
Handling Camera Movement Constraints in
Reinforcement Learning Based Active Object

Recognition

Christian Derichs? and Heinrich Niemann

Chair for Pattern Recognition, Department of Computer Science, University
Erlangen-Nürnberg, Martensstr. 3, 91058 Erlangen

{derichs,niemann}@informatik.uni-erlangen.de

Abstract. In real world scenes, objects to be classified are usually not visible
from every direction, since they are almost always positioned on some kind of
opaque plane. When moving a camera selectively around those objects for clas-
sifying them in an active manner, a hemisphere is fully sufficient for positioning
meaningful camera viewpoints. Based on this constraint, this paper addresses the
problem of handling planned camera actions which nevertheless lead to view-
points beyond the plane of that hemisphere. Those actions arise from the uncer-
tainty in the current vertical camera position combined with the view planning
method’s request of a relative action. The latter is based on an optimized and
interpolating query of a knowledge base which is built up in a Reinforcement
Learning training phase beforehand.
This work discusses the influence of three different, intuitive and optimized,
methods for handling invalid action suggestions generated by Reinforcement
Learning. Influence is measured by the difference in classification results after
each step of merging the image data information with active view planning.
Keywords Active Vision, Viewpoint Selection, Reinforcement Learning

1 Introduction

The basic idea of active object recognition is the optimized selection of the viewpoints
relative to an item in order to classify it reliably with a minimal amount of recorded
sensor data, such as camera images. Naturally, this comes along with the necessity of
moving a camera around the considered object and fusing the gathered information. As-
piring to optimality, some kind of camera movement planning is required, which in our
approach is based on Reinforcement Learning [11]. We have already shown in various
publications [4] [5] that this approach outperforms a random viewpoint selection when
the camera movement is restricted to a circular path around the object.

The enhancement from the 1-dimensional path to the complete, 2-dimensional sphere
around the item is quite simple at a first glance. But the restriction appearing in practice
is that the majority of objects is positioned on an opaque plane, like a table or the floor.
Consequently, cameras cannot be positioned in any way to take a meaningful image
from below those objects. Keeping this in mind, it is a reasonable approach to initially
? This work was funded by the German Science Foundation(DFG) under grant SFB 603/TP B2. Only the authors are

responsible for the content.

Manuscript

Admin_derichs
Textfeld
Published in :
Pattern Recognition - 28th DAGM Symposium 2006
Editors: K. Franke, K.-R. Müller, B. Nickolay, R.Schäfer
Springer
ISBN-10 : 3-540-44412-2
Pages : 637-646
 




Hardware

e.g.
Mobile Robot

- camera
movement

Knowledge Base

Software

- view planning

- classification

- pose estimation

- information
fusion

recommended action

current view

success information y/n

Fig. 1. The elementary structure of the active view planning system

model the object only with image information gained from camera viewpoints that are
arranged on a hemisphere around this object. In contrast to this modeling, later real
world camera movements, as well as their horizontal and vertical positions relative to
the considered object, are almost always afflicted with uncertainty. In particular, a cam-
era controlling mobile robot may encounter an object worth classifying at some time
during its so far undirected movement in an arbitrary environment. So regarding the
relation between camera and object position, no initial alignment of coordinate systems
can be done. Consequently, incoming information is limited to the recorded image of the
object. Based on this information, a probabilistic suggestion about the relative camera
position and the object class can then be established and an optimal next viewpoint for
recognition can be calculated. Approaching the latter mostly means moving the whole
robot as well as changing the camera angle, both being afflicted with inaccuracy.

Now the problem regarding the hemisphere constraint results from the fact that the
software part (see figure 1) might randomly choose or even plan a relative action which
actually would not result in a position on the mentioned hemisphere. Unfortunately, nei-
ther the hardware front end is not able to detect such an invalid action without actually
performing it. Since the movement is at least partially performed when eventually rec-
ognizing the impracticability of the proposed action, a replanning would waste one step
in the recognition process, which is considered worst-case in optimal, active view plan-
ning. Therefore, the hardware in particular must not reject or request an action from
the software part, but has to promptly handle the given action instruction somehow.
Considering the other direction, in order to keep the approach universal the software is
assumed to not explicitely get to know anything about the success of the real action, it
merely obtains the next image. In our framework, success information is just used for
rating executed actions (see chapter 2).

