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Abstract— In this article, we propose a novel factorization
of the circular cone-beam (CB) reconstruction problem into a
set of independent 2D inversion problems. This factorization is
established in the context of modern two-step Hilbert reconstruc-
tion methods by combining the ideas of an empirically derived
CB inversion approach with a firm and exact theory. We were
able to accurately discretize these 2D inversion problems, which
allows a detailed investigation of CB reconstruction by using the
Singular Value Decomposition and also allows efficient iterative
reconstruction approaches. The introduced theory is applied for
preliminary studies of the stability of circular CB tomography
assuming a short object. We analyzed, how the radius of the
circular scan affects the stability and investigated the effect of
an additional linear scan onto the condition of the problem.
Numerical results are presented for a disc phantom.

I. INTRODUCTION

Three-dimensional (3D) image reconstruction from cone-
beam (CB) data acquired on a circular trajectory is an active
subject of research nowadays. This research is motivated by
recent advances in detector technology and the fact that the
circular trajectory is of all possible data acquisition configura-
tions the easiest one to implement. Unfortunately, CB data
on a circle do not provide enough information to achieve
accurate reconstruction [1], and this problem becomes more
acute when the data is only known over a segment of the
circle instead of the full circle, which represents an important
practical situation.

Several reconstruction techniques have been developed for
reconstruction from CB data acquired along a partial circular
trajectory, but no existing technique lies on a firm theoretical
ground while allowing some degree of data truncation. In
medical imaging, however, CB data are always truncated in at
least one direction. The existence of a firm theory supporting
the algorithm is important to be able to predict artifacts and
devise iterative corrections reducing these artifacts.

In 2005, Yu et al. [2] proposed a new original method to
do reconstructions from circular CB data. This method is a
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Feldkamp-like extension of the two-step Hilbert method they
and others developed for fan-beam tomography [3], [4]. As
such, it presents attractive properties: it is efficient, allows axial
truncation, allows partial transverse truncation for specific
regions-of-interest and does not require data over 360 degrees.
However, this method was defined heuristically.

Using the general, exact CB reconstruction theory in [5],
we have realized that the basic idea of Yu et al. [2] may be
used to factorize the CB reconstruction problem into a set
of independent 2D inversion problems. Unlike the harmonic
decomposition [6], this factorization applies to data on a full-
scan as well as to the data on a short-scan. We report below on
this factorization and some preliminary use of it to investigate
the incompleteness of partial circular CB data.

II. GEOMETRY AND DATA DESCRIPTION

We assume CB data acquisition where the focus of the X-ray
source follows a circular trajectory of radius R around the
object under investigation. This trajectory may be parametrized
by λ such that coordinates of the source are obtained as

a(λ) = [R cosλ, R sin λ, 0]. (1)

Let [0, λm] be the angular range covered in λ during the acqui-
sition process. For a full-scan, λm = 2π, but here we assume
CB data for less than a full-scan trajectory and consequently
λm < 2π. The function f(x) with x ∈ IR3 represents the
distribution of the object X-ray linear attenuation coefficient
within the region of interest (ROI). CB data acquisition yields
integrals of f along half-lines that start from the source and
are each defined by a unit direction vector α, i.e., we obtain
samples of the data function

g(λ, α) =

∫

∞

0

dt f(a(λ) + tα). (2)

III. RECONSTRUCTION THEORY

Let us first define a family of planes that intersect the object
ROI and are orthogonal to the plane of the source trajectory.
There is not much restriction on the definition of this family;
the planes may be nicely ordered in space (e.g., parallel to each
other) or not. Our preferred configuration is one in which the
planes share a common line that is orthogonal to the plane
of the circular scan, say the line through the source position
at λ = 0. Planes from this family may be parameterized
by an angle φ. Let λ1(φ) and λ2(φ) be the parameters,



Fig. 1. Illustration of an arbitrary φ-plane. It intersects with the source
trajectory at parameters λ1(φ) and λ2(φ) and contains the point x at which
reconstruction is to be achieved. The intermediate function b at x is related to
the values of the object density f along two lines. Both of them are located
in the φ-plane, contain x and follow the direction w1 and w2, respectively.

where the plane of angle φ (the φ-plane) intersects with the
source trajectory. Following our convention, λ1(φ) = 0. In the
following, we demonstrate how the circular CB reconstruction
problem can be factorized into a set of independent 2D
inversion problems, each of which corresponds to finding the
density function f on one φ-plane.

