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Abstract— A major drawback of Katsevich’s exact general
cone-beam inversion scheme is the difficulty in finding practical
algorithms adapted to every novel type of source trajectory. We
succeeded to overcome this problem, and can formulate recon-
struction algorithms, for trajectories that are related through a
linear distortion to an already studied scenario. The introduced
theory yields two reconstruction strategies that are in principle
independent from the underlying reconstruction algorithm and
are either based on data pre- and post-processing or on adjust-
ment of filtering directions. Numerical results based on simulated
cone-beam data are presented.

Index Terms— Computed tomography, exact cone-beam recon-
struction, linearly distorted source trajectories

I. INTRODUCTION

In recent years, computed tomography (CT), in particular
three-dimensional (3D) cone-beam (CB) reconstruction theory
has undergone significant advances. As a major breakthrough,
Katsevich introduced a general scheme to find exact CB
inversion formulas for most complete source trajectories [1].
One essential component of this inversion scheme is an
auxiliary function that has to be defined and adjusted to the
actual acquisition scenario in order to obtain a practical and
efficient reconstruction algorithm. The attribute “practical”
refers here to the algorithm allowing a good amount of data
truncation, and thus requiring little X-ray exposure outside
the imaged slab of the patient body. Unfortunately, finding
a good auxiliary function is in general a very intellectual
process requiring significant effort. To do so, one typically
needs to carefully study how planes through each object point
within the region-of-interest (ROI) intersect various segments
of the source trajectory. The auxiliary function defines how to
weight data on these planes within the reconstruction process.
Only some auxiliary functions allow data truncation, and
these functions only exist for specific segments of the source
trajectory that generally depend on the object point. Using his
theory in [1], Katsevich investigated several trajectories that
are relevant for real world CT devices, such as the medical
CT scanner or the C-arm device. He found auxiliary functions
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that yield practical, accurate algorithms for the ideal helical
trajectory [2], the ideal circle-plus-(orthogonal)-arc [3], and
the ideal circle-plus-(orthogonal)-line trajectory [4]. However,
the algorithms are restricted to the source trajectories they
were derived for. Therefore, they do not readily apply to, for
example, a source trajectory made of a circle and an oblique
arc, which is a simple deviation from the ideal circle-plus-
arc trajectory. In [5], Noo et al. presented a data rebinning
strategy to easily obtain a reconstruction algorithm for a
helix-with-gantry-tilt trajectory from algorithms derived for a
conventional (non-tilted) helix. In [6], the authors also applied
this rebinning method to allow reconstruction from another
specific trajectory. In this article, we apply that concept to
obtain theoretically-exact reconstruction approaches for a large
spectrum of novel and unconventional acquisition geometries.
Instead of deriving algorithms from the general CB inversion
scheme, we propose a theory which allows the development
of practical and accurate CB reconstruction algorithms for
source trajectories that differ from an already studied, so called
ideal scenario by a linear transformation. From that theory, we
derive two reconstruction approaches that utilize an existing
implementation of an algorithm for the ideal scenario. These
approaches consist of (i) a direct data rebinning strategy in a
pre- and post processing step or (ii) a modification of filtering
directions within the filtered-backprojection framework of the
available implementation.

II. MODELING OF GEOMETRY DISTORTIONS

Consider a source trajectory for which a CB reconstruction
algorithm has been implemented. Let λ be the parameter
describing this trajectory and a

0
(λ) ∈ IR3 be the source

position at a given λ. The trajectory a
0
(λ) may be a smooth

curve like the ideal helical trajectory, or may be the union of
several smooth curves, like the ideal circle-plus-arc trajectory.
CB data acquisition along a path a

0
(λ) will be referred to as

an ideal scenario or just ideal throughout this article.
We can now introduce a linearly distorted source trajectory

a(λ) that is related to an ideal path by

a(λ) = Aa
0
(λ), A ∈ IR3×3, detA 6= 0, (1)

with the non-singular matrix A describing a bijective linear
mapping in IR3. The distortion defined by (1) operates glob-
ally on the ideal trajectory so that, if a(λ) is composed of
several smooth segments, all of them are distorted by the
same operation A. Although any linear transformation may
be considered, shearing operations and non-isotropic scaling



are of special interest. Then, the curves a
0
(λ) and a(λ) differ

in shape so that a distinct acquisition scenario is obtained and
with that we get a different CB reconstruction problem. To
get a rough idea about potential effects of (1) onto an ideal
trajectory, we use the fact that certain geometric properties
are invariant under a linear transformation. For instance, if a
segment of the ideal source trajectory is entirely located in a
plane, then the corresponding segment in a(λ) will be planar,
too. Also, a line in a

0
(λ) is mapped onto a line in a(λ), and if

a
0
(λ) consists of several connected segments, these segments

will remain connected to each other in a(λ).