Thus, the problem under consideration is how to immediately deal with requested
actions that are invalid in a sense of camera movement constraints and how to adapt
this to the knowledge representation, in fact without raising the planning effort dis-
proportionately. The latter is exactly the point most of the related work is missing. For
example, [9] explicitely puts a lot of effort into the exact recovery of conditions obtained
before performing a failed action in order to try another action then. [10] proposes an
approach which emerges from robot navigation and modifies a planned, demanded ac-
tion or action sequence if this did not lead to a recognizable state enhancement in the
preceding time steps. Of course, in our active view planning system we cannot wait
for the system to recognize such a dead end. Other work from the area of Replanning

Manuscript



displaces the error handling work towards the training phase, like [2], which alternately
inhibits action components during training in order to directly learn backup plans. Sim-
ilarly, [13] introduces a plan transformation that varies a proposed action to similar one
which is most probably valid. But this transformation advice is again based on an ex-
panded training phase including the buildup of a plan library. Thus, those approaches
are worth considering if training complexity is not a matter. A completely different,
Reinforcement Learning adjusted idea is suggested by [6], which incorporates the risk
of a valid action to become invalid due to some inaccuracy into an action’s rating. A
similar approach and it’s common disadvantages are discussed in chapter 3.

Chapter 2 gives an outline of the basic methods of Reinforcement Learning and
explains the role of the problem specific variables within this framework. Afterwards,
chapter 3 first introduces the probabilistic description of the class and pose assump-
tions of an object via a set of particles and then shows three methods for propagating
these particles according to the action handling direction under consideration. Chapter
4 compares the proposed methods regarding their impact on experimental classification
results.

2 Reinforcement Learning

2.1 Basic Principles

In a basic Reinforcement Learning approach, the three decisive items are states st, ac-
tions at that lead to new positions and rewards rt that rate the performed action at

given state st as its starting point. A timestamp t clarifies that in the assumed environ-
ment we have multiple episodes of T temporally successive actions 〈a1, a2, . . . , aT 〉
and resulting states 〈s1, s2, . . . , sT+1〉 each.

For our purpose:
• States within the development environment are multi-modal probability distribu-

tions (see [4] [5]). They are discrete concerning the number of object classes Ωκ and
continuous within the values for horizontal (Φh) and vertical (Φv) camera positions rel-
ative to the object. Consequently, they contain probabilistic assumptions about the class
and pose of an object under consideration. Those assumptions arise from the informa-
tion extracted from the image data f t the camera acquires in each time step. Thus, the
state densities can be presented by

st = p(q(t)| 〈f〉t , 〈a〉t−1) with q = (Ωκ, Φh, Φv)
T

. (1)

Here, 〈f〉t = f t, f t−1, . . . , f1 and 〈a〉t−1 = at−1, . . . , a1 indicate the fusion of all
image information and camera movement knowledge gathered during a whole episode.
Therefore, the probability distribution st itself is a fused product of information gath-
ered in multiple time steps. For a detailed explanation of the fusion procedure refer to
[3].

• Actions are the movements of the camera in-between the taking of two consecu-
tive images. For the purpose of this work, actions at = (ah,t, av,t)

T are limited to two
components, the horizontal (ah) and the vertical (av) movement of the camera fixed on
a predefined hemisphere around the object.

• Rewards follow the usual definition in Reinforcement Learning

Manuscript



Rt =
∞∑

n=0

γnrt+n with γ ∈ [0; 1] , (2)

where rt is the immediate reward when analyzing a next state st and γ is a weight-
ing factor whose influence is increasingly reduced with a growing step indicator n.
Summing up the sequentially appearing rewards rt results in a forward-looking reward,
called return R, when at time step t within an episode. In practice, episode lengths are
finite and summation in (2) is aborted accordingly. Since rewards are calculated from
the resulting state representation st, the choice of a significant property of those den-
sities is the crucial task in Reinforcement Learning. So we decided for high rewards
when the most probable class Ωκ out of k classes has high confidence, according to

rt = max
i

∫

Φh

∫

Φv

p(qi(t + 1)| 〈f〉t+1 , 〈a〉t) dqi with qi = (Ωκ=i, Φh, Φv)T .

