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Abstract. In this paper we present a novel wavelet based method for edge pre-
serving noise reduction. In contrast to most common methods, the algorithm in-
troduced here does not work on single input data. It takes two or more spatially
identical images, which are both impaired by noise. Assuming the statistical inde-
pendence of noise in the different images, correlation computations can be used
in order to preserve structures while reducing noise. Different methods for cor-
relation analysis have been investigated, on the one hand based directly on the
original input images and on the other hand taking into account the wavelet rep-
resentation of the input data. The presented approach proves to be suited for the
application in computed tomography, where high noise reduction rates of approx-
imately 50% can be achieved without loss of structure information.

1 Introduction

Particularly in diagnostic imaging, data contains noise predominantly caused by quan-
tum statistics. A common problem in image processing, therefore, is the reduction of
this pixel noise. Several approaches for edge-preserving noise reduction are known. The
goal of all of these methods is to lower the noise power without averaging across edges.
Some popular examples are nonlinear diffusion filtering [1] and bilateral filtering [2],
which directly work in the spatial domain. Additional approaches exist that reduce noise
based on the frequency representation of the input data, in particular wavelet-domain
denoising techniques. Most of these algorithms are based on the observation that in-
formation and white noise can be separated using an orthogonal basis in the wavelet
domain, as described e.g. in [3]. Structures (such as edges) are located in a small num-
ber of dominant coefficients, while white noise, which is invariant to orthogonal trans-
formations and remains white noise in the wavelet domain, is spread across a range
of small coefficients. This observation dates back to the work of Donoho and John-
stone [4]. Using this knowledge, thresholding methods were introduced, which erase
insignificant coefficients but preserve those with larger values. Several techniques have
been developed to further improve the detection of edges and relevant image content,
for instance by comparing the detail coefficients at adjacent scales [5,6]. Most denois-
ing methods based on wavelets suffer from the limitation that they are only applicable
to white noise. A more robust algorithm which adapts itself to several types of noise is
for instance presented in [7].

Nevertheless, most existing methods for noise reduction work on single image data
and their ability to distinguish between information and noise, therefore, strongly de-
pends on the size and the contrast of image structures. In contrast, if two or more images
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are available, which show the same information but statistically independent noise, the
differentiation between signal and noise can be further improved [8]. By comparing
the input images either in spatial domain or on the basis of the wavelet coefficients,
frequency dependent weighting factors can be computed. These weighting factors are
then used to eliminate noise, whilst maintaining structural information in the wavelet
representation of the images. Reconstruction of the modified wavelet coefficients yields
an image with suppressed noise but including all structures detected as correlations
between the input images.

This paper is structured as follows: After summarizing the basic concepts of the
wavelet transformation in section 2 the noise reduction algorithm is introduced in detail
in section 3. In section 4 the achieved results for the specific applications in computed
tomography and fluoroscopy are presented.

2 Wavelet Transformation

Wavelets are generated from a single basis function ψ(t) called mother wavelet by
means of scaling and translation:

ψs,τ (t) =
1

√|s| ψ
(
t− τ

s

)
; s, τ ∈ R, s �= 0, (1)

where s is the scaling parameter and τ is the translation parameter. Wavelets must have
zero mean and have bandpass like spectrum. For the computation of the discrete wavelet
transformation only discrete pairs of s and τ are used. Taking the discrete parameters

sj = 2−j and τk = k · sj = k · 2−j; j, k ∈ N0, (2)

where k is the translation and j the scale index, results in a dyadic sampling. Using these
parameters a family of wavelets, spanning the L2(R) can be derived from a mother
wavelet ψ(t) as follows:

ψj,k(t) =
√

2j ψ(2jt− k). (3)

The discrete wavelet transform (DWT) of a 1D function f(t) can then be computed by
projecting the function onto the set of wavelets:

cj,k =
∫ ∞

−∞
f(t)ψ∗

j,k(t)dt, (4)

where ψ∗
j,k(t) is the complex conjugate of ψj,k(t).