For every φ-plane, two Cartesian coordinates t and z can
be introduced, with z in the direction orthogonal to the plane
of the circular scan. A point within the 3D ROI may then be
parametrized using the non-Cartesian coordinates x(φ, t, z).

To reconstruct the object density function f we first differ-
entiate CB data with respect to the curve parameter λ, while
fixing the ray direction α to obtain

g′(λ, α) = lim
ε→0

g(λ + ε, α) − g(λ − ε, α)

2ε
. (3)

The differentiated data of (3) is then backprojected onto points
of the ROI aligned on a grid which is defined by discretized
values of φ, t and z. For points of coordinate φ, we backproject
only data that is within the interval λ1(φ) and λ2(φ). This
yields the intermediate function

b(φ, t, z) =

∫ λ2(φ)

λ1(φ)

dλ

‖x(φ, t, z) − a(λ)‖
g′(λ, α∗(λ, φ, t, z)).

(4)
In this formula, α∗(λ, φ, t, z) denotes the unit vector along the
line that connects a(λ) with x(φ, t, z) during backprojection.
The relation between the intermediate result b and the sought
function f is given by the following equation [5]:

1

π
b(φ, t, z) =

∫ +∞

−∞

dτ

πτ
f (x(φ, t, z) + τw1(φ, t, z))

−

∫ +∞

−∞

dτ

πτ
f (x(φ, t, z) + τw2(φ, t, z)) (5)

Here, w1(φ, t, z) (resp. w2(φ, t, z)) is the unit vector from the
source position at λ1(φ) (resp. λ2(φ)) to x(φ, t, z) and both
vectors, w1 and w2, are located in the φ-plane. See Fig. 1 for
an illustration.

Hence, for each φ, the quantity b(φ, t, z), which is directly
computable from the CB data is dependent only on the

values of f within the plane of angle φ. Finding a solution
f(φ, t, z) to (5) from b(φ, t, z) at fixed φ then corresponds to
a 2D inversion problem. Circular CB reconstruction is thus
factorized through the computation of b(φ, t, z) into a family
of 2D problems, and this factorization applies to any φ-plane
such that λ2(φ) < λm.

IV. DISCRETIZATION

The 2D inversion problem for each φ-plane can be dis-
cretized into a linear system of equations. Then, a detailed
singular value decomposition (SVD) analysis of the stability
of the CB reconstruction problem becomes possible. A dis-
cretization of (5) is obtained as

b = π(M − N)f. (6)

Here, the vectors f and b define samples of the functions f and
b in the considered φ-plane and the matrices M and N model
the required filtering operations. M represents the first integral
on the r.h.s of (5), whereas N represents the second integral.
Consider now just one arbitrary sample in b, corresponding to
the point x of the ROI. According to (6), it is related to f via
a certain row of M and N , respectively, and we now briefly
explain how we found the corresponding matrix elements. The
row of M (denoted as r) can be obtained with the following
steps:

a) Determine the filtering line through a(λ1) and x, i.e.,
compute the vector w1(φ, t, z).

b) Introduce a sampling on that filtering line by discretiz-
ing τ . In general, this sampling does not coincide with
the sampling grid of f or b.

c) For each filtering line sampling point P , determine ele-
ments of f and linear interpolation coefficients that yield
an interpolated value of f at P .

d) Approximate the integration in (5) with a weighted sum
of the values of f at points P . For each P , find the
corresponding weight that depends on τ .

e) Compose r by setting appropriate elements to the product
of the interpolation coefficients from c) and the weights
from d).

By repeating steps a) to e) from above for all samples of
b, we completely determine the matrix M in a row-by-row
strategy. The elements in N are found in an analog manner.
Thus, the initial linear system (6) is obtained as desired and
reconstruction on the given plane is equivalent to solving (6)
for f .

The system can beneficially incorporate additional knowl-
edge, such as the values of f along the lines of direction w1

and w2 through x(φ, t, z); these values are within the φ-plane
and are part of the measured CB data. Doing so, we obtain an
extended system of equations

Af =

[

b
c

]

, (7)

with c denoting elements of the known CB data function that
correspond to the additional information. The matrix A is
based on M and N from (6) and extended by several rows
modeling the additional line integrals. The structure of an
exemplary A is presented in Fig. 4.



Fig. 2. The φ0-plane in the evaluated short object scenario (see text). Ray
integrals that diverge from vertex points (VPs) located on an additional linear
scan segment may be added to the system of equations. By that, we can study
the effect of additional data onto the stability of the reconstruction problem.