(3)
Consequently, rewards in this approach obey the relation k−1 ≤ rt ≤ 1.

2.2 Calculation of the Behavior Policy

Now given a rewarding rule, we can build up a knowledge base during training con-
taining action-value functions Q which represent the quality of an action a in state s
depending on the return’s expectation value:

Q(s, a) = E {Rt|st = s, at = a} (4)

Of course, during training we acquire a fully calculated return Rt since we perform
the whole episode before expanding the knowledge base. But at runtime in every time
step t we can only make assumptions about the future behavior, so an expectation value
is the appropriate formulation. In general, we cannot expect to get only such states s
during evaluation that we have already seen in the training phase, since we work in
a continuous environment. To nevertheless be able to declare a best action in every
situation we acquire, an approximation term Q̂(s, a) is necessary:

Q̂(s, a) =

∑
(s′,a′)

K (d (θ(s, a), θ(s′, a′))) Q(s′, a′)

∑
(s′,a′)

K (d (θ(s, a), θ(s′, a′)))
. (5)

– (s′, a′) are the state-action pairs already stored in the knowledge base.
– θ(s, a) is the resulting multi-modal density function when transforming s accord-

ing to an action a. The various rules for this transformation are the gist of this paper
and will be extensively discussed in chapter 3.

– d calculates the distance between two density functions using the extended Kullback-
Leibler distance

– K(x) = exp(−x2/D2) is a Gaussian kernel for weighting those distances d. The
free kernel parameter D determines the smoothness or rather the local fineness of
the approximation in (5).

Manuscript



Readdressing the topic of this work, the approximative character of Q̂(s, a) is—
next to the movement uncertainty—the main reason for obtaining invalid actions during
runtime at all. The final step for finding the best action in the current state is an opti-
mized global Adaptive Random Search [12] over all actions in question, followed by a
local Simplex. Consequently, we obtain the optimal considered action ă:

ă = argmax
a

Q̂(s, a). (6)

3 Handling Critical Actions

To understand the complete process when invalid actions occur, we first give a more
precise insight into the structure of the multi-modal densities representing the states st.
Note that in object recognition tasks, pose and class probability functions are gener-
ally not normally distributed. So unfortunately we cannot make use of the well known
Kalman Filter [8] for the necessary density propagation. Instead, the proposed method
applies a Particle Filter [1] to that problem, resulting in a probability density that is
represented by a set Γt =

{
ρ1

t , . . . , ρ
N
t

}
of N single particles ρt. Each of those par-

ticles ρ =
{
Ω̃κ, Φ̃h, Φ̃v , ω

}
contains information about the class Ω̃κ, the horizontal

pose (Φ̃h) and the vertical pose (Φ̃v) it is representing. Additionally it holds an entry for
its own weighting ω. Density propagation is then easily accomplished via the Conden-
sation algorithm which is directly aligned to those particle representations. For details
about this method refer to [7].

The purpose of this work is to provide and compare meaningful instructions for
camera movements based on invalid movement demands, i.e. when they would ex-
ceed either the north pole or the hemisphere’s plane in the vertical direction. Note that
the north pole was additionally addressed as a critical edge in order to provide some
symmetry to the planning task. Besides, this assumption should prevent problems when
integrating actions’ costs into the learning process, which is outside the scope of this
paper.

Finally, the movement adaption strategies H are :
1.) Pseudo-Persistence PF with Penalization F
2.) Movement up to the Critical Edge and Stopping S
3.) Edge-Reflected Movement R
To keep things concise, we reduce the following examinations to the critical, vertical

action a and state component Φ, respectively. Camera movements are called valid if
Φ ∈ Υ = [0◦; 90◦] for the resulting vertical camera position Φ. Actions ending up at
Φ = 90◦ are named a+, those leading to Φ = 0◦ are called a−. Please note that we can
exactly determine having reached 0◦ or 90◦ via the camera mechanics whereas all other
position specifications are just probabilistic. This is due to the inaccuracy of relative
actions which have to be performed by the hardware, e.g. a mobile robot. In particular,
we will show the demand of repeating a performed action a which accordingly cannot
be done exactly. Thus the repeated action is symbolized by ã.