III. RECONSTRUCTION THEORY

CB data acquired along a source trajectory a(λ) consists of
line integrals that may be written as

g(λ, θ) =

∫

∞

0

dtf(a(λ) + tθ), (2)

where f(x) with x ∈ IR3 describes the spatial distribution
of the linear X-ray attenuation coefficient, while θ is a unit
vector giving the line direction. Now, if a(λ) is related to an
ideal trajectory, we can substitute (1) into (2) and introduce
α = (A−1θ)/(‖A−1θ‖) to get

g(λ, θ) =

∫

∞

0

dtf (Aa
0
(λ) + tθ)

=

∫

∞

0

dtf
(

A
(

a
0
(λ) + tA−1θ

))

=

∫

∞

0

dtfv

(

a
0
(λ) + tA−1θ

)

=
1

‖A−1θ‖
gv (λ, α) .

(3)

Here, fv(x) = f(Ax) denotes a virtual object, which is a
distorted version of the object under investigation. Equation (3)
establishes a link between the acquired line integrals g(λ, θ)
and CB data gv(λ, α) of the virtual object, which corresponds
to an ideal source trajectory. The inverse relations are given
as

f(x) = fv

(

A−1x
)

(4)

and
gv (λ, θ) =

1

‖Aθ‖
g

(

λ,
Aθ

‖Aθ‖

)

. (5)

IV. RECONSTRUCTION USING DIRECT DATA REBINNING

From the presented theory, a three step reconstruction
method can be readily formulated:

(i) Rebinning of CB data at fixed λ:
Using (5) we obtain CB data of the virtual object
fv(x) for the corresponding ideal source trajectory
a
0
(λ).

(ii) Reconstruction of the virtual object:
Using any existing reconstruction algorithm for the
ideal trajectory a

0
(λ), we can reconstruct fv(x) from

the rebinned CB data gv(λ, α) created in step (i).
(iii) 3D rebinning in the image volume:

The desired values of f(x) are obtained from the
reconstructed fv(x) by a 3D rebinning step according
to (4).

Note that the 3D interpolation required in step (iii) comes
with a loss in high frequency, so that the sought object
function f(x) is of lower spatial resolution compared to
fv(x). However, if the implemented reconstruction algorithm
allows modifications in the backprojection functionality, one
can beneficially adjust the sampling grid on which the virtual
object is reconstructed. Instead of using a Cartesian grid, the
values of fv are obtained immediately at the sampling points
A−1x. Then, a subsequent interpolation to obtain f(x) =
fv(A

−1x) can be avoided and step (iii) becomes obsolete. This
approach is referred to as the improved rebinning method.

V. RECONSTRUCTION USING FILTERING LINE
ADJUSTMENT

From the theory presented in Sec. III, a CB reconstruction
algorithm can be derived that comes along without any ad-
ditional data rebinning steps. This derivation may be applied
to any filtered-backprojection reconstruction formula that is
based on the concept of π-lines and filtering planes. Here,
we consider Katsevich’s theoretically-exact CB reconstruction
algorithms for the ideal-circle-plus-arc and ideal-circle-plus-
line trajectory, respectively, both derived from the general CB
inversion scheme [1].

From (4) we know that the reconstruction of f(x) in the
distorted acquisition set-up is identical to the computation
of the density of the virtual object fv at point A−1x in
the corresponding ideal scenario. We observe further that the
π-line determined for A−1x in the ideal scenario (which
intersects the trajectory at a

0
(λi) and a

0
(λo)) is mapped onto

a π-line for x in the linearly distorted scenario; this π-line
intersects the distorted trajectory at a(λi) and a(λo), i.e. at
unchanged curve parameters. Consequently, if the reconstruc-
tion of fv(A

−1x) from CB data on a0(λ) is obtained through
backprojection over the interval [λi, λo] as in [3] or [4], so
may the reconstruction of f(x) from data on a(λ). The point
that needs to be addressed is the data filtering.