V. EXPERIMENTAL SET-UP

For numerical evaluations, we picture circular data acqui-
sition with a virtual detector located at the iso-center. The
detector has height d and is vertically positioned such that its
lower edge starts at the plane of the circle scan. For our first
studies, we further assume that the detector is wide enough
so that acquired CB data for λ ∈ [0, λm] is not truncated in
transaxial direction. From d and the scan radius R, a DBP-
region can be geometrically determined, in which the function
b is computable from the acquired CB data. For a full-scan,
the top boundary of the DBP-region would be cone-shaped.
In case of a short scan, however, the symmetry is lost and the
shape of the DBP-region gets more complex. We assume now,
that the investigated short object fits entirely in a cylinder of
radius r and height H , which sits on the plane of the circle
scan and is centered around the rotational axis of the scan path
(the x3-axis). The height H of the object cylinder is set to the
maximum value that still ensures that the object does not go
beyond the DBP-region.

Using the described set-up, only the reconstruction of f
inside and above the plane of the source trajectory can be
analyzed. Because of symmetry, however, the obtained result
may also be used to deduce the stability for reconstruction of
f in regions below that plane.

By applying the suggested factorization theory, the 2D
inversion problem for an arbitrary φ-plane can be formulated.
Without restriction of generality, we consider the plane that
contains x3 and has parameter φ0 for further analysis, but any
other plane would be suitable, too. Fig. 2 illustrates the cross-
section of the acquisition geometry with the selected φ0-plane,
presenting a triangular shaped DBP-region with a tightly fitted
rectangular bounded object area. These regions are obviously
of different size. Hence, a discretization of the functions f
and b using an identical sampling pattern and spacing yields
vectors f and b that are not of the same dimension. Following
Sec. IV we can determine the linear system of equations, i.e.,
the matrix A, for the φ0-plane. In the considered set-up, this
system is overdetermined.

The matrix A is used to analyze the stability of several
geometric variations of the CB reconstruction problem. Inves-
tigations are based on (i) the analysis of the singular value

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

i/N
σ
     

sin
gu

la
r v

al
ue

 σ
i/σ

m
ax

R=400mm 

R=11800mm 

Fig. 3. Normalized singular value spectra σi/max(σi) for various scan radii
R ∈ [400, 11800] mm. The order of the spectra is such that for increasing
R, the curves enclose a larger area with the coordinate axes.

spectrum σi of A and on (ii) the reconstruction from (non-
consistent) noisy data bn as fr = A+

α bn. The pseudo-inverse
A+

α is computed via the SVD and Tikhonov regularization,
which relates the singular values σ̂i of A+

α to the singular
values of A as σ̂i = σi/(σ2

i + α2).

VI. INVESTIGATIONS ON THE STABILITY OF CB
RECONSTRUCTION

A. Effect of the Scan Radius on Circular Cone-Beam CT
In a first experiment, the effect of the scan radius R onto the

stability of circular CB reconstruction is studied. We define
d = 25 cm, r = 15 cm and use a Cartesian sampling
of the φ0-plane with ∆t = ∆z = 5 mm. The radius R,
however, varies from experiment to experiment by a constant
increment of ∆R = 300 mm and covers the interval R ∈
[400, 11800] mm. The parameter H increases with R, so that

Fig. 4. The non-zero entries (white) of the matrix A for the geometry of Sec.
VI-A and R = 700 mm. The bottom rows of distinct structure correspond
to the additional line integral information, whereas the major part of the A
represents the relation given in (5).

the actual dimension of the system matrix A may also vary
with R. The singular value spectra of A for each radius R are



shown in Fig. 3. Fig. 4 presents the structure of A as obtained
for R = 700 mm. A selection of singular images of A is given
in Fig. 7.

B. Effect of an Additional Scan Segment on the Stability
We now investigate, to what degree the knowledge of addi-

tional ray integrals improves the stability of the reconstruction
problem. Experiments are performed for a circular scan with
R = 700 mm, but we also consider additional rays through
the object that diverge from a set of vertex points (VPs) and
assume that the integrals of f along these rays are known.
These VPs are located somewhere on a vertical line that
intersects the circle segment at λ = 0. Since the additional
line segment is contained on each φ-plane within the family
of planes defined in Sec. III, the 2D inversion problem for
each plane may benefit from the additional information. We
accurately discretize the line integral information and add it
to the linear system of equations for the considered φ0-plane.
Doing so, we obtain an extended matrix - denoted as Ae -
which may be analyzed as suggested before.
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Fig. 5. Singular value spectra of Ae for (top) a few additional VPs and a
large fan of rays per VP (C-arm scenario) and (bottom) many additional VPs
with only few rays per VP (CT-like scenario). Only the tail region of σi is
presented to illustrate the main deviation between the spectra (colors in the
electronic version). The order of the spectra in either case is such that adding
more ray integrals to Ae yields an increase of the values of σi.