1.) The first approach is quite intuitive and obeys mainly the idea of Reinforcement
Learning. Here, the actual proceeding concerning the camera movement is to return to
the starting point if a required vertical action ă turns out to be inexecutable during mo-
tion. Otherwise the action is simply performed. Considering the former, that means we

Manuscript



}

}

PSfrag replacements

90
◦

90
◦

0
◦

0
◦

a

ă

a
−

αaβ

a

a
−

α

ă

aP

aP

aβ

area of movement inaccuracy
initial camera position initial camera position

theoretical action a
theoretical action a

Fig. 2. Exemplary camera movement handling for invalid actions using the pseudo-persistence
(left) or edge-reflection method (right). The inaccuracy within the second sub-action aβ is chosen
exemplary.

can divide the whole movement process at this time step into two sub-movements indi-
cated by subscripts α and β. So, first an action aα = a

+/−
α physically takes the camera

to a critical edge. Then we need to reverse this action in order to go back to the starting
point. Regarding the action inaccuracies the rule for this is aβ = −ã

+/−
α (see the left

drawing of figure 2). Please remember that we cannot just fix the camera in the starting
point for this time step since we don’t know about the possible success of a movement
before actually trying it (see section 1). Since then the camera position would only
change relative to the action inaccuracy, this behavior is called pseudo-persistence. To
understand the particle handling correctly, remember that the software part in figure 1
is not aware of any information about the hardware’s action operability. So each par-
ticle of the current state density is moved in a translative manner just according to its
represented hypothesis and the proposed action ă. To point out the resulting similarities
and differences between propagating the particles in the state representation and the
physical action handling, invalid actions (combinations of sub-movements) are mapped
to the one valid, but still theoretical action a which would result in the corresponding
final camera position:

a =





a+
α − ã+

α if ă > a+
α

a−

α − ã−

α if ă < a−

α

ă else
; Φ̃(ρt+1) =

{
Φ̃(ρt) if Φ̃(ρt) + ă 6∈ Υ

Φ̃(ρt) + ă else
(7)

Above all, that implies that huge amounts of particles might change position even if
only pseudo-persistence movement is physically performed.

Knowing that an illegal move leads to a next view from almost the same position,
which in general adds very little new information to the classification task, it appears to
be a rational and Reinforcement Learning consistent idea to punish those actions during
training. So, if using the pseudo-persistence method PF and applying the punishment
F to the reward function (rt = F in (3)), it should be possible to learn to avoid those
illegal actions during the following evaluation phase. However, that is where the prob-
lem occurs with this approach. Since we have no a-priori knowledge about the domain
of appearing rewards for valid moves in general it is impossible to establish an optimal
F beforehand. So either the determination of adequate values for such a punishment
has to be integrated into a far more complex and time consuming learning process [6]

Manuscript



or it has to be set generously high by hand. The latter is obviously suboptimal since
also legal movements into the border area would be partially disadvantaged because
of the approximation mentioned in (5). This means that optimal next best viewpoints
might be ignored merely because of their proximity to the illegal area, which is a quite
well known problem in Reinforcement Learning. Even originally valid actions within
an episode during training could be negatively affected if an invalid action follows later
on in the same episode, regarding the return (2) with γ > 0. Nevertheless, this is the
approach a problem-unspecific Reinforcement Learning method would apply. Thus,
chapter 4 will also show the classification results when applying various punishment
terms F .

2.) The second approach tackles the afore mentioned problem of unadjusted pun-
ishment terms by avoiding their occurrence in general. This is simply done by stop-
ping a critical camera movement if either the north pole or the hemisphere’s plane is
reached, thus aβ = 0. This way, non-executable actions cannot be avoided either, but
each of them can again be uniquely mapped to a valid action and can be rated by the
usual Reinforcement Learning reward (3). Again, density particles have to be handled
with the same procedure, yielding the following directions:

a =





a+
α if ă > a+

α

a−

α if ă < a−

α

ă else
; Φ̃(ρt+1) =





90◦ if Φ̃(ρt) + ă > 90◦

0◦ if Φ̃(ρt) + ă < 0◦

Φ̃(ρt) + ă else

(8)

Please note that stopping at the critical edges differs from most other, possibly ran-
domly chosen successive actions in the way that it is deterministic. In particular, each
particle can be propagated in exactly the same manner a camera would move when be-
ing located at this particle’s parameter hypotheses - in fact without knowing the real
outcome of the camera movement beforehand.