The algorithm introduced by Mallat [9], allows a fast computation of the discrete
dyadic wavelet transformation. The wavelet coefficients are computed by iteratively
decomposing the singnal into its high-pass filtered details and low-pass filtered approx-
imation, reducing the resolution of the signal in each iteration by a factor of two. It
can be shown that the discrete dyadic wavelet decomposition can be computed by an
iterated filter bank (see [10] for details).

When dealing with images the two-dimensional wavelet transformation needs to be
used. The one-dimensional transformation can be applied to the rows and the columns
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in succession, which is referred to as a separable two-dimensional wavelet transforma-
tion. After this decomposition four two-dimensional blocks of coefficients are available,
including on the one hand the lowpass filtered approximation image C and three detail
images Dx,Dy,Dxy. Analogously to the 1D case, the multiresolution wavelet decom-
position can be computed iteratively from the approximation coefficients.

At every decomposition level, the detail images include high frequency structure
information in horizontal, vertical and diagonal direction together with noise in the
respective frequency band. Goal of the noise suppression method is to detect those
detail coefficients which represent structure information. These coefficients should be
kept unchanged, while coefficients, which are due to noise should be eliminated or at
least be suppressed.

3 Filtering Algorithm

Fig. 1 shows a brief overview of the different steps used for the noise reduction algo-
rithm. Although the algorithm can also be extended to work with more than two input
images, without loss of generality, only the case of two images will be considered in
the following.
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Fig. 1. Overview of the noise reduction method

The two input images A and B are both decomposed into multiple frequency bands
by a 2D discrete dyadic wavelet transformation. Of course, for the reduction of high fre-
quency noise only those decomposition levels covering the frequency bands of the noise
spectrum are of interest. Therefore, it is not necessary to compute the wavelet decom-
position up to the coarsest scale. In our experiments, two to four decomposition levels
were sufficient. For each decomposition level a similarity matrix is computed based on
correlation analysis. The frequency dependent local discrepancy measurement can be
based directly on the comparison of the original input images or on the wavelet rep-
resentation of the input images. By the application of a predefined weighting function
to the computed similarity values a level dependent weighting factor is computed. The
resulting mask should preferably include ones in regions where structure information
has been detected and values smaller than one elsewhere. The averaged wavelet coeffi-
cients of the input images, i.e. the detail coefficients, can then be weighted according to
this mask. Averaging in the wavelet domain allows the computation of just one inverse
wavelet transformation in order to get a noise suppressed result image R.
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3.1 Correlation Analysis

Goal of the correlation analysis is to estimate the probability of a coefficient to corre-
spond to structural information. This estimate is based on the measurement of the local
homology of the input images. In the following, three different methods of similarity
computation will be introduced, measuring the similarity based on the original input
images, secondly based on the approximation coefficients and thirdly directly from the
detail coefficients. The core idea behind all of these methods is similar: For the three
blocks of detail coefficients Dx

l ,D
y
l ,D

xy
l of the wavelet decomposition, including hor-

izontal, vertical and diagonal details, a corresponding similarity matrix Sl is computed
for every level l up to the maximum decomposition level. Then, according to the defined
weighting function the detail coefficients are weighted with respect to their correspond-
ing values in the similarity matrix.

Correlation Coefficient Based Methods: One popular method for measuring the sim-
ilarity of noisy data is the computation of the empirical correlation coefficient [11]:

rxy =
∑n

i=1 (xi − x)(yi − y)
√∑n

i=1 (xi − x)2
∑n

i=1 (yi − y)2
, (5)

where x = x1, x2, . . . , xn and y = y1, y2, . . . , yn are two sequences of data each with
n data points. The mean values of xi and yi are denoted as x and y. The empirical
correlation coefficient also known as Pearson’s correlation is independent from both
origin and scale and takes values out of the interval [−1; 1], whereas one means perfect
correlation, zero no correlation and minus one perfect anticorrelation.