With the existing algorithms [3] and [4] we can determine
the filtering planes required for a reconstruction at A−1x in
the ideal scenario. Consider now an arbitrary filtering plane
P0. It intersects with the trajectory at a

0
(λp) with λi ≤ λp ≤

λo, contains by definition the point A−1x and has normal
vector n

0
. Geometrically, the linear distortion with A yields a

mapping of P0 onto the plane P on which filtering has to be
performed in the distorted scenario. The plane P contains the
source point a(λp) = Aa

0
(λp), the point x = AA−1x and is

orthogonal to the vector n = A−T n
0
/‖A−T n

0
‖. Therefore,

it specifies the filtering direction for CB data acquired in
the distorted scenario at curve parameter λp required for a
reconstruction at the point x. The mathematics of this approach
have already been derived but are left out for the purpose of
conciseness.

When assuming a flat panel detector geometry, this one-on-
one mapping of filtering planes corresponds to a transforma-
tion of (ideal) filtering lines that are determined for the ideal



scenario onto filtering lines required for CB projection images
occurring in the distorted acquisition geometry. Modification
of the filtering directions makes a major difference to the
rebinning method of Sec. IV. There, the ideal filtering lines
were used and an initial rebinning of CB data accounted
for the distorted trajectory. In this second approach, however,
acquired CB data is not modified but we adjust the filtering
lines appropriately and allow thereby efficient and accurate
reconstruction without the drawbacks of data rebinning. Using
this filtering line adjustment strategy, we expect an improved
spatial resolution in the reconstructions compared to the
method of section IV.

VI. NUMERICAL RESULTS

The two suggested reconstruction approaches for linearly
distorted source trajectories were evaluated using computer-
simulated CB data of two analytically defined phantoms, the
FORBILD head phantom [7] and a disc phantom, which is
a variation of the well-known Defrise phantom. Numerical
studies assume a flat detector geometry, where X-ray sensitive
detector elements are aligned on a 2D Cartesian grid. We
considered two distinct data acquisition set-ups, for which
no direct reconstruction algorithm has been derived to our
knowledge.

Fig. 1. The ellipse-plus-oblique-line trajectory aEPOL(λ). The dimensions
of the ellipse are defined by the half axes a and b and its rotation is given
by the angle µ. The linear scan segment is attached non-orthogonally to an
endpoint of the ellipse and describes an angle of π/2 − θ with the plane of
the elliptical scan.

First, data acquisition for an ellipse-plus-oblique-line trajec-
tory aEPOL(λ) was simulated. The elliptical segment covers

TABLE I
PROJECTION DATA SIMULATION PARAMETERS

ellipse-plus circle-plus
oblique-line oblique-arc

detector discretization 0.4 × 0.4 mm2 0.4 × 0.4 mm2

source-to-detector distance 80 cm 80 cm
properties of ellipse/circle

dimensions a = 88 cm R = 80 cm
b = 80 cm

orientation µ = 0◦ -
discretization ∆λ = 0.4◦ ∆λ = 0.4◦

# of projections (head/disc) 496/496 497/498
properties of line/arc

radius - R = 80 cm
orientation θ = 10◦, ϕ = 45◦ µ = −10◦

discretization ∆z = 1 mm ∆λ = 0.4◦

# of projections (head/disc) 167/333 31/60

an angular interval of length λellipse and is located in the
plane z = 0 mm. The ellipse dimensions are defined by the
half axis a and b and its orientation is described by the angle
µ, measured between the x-axis and the direction of the half
axis with length a. The linear scan segment is attached to an
endpoint of the ellipse such that it describes an angle of π/2−θ
with the plane of the elliptical scan. The azimuthal angle of the
line is ϕ. See Fig. 1 for an illustration of the acquisition set-up.
The shape of the considered trajectory suggests to relate it to
the ideal circle-plus-line trajectory, which can be parametrized
as

aICPL
0

(λ) =

{

[R, 0, (λl)/(2π)]
T if 0 ≤ λ < 2π,

[R cosλ, R sin λ, 0]
T if 2π ≤ λ < 2π + λc.

Here, R denotes the radius and λc the angular interval of
the ideal circle scan and l the length of the orthogonally
attached line segment. We can determine a linear transform
A1 consisting of subsequent 3D shearing, non-isotropic scaling
and rotation operations as

A1 =





a′ cosµ −b′ sin µ sin θ cosϕ
a′ sin µ b′ cosµ sin θ sinϕ

0 0 cos θ



 , (6)

such that aEPOL(λ) = A1 aICPL
0

(λ). Here, λellipse = λc and
a′ and b′ are selected so that a = a′R and b = b′R.