First, the linear scan is finely sampled, so that many
additional VPs are introduced. These VPs are aligned evenly
in the interval [0, H ] along the line, so that two adjacent VPs
differ by ∆h = 5 mm (Fig. 2). For each VP and φ-plane, only
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Fig. 6. Reconstructions of a disc phantom from noisy data bn . (left) Mean
image of fr after 100 noise realizations in a grayscale window [−.25, 1.75],
(right) profile of the mean image along the central column (t = 0) for z ∈

[0, 250] mm. From (top) to (bottom): original phantom, no additional VPs,
CT-like data for 1 row, CT-like data for 2 rows, C-arm data for 1 additional
VP (AVP), for 2 AVPs and for 3 AVPs. Further additional data did not yield
a significant visual improvement of the reconstructions.



a few additional rays (1, 2, 4, 8 or 16) are added. Considering
the entities on one φ-plane, the rays diverging from each VPs
form a fan that is symmetric with respect to horizontal line
through the VP. The slopes of two adjacent rays within a fan
differ by approximately 7.1 · 10−3.

In a second experimental series, just a few VPs (2 up to
10) are added on the line scan, again equidistantly covering
the interval [0, H ]. Now, however, we consider 150 rays for
each VP and φ-plane, so that for a given φ-plane, the rays
diverging from a certain VP compose a large fan. Each fan
is again symmetric with respect to the horizontal line through
the corresponding VP and the slopes of two consecutive rays
differ again by 7.1 · 10−3.

Fig. 7. Singular images of the system matrix A for the acquisition geometry
from Sec. VI-A and R = 700 mm. In each row, the singular images
corresponding to three consecutive singular values σi, σi+1 and σi+2 are
presented. (top to bottom) i = 1, i = 401, i = 801, i = 1201, i = 1601,
i = 2001 and i = 2398.

Returning to the context of CB tomography, we can find
a certain correspondence of these additional ray integrals in
the data acquisition process. The consideration of many VPs
may be useful to represent CB data acquisition in a multi-slice
CT scenario (with 1, 2, 4, 8 or 16 rows). The case of a few,
but large sets of diverging rays finds its equivalent in C-arm

acquisition. In either case, we expect beneficial effects of the
additional data on the stability of CB reconstruction. These
effects should be noticeable when analyzing and comparing
the properties of the matrices Ae and A. Fig. 5 presents the
tail of the singular value spectra of Ae corresponding to each
of the described scenarios. We also performed reconstructions
from noisy data bn of a disc phantom. The level of additive
Gaussian noise in bn corresponds to a Gaussian noise in the
object with standard deviation of 5 HU. The pseudo-inverse
of Ae is obtained by Tikhonov regularization with α set
to the 200th singular value, counted from the smallest one
backwards. Image results are presented in Fig. 6. As expected,
the reconstructions that consider only the circular scan inherit
CB artifacts throughout the image and have acceptable quality
only for the lower 3 discs. The artifact level for this object is
reduced significantly when adding the additional line scan.

VII. CONCLUSIONS

Using the CB reconstruction theory from [5], we set up the
main idea of the reconstruction method in [2] into a strong
theoretical background, which comes with a factorization of
the reconstruction problem. This factorization allows 3D CB
reconstruction via solving 2D problems on a set of φ-planes.
We were able to accurately discretize the 2D problems, so
that a detailed SVD analysis of the reconstruction problem
becomes feasible. We performed preliminary studies of the
effects of additional scan segments on the stability. The
obtained results are consistent with data sufficient conditions,
that were established e.g. in the context of the 3D Radon
transform [1]. We also notice that adding only a small amount
of additional data seems to be sufficient to reduce the artifact
level to a high degree. From the introduced factorization
theory, efficient 2D iterative CB reconstruction approaches can
be developed. These approaches can be able to beneficially
incorporate redundant CB data, and can allow reconstruction
from partially transaxially truncated CB data.
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