This correlation coefficient can now be used in order to compute the local homol-
ogy between the input images, by taking blocks of pixels out of the two images and
computing the correlation coefficient (see Fig.2(a)). Of course, the pixels used for sim-
ilarity measurement at a respective position should be closely associated with the par-
ticular detail coefficient. This should later on be weighted according to the computed
similarity value. Preferably all pixels from the original input image, which influenced
the detail coefficient at the current position and scale, through the computation of the
wavelet decomposition, should be incorporated into the similarity computations. It is
clear that with increasing decomposition level the size of the pixel regions in the orig-
inal image must also increase. Additionally, it is necessary to take the length m of the
wavelet filters into consideration. Altogether, the number of pixels nl of the original
image influencing a coefficient at level l can be computed iteratively according to:

nl = 2 · nl−1 +m− 2; with n1 = m. (6)

With this size adaptation the application of the algorithm in combination with arbitrary
wavelets, which can be represented by FIR lowpass and highpass filters, becomes pos-
sible. However, the computational costs are quite high, because of the increasing size
of the pixel regions in dependence on the decomposition level.

Improved results can be achieved with respect to performance as well as image qual-
ity if the correlation computations are not based on the original input images but on the
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Fig. 2. Correlation computations based on correlation coefficients - (a) based on the original input
images, (b) based on the approximation images of the previous decomposition level

approximation images. The multiresolution wavelet decomposition is computed itera-
tively. Thus the detail coefficients at level l are gained from the approximation image
of the previous decomposition level. A very close connection between the detail co-
efficients and the computed similarity values can be obtained if the pixel regions are
also taken from the approximation images of the previous decomposition level. The ad-
vantage of this approach is that the size of the pixel regions no longer depends on the
decomposition level (see Fig.2(b)). Only the length of the wavelet filters needs to be
considered. The disadvantage is that the approximations at all scales need to be stored
for this method, although only the approximations of the maximum decomposition level
are needed for perfect reconstruction.

Both of the methods mentioned so far have to deal with the same problem. The image
regions are adjusted to the length of the filter used for analysis, but not to the coeffi-
cients of the filter. All intensity values within the considered pixel region are weighted
equally. The result is that edges of higher contrast dominate the correlation values, as
long as they occur within the region covered by the filter. However, if the filter coeffi-
cients should be taken into consideration all three blocks of detail coefficients must be
treated separately, because the corresponding 2D filters are different. A third alternative
method, where the similarity is directly computed from the detail coefficients circum-
vents this problem.

Gradient Approximation: The core idea behind the similarity measurement based on
detail coefficients at level l is to use the fact that horizontal and vertical detail coeffi-
cients Dx

l and Dy
l can be regarded as approximations of the partial derivatives of the

approximation image Cl−1. Coefficients in Dx
l show high values at positions where

high frequencies in x-direction are present and Dy
l where sudden changes in contrast

in y-direction can be found. If these two aspects are considered together, we get an
approximation of the gradient field of Cl−1:

∇Cl−1 =
(
∂Cl−1/∂x

∂Cl−1/∂y

)
≈

(
Dx

l

Dy
l

)
. (7)

The detail coefficients in x- and y-direction of both decompositions approximate the
gradient vectors with respect to equation (7). The similarity can then be measured by
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computing the angle between the corresponding gradient vectors [8]. The goal is to
obtain a similarity value in the range of [−1, 1], analogously to the correlation compu-
tations above. Therefore, we take the cosine of the angle resulting in:

Sl =
DA x

l DB x
l + DA y

l DB y
l√(

DA x
l

)2

+
(
DA y

l

)2
√(

DB x
l

)2

+
(
DB y

l

)2
, (8)

where the superscript A refers to the first and B to the second input image. The gra-
dient approximation method and the more time consuming computation of the correla-
tion coefficients explained above are closely related. Nevertheless, the approaches are
not identical and do not generally lead to the same results. The application of the al-
gorithm for noise reduction based on the gradient approximation, as introduced so far,
sometimes leads to visible artifacts in the resulting images. Fig. 3(b) and the difference
image Fig. 3(b) give an example where this problem can be seen in case of using the
Haar wavelet. Noticeably, the artifacts predominantly emerge where diagonal structures

(a) (b) (c)

Fig. 3. Artifacts due to weighting down correlated diagonal coefficients with gradient approxima-
tion method - (a) noise suppressed image with gradient approximation without separated treat-
ment of diagonal coefficients, (b) difference image to average of input images, (c) difference
image after special treatment of diagonal coefficients

appear in the image, and their shape generally enforces the assumption that diagonal co-
efficients at different decomposition levels are falsely weighted down. Reason for this
is that diagonal patterns exist, which lead to vanishing detail coefficients in x- and y-
direction. If the norm of one of the approximated gradient vectors is too small or even
zero, no reliable information about the existence of correlated diagonal structures can
be obtained from equation (8).

The simplest possibility for eliminating the artifacts is to weight only the detail co-
efficients Dx

l and Dy
l based on the similarity measurement Sl and leave the diagonal

coefficients Dxy
l unchanged. Of course this avoids artifacts in the resulting images,

but, unfortunately, noise included in the diagonal coefficients remains unchanged, lead-
ing to a lower signal-to-noise ratio for the denoised image. From equation (8), we can
recognize that the similarity value is computed only with respect to Dx

l and Dy
l . The
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diagonal coefficients do not influence the computation. However, the idea to extend the
approximated gradient vector (see equation (7)) by the diagonal coefficients to a three
dimensional vector does not lead to the desired improvements. In case of vanishing
detail coefficients in x- and y- direction, no quantitative relation between the diagonal
coefficients can be gained. Moreover, the extension of the approximated gradient vector
by the diagonal coefficient is not a suitable solution. A diagonal coefficient can be inter-
preted as second order derivative and is therefore very sensitive to noise. Mixing it with
the detail coefficients in x- and y-direction generally leads to less reliable similarity
measurements.

In order to avoid artifacts while still reducing noise in the diagonal coefficients, only
the detail coefficients Dx

l and Dy
l are weighted, depending on the similarity measure-

ment computed from equation (8). The diagonal detail coefficients are treated sepa-
rately. The weighting function for the diagonal coefficients is based on the correlation
analysis between DA xy

l and DB xy
l :

Sxy
l =

2DA xy
l DB xy

l(
DA xy

l

)2

+
(
DB xy

l

)2 . (9)

Using this extension for separated weighting of the diagonal coefficients, denoising
results are free of artifacts (see Fig.3(c)).

3.2 Weighting Function

The simplest possible method for weighting the coefficients is to use a thresholding
approach. If the similarity value Sl at position (x, y) is above a defined value τl, the
detail coefficients are kept unchanged, otherwise they are set to zero [8]. The weighting
function can be defined as

Wl(Sl(x, y)) =

{
1 if Sl(x, y) ≥ τl

0 otherwise
. (10)

However, the choice of an appropriate threshold very much depends on the noise level of
the input images. Therefore, with increasing noise level in the input images the thresh-
old should be set less strictly and with some tolerance. Preferably the threshold should
be chosen level dependent, meaning that the threshold should be abated for higher de-
composition levels. Generally the use of continuous weighing functions like

W powN
l (Sl(x, y)) =

(
1
2

(Sl(x, y) + 1)
)N

∈ [0, 1] , (11)

where no hard decision about the maintenance or the discardal of coefficients is re-
quired, leads to better results. The power N can also be chosen level adaptive.