In a second evaluation, we considered data acquisition along
a circle-plus-oblique-arc trajectory aCPOA(λ), which consists
of two circular segments with common center and identical
radius R. The circle scan is located in the plane z = 0 mm
and covers an angular interval of length λc. The plane of the
arc scan contains the x-axis and is rotated by an angle θ from
its vertical position. The length of the arc segment is λa. The
two segments are connected to each other in their endpoint
that has z = y = 0 mm. For a geometric illustration of the
acquisition set-up see Fig. 2. The described trajectory is a
variation of the ideal circle-plus-arc path, which is given by

aICPA
0

(λ) =

{

[R cosλ, 0, R sin λ]T if 0 ≤ λ < λa,
[R cosλ, R sin λ, 0]

T if 2π ≤ λ < 2π + λc.
(7)

Fig. 2. The circle-plus-oblique-arc trajectory aCPOA(λ). The two scan
segments are both of circular shape with radius R and are located in planes
that contain the x-axis.



The linear transform

A2 =





1 0 0
0 1 sin θ
0 0 cos θ



 (8)

maps the ideal trajectory aICPA
0

(λ) onto aCPOA(λ) according
to (1).

Fig. 3. Transaxial slice z = 40 mm of the FORBILD head phantom (centered
around z = 40 mm) in the grayscale window [0, 100] HU: (top) values of
f(x) from analytical phantom definition, (center) reconstruction of f(x) from
CB data corresponding to aEPOL(λ), (bottom) f(x) obtained from CB data
for aCPOA(λ). For both reconstructions, the filtering line adjustment method
was used.

The two investigated reconstruction scenarios involve tra-
jectories which have just been identified as linearly distorted
versions of previously studied, ideal trajectories with distortion
parameters A1 and A2, respectively. Therefore, the object
function f(x) can be reconstructed using the algorithms de-
scribed in Sec. IV and Sec. V.

Fig. 4. Slice x = 0 mm for z ∈ [0, 140] mm of the disc phantom
using the grayscale window [−500, 500] HU: (top) values of f(x) from the
phantom definition, (center) result obtained for the ellipse-plus-oblique-line
trajectory and (bottom) for the circle-plus-oblique-arc trajectory. Both images
were reconstructed using the improved rebinning method.

For both trajectories, the extent of the scan segments was se-
lected large enough to guarantee a complete set of CB data for
a theoretically-exact reconstruction of the region of interest.
Also, detector position and dimensions were chosen to yield
transaxially untruncated projection data. A comprehensive list
of simulation parameters is presented in table I. Core CB
reconstruction was carried out using our implementation of
the accurate filtered-backprojection algorithms proposed by
Katsevich for the ideal circle-plus-line [4] (for evaluation 1)
and the ideal circle-plus-arc trajectory [3] (for evaluation 2).

The values of f(x) were obtained on a Cartesian grid of
cubic voxels of size 0.5 × 0.5 × 0.5 mm3. Fig. 3 presents
image results for the FORBILD head phantom in a narrow
grayscale window of width 100 HU. An off-center transaxial
slice through the reconstructions of the phantom is visualized.
The images were obtained from CB data corresponding to
aEPOL(λ) and aCPOA(λ) using the filtering line adjustment
reconstruction approach of section V. The results are presented
next to the corresponding slice of the original phantom.

Reconstructions of the disc object from CB data correspond-
ing to the trajectories aEPOL(λ) and aCPOA(λ) were obtained



using the improved rebinning method of IV. A central vertical
slice through the image results is presented in Fig. 4 against
the original phantom definition using a grayscale window of
width 1000 HU.

VII. CONCLUSIONS

We presented two strategies that allow CB reconstruction
from a large class of (novel) source trajectories that are
related to any well-studied acquisition scenario by a linear
distortion. The approaches can be understood as extensions to
already available algorithms, and in principle, every filtered-
backprojection style algorithm can be applied for actual
reconstruction. During simulation studies, we were able to
achieve high quality image reconstructions from an ellipse-
plus-oblique-line trajectory by involving two theoretically-
exact reconstruction algorithms arising from Katsevich’s gen-
eral CB inversion scheme. To our knowledge, another accurate
reconstruction approach [8] can deal with distorted source
trajectories more naturally. However, this algorithm may have
drawbacks in terms of data utilization and detector require-
ments compared to the presented strategies. This issue will be
investigated more closely in the future.

The presented reconstruction approach is applicable to exist-
ing medical devices, since a linearly distorted trajectory may
represent the scanning motion of an X-ray imaging device
better than currently investigated ideal paths a

0
(λ).
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