less important. The
names given for the PCs are shorthand for their semantics. For
interpretation, we only took into consideration features with a
factor loading > 0.5 in the rotated component matrix.

Function 1 reveals that reprimanding displays longer dura-
tion and higher average energy: PC1 is characterized by many
features that model duration, PC8 is composed of the average

2If we use all acoustic features, together with our part-of-speech
features, for the same constellation, CW is 73.3. Classification perfor-
mance will most probably be even higher, with feature evaluation, more
sophisticated classifiers and the use of linguistic information. But as
pointed out earlier, in this paper, we were not interested in tuning clas-
sification performance.

Table 3: Correlation Coefficients between Variables and Func-
tions

principal components 1 2
PC1 duration .591 -.086
PC10 pause before, energy regression .439 -.104
PC8 average duration & energy .437 -.258
PC5 energy: absolut, maximum, mean .054 .781
PC3 HNR: std. dev., maximum, range .380 .443
PC6 HNR: mean, maximum, minimum -.035 .218
PC9 mean square error: energy, F0 .056 -.191
PC11 filled pauses .049 -.163
PC7 F0 regression -.012 .054
PC2 F0 maximum, minimum, mean, etc. -.028 .039
PC4 jitter, shimmer .016 .033

energy and duration value; the second PC PC10 is composed of
higher energy regression coefficient and longer pauses before
the respective word – it might indicate that the children typi-
cally react reprimanding by producing one-word chunks as, for
example, stop! pause or stop! in a loud voice.

Function 2 is negatively correlated with motherese and
positively with reprimanding. Again, energy is higher for repri-
manding, PC5 being characterized by higher energy – absolute,
maximum, and mean; HNR is more pronounced in reprimand-
ing: PC6 displays higher mean, maximum, and minimum, PC3
higher standard deviation, maximum, and range, i.e. there is a
higher proportion of non-periodicity and by that, breathiness,
in motherese which would be in accordance with findings from
the literature [11]. A caveat has to be made because HNR is
rather dependent on segmental context; thus we do not know
yet to which extent these findings will generalize. Mean square
error for the regression coefficient of energy and F0 are higher
for motherese (PC9) indicating that there is more ‘variation’
in motherese. Moreover, motherese displays some more/longer
adjacent filled pauses (PC11) than reprimanding; this might
seem counter-intuitive but it is only a slight tendency – possibly
caused by some peculiarities in the data?

Less relevant with a correlation < 0.1 are F0 regression and
F0 values (PC7 and PC2), as well as jitter and shimmer (PC4).
It might seem surprising that pitch is not relevant; this is, how-
ever, a result that has been observed throughout, in our experi-
ments and in others, if (and only if) you deal with spontaneous
speech and automatically extracted features. There are several –
competing or corroborating – possible explanations for that, cf.
[12]. Neutral might be in between the two other classes because
of its frequency, and/or because it simply is the default state, cf.
[7] where it has been shown in a two-dimensional representa-
tion that neutral indeed is close to the origin.

4. Discussion
The aim of this study was to describe the prosodic features of
emotional speech of children addressing a pet robot and to ex-
amine which speech registers children are using in this set-up.
We confined our study to interactive speech leaving aside more
‘traditional’ emotional user states such as joyful, angry, etc. The
disadvantage of such an approach might be that we only consid-
ered a subsample, this has been discussed above; further, that
class frequencies were very unequal, which is inevitable when
looking at spontaneous speech. We do not know yet, for exam-
ple, whether formant-based features – which we could not com-
pute robustly enough – are simply not relevant or whether they
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would have been if we had had a database greater by some order
of magnitude. The advantages of our approach are a full cov-
erage within a realistic scenario, spontaneous data, no selection
of ‘interesting’ cases, and fully automatic processing (albeit, for
this purpose, with the spoken word chain, i.e. not based on word
hypotheses graphs).

We found that speech that was classified as motherese was
mainly characterized by lower HNR, shorter duration, lower en-
ergy and, at the same time, more variation in energy and F0.
Lower energy points towards the soothing features of child-
directed speech, the energy and pitch variations towards the
attention eliciting features of child-directed speech. The use
of breathiness – as indicated by the lower HNR values – is a
general strategy towards establishing a more intimate relation-
ship, which is not confined to interaction with children [13].
Features that are described for child-directed speech and are
thought to facilitate language acquisition – increased segment
duration and with that, most probably hyperarticulation – were,
however, not represented in the motherese user state of our sam-
ple. This seems certainly appropriate for the type of interlocu-
tor the children were interacting with in this study. While AIBO
might well have elicited a degree of affect in the children that
caused them to produce child-directed speech, and while they
did believe that AIBO was listening to what they were saying,
there was no apparent reason for the children to believe that
AIBO was trying to learn speaking. With the language acqui-
sition component missing, the motherese class has in fact just
as much in common with pet-directed speech as with child-
directed speech. Contrary to what could be expected from a
pet, however, the children generally seemed to presume AIBO
to have a rather advanced linguistic capability; only if commu-
nication broke down, i.e. when AIBO disobeyed, they resorted
to some other strategies. One boy, for instance, tried out hyper-
articulated spelling: Stop! Stop! Es Ti Ou Pi! in such a case.
Such strategies were part of the reprimanding user state which
was mainly characterized by longer duration, higher (average)
energy, with longer pauses in between words. Its characteris-
tics were in direct opposition to those of motherese. Surpris-
ingly, hardly anything can be found in the literature in view of
features of reprimanding child-directed speech or reprimand-
ing pet-directed speech, but a use of shorter utterances or one-
word-chunks and louder voice is certainly in accordance with
what we know from everyday experience. These features of
the reprimanding user state could, of course, also be related to
the features of computer-directed speech. The features of moth-
erese on the other hand seem not to be part of what is normally
understood to be computer-directed speech.

5. Conclusions
Taken together, our findings suggest that children of this age,
just like adults [14], are able to fine-tune their speech register
to the addressee and to their own emotional state. What they
produce when interacting with AIBO is probably most closely
related to pet-directed speech, with overlaps with child-directed
and computer-directed speech. These overlaps seem to be rep-
resentative of the untypical addressee: AIBO is in its role es-
sentially a mixture of pet and robot, with childlike traits.
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