4 Experimental Evaluation

4.1 Computed Tomography

One important application of the noise reduction algorithm introduced above can be
found in X-ray computed tomography (CT). In CT always a tradeoff between pixel
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noise, dose of radiation and image resolution must be found. Reducing the dose of
radiation for example by a factor of two increases the noise level in the images by a
factor of

√
2. Goal of the application of the noise reduction algorithm to CT images

is to achieve improved image qualtiy without increasing the dose of radiation, or, the
other way round, to reduce the dose of radiation without impairing image quality.

Spatially identical images with uncorrelated noise can be generated through separate
reconstruction from disjoint sets of projections. For example two images can be recon-
structed, each using only every second projection. Specifically, one image is computed
from the even, and the other one from the odd numbered projections. Due to the recon-
struction with only half of the projections, the noise level of the two generated images
increases by a factor of

√
2. By averaging the wavelet coefficients of the input images,

the result image corresponds to the image reconstructed with the complete set of projec-
tions, where additionally noise is reduced. Usually, a loss of image resolution through
splitting the projections into two halfs can be obviated because the overall number of
projections in CT can be assured to be high enough.

(a) (b)

Fig. 4. Application of the noise reduction algorithm to CT images - (a) average of input images
(standard deviation: σ ≈ 52 HU), (b) denoised result (σ ≈ 25 HU)

Fig.4(b) shows the noise suppressed result image in comparison to the average of
the input images Fig.4(a). It can be seen clearly that especially in homogeneous image
regions, as for example in the region of the liver, noise is reduced, while structures and
also small details are preserved. For clinical tests we used two CT slices, one from the
abdomen, the other from the thorax. For each slice the average image and nine differ-
ent configurations of denoised images were computed (see [12], [13] for details). The
nine noise suppressed images were compared to the average image by two radiologists
independently. All images of the tests were unlabeled. The result was that the average
of the input images has never been judged superior to the noise suppressed images. In
average the pixel noise σ in the noise suppressed images has been reduced by 50% in
comparison to the average of input images.

The different approaches for correlation analysis can be assessed by comparing the
difference images, which are presented in Fig.5. It can be seen that the correlation
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(a) (b) (c)

Fig. 5. Comparison of correlation analysis methods: difference images between result image and
the average of input images - (a) CC based on original images, (b) CC based on approximation
images, (c) gradient approximation

coefficient (CC) based method, where the pixel regions are taken from the original input
images is less precise than the other two approaches, because structure information is
also included in the difference images. The other two approaches lead to nearly the same
good results. In regions of edges no noise is reduced, but the quality of the edge is kept
unchanged. In the shown examples the Haar wavelet has been used. The experimental
results with different wavelets showed, that especially biorthogonal spline wavelets, like
the CDF9/7 wavelet [14], are well suited for the noise reduction algorithm.

4.2 Fluoroscopy

A second clinical application of the introduced method for noise reduction can be found
in fluoroscopy, where sequences of x-ray projections are acquired. Therefore, achieving
the maximum image quality with a minimum of radiation dose is required. In Fig.6 the
initial experimental results achieved for x-ray images of a human skull are presented.

(a) (b) (c)

Fig. 6. Application of the noise reduction method to fluoroscopy images of the human skull - (a)
average of input images, (b) denoised image, (c) difference image
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5 Conclusion

We presented a novel edge-preserving wavelet based method for noise reduction. The
algorithm works on two input images, which show the same information whereas the
noise between the input images is uncorrelated. Using this property, correlation compu-
tations can be used in order to differentiate between structures and noise. Three different
approaches of correlation analysis have been discussed. Especially the gradient approx-
imation approach with the introduced separated treatment of the diagonal wavelet co-
efficients allows an artifact free and computationally efficient noise suppression. The
application of the algorithm to computed tomography images showed that a noise re-
duction of approximately 50% is possible without loss of stucture information. Even
fine edges and small structures are preserved. For the application to fluoroscopy images
it must be assured that the patient does not move. Otherwise the method must be used
in combination with image registration algorithms.
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