3.) The obvious drawback of the previous approach is the preference of edges as
arrival points for the camera movement. Since we always permit relative vertical ac-
tions within the range of [−90◦; 90◦[ , theoretically every second move ends up at
one of those two edges during the Reinforcement Learning training phase, since we
only perform random actions here. Intuitively, this might result in a heavily unbalanced
knowledge base built during this training.

In order to overcome this potential barrier as well, our proposed idea for an op-
timized action handling is the edge-reflected movement and particle propagation, re-
spectively. As the name says, a remaining action potential aP is continued in the reverse
direction whenever reaching a critical edge at runtime, thus |aβ | = |ă|−|aα|. The corre-
sponding illustration can be found in the right drawing of figure 2. This way, each valid
movement has exactly two related movements it can emerge from, the originally valid
and the reflected one. In contrast to the edge-stopping method this relation is one-to-one
now. This results in a uniform probability distribution for reaching any viewpoint in the
next time step. Additionally, the deterministic behavior is assured once more and the
calculation instructions can be expressed as:

a =





a+
α − (ă − ã+

α ) if ă > a+
α

a−

α + (ã−

α − ă) if ă < a−

α

ă else
;

Manuscript



Φ̃(ρt+1) =





180◦ − Φ̃(ρt) − ă if Φ̃(ρt) + ă > 90◦

−Φ̃(ρt) − ă if Φ̃(ρt) + ă < 0◦

Φ̃(ρt) + ă else

. (10)

4 Experimental Results

Classes

1

4

3

2

Fig. 3. Views of the toy object classes

For experimental evaluation of our active object recognition task, we have chosen
four classes of real toy figures, discriminable by a quiver and a lamp. Corresponding to
the 2-dimensional approach of this paper, figure 3 shows some examples of images that
can be acquired from viewpoints situated on the hemisphere around the object. Please
note that every recorded image was superposed by a uniform Gaussian noise before pro-
cessing it any further. This way overall classification results are equally downgraded,
but differences in the various applied methods for action handling will be more distin-
guishable. For classification itself image features are extracted by a Principal Compo-
nent Analysis using only the ten best eigenvectors in the transformation matrix.

Reinforcement Learning training was done with 50 episodes per class, each contain-
ing eight camera actions in between nine recorded images, whereas all actions were per-
formed completely randomly. These training stages were separately executed for every
combination of action handling H ∈ {P−1, P0, P0.5, S, R} and weighting γ ∈ {0, 0.5}
introduced in (2). During the evaluation phase, 50 exploiting episodes were performed
for each class based on the particular knowledge base built up during training. The ker-
nel parameter D, which varies K(x) in (5), was set to a well-proven value of D = 10
(see [5]). Figure 4 shows the classification results we achieved with the various com-
binations after the fusion of the information data of n images. Results are displayed
up to a step width of n = 5 since later results just converge to a saturation and thus
would just reduce clarity. In any case, the most important values are those of early steps
(n = 2, 3) as they show the immediate gain or loss in classification certainty most real
decisions would rely on. Concerning this, it is obvious that the proposed new methods
of H = S,R clearly outperform those based on a punishment for invalid camera ac-
tions. Nevertheless, especially the right chart of figure 4 points out that there are indeed
penalization terms (like F = 0) that can achieve a comparably high learning quality.
But as mentioned, this comes at a price of having a priori knowledge about the range
of the regular Reinforcement Learning rewards, and then it still needs some experience
and object specific previous knowledge to optimize the punishment value. Those pre-
conditions cease to apply when using the improved edge-reflecting or edge-stopping
method.

Manuscript



 65

 70

 75

 80

 85

 90

 95

 100

54321

PSfrag replacements

n =

re
co

gn
iti

on
ra

te
[%

]

γ = 0

P−1

P0

P0.5

S

R

≈44%
 65

 70

 75

 80

 85

 90

 95

 100

54321

PSfrag replacements

n =

re
co

gn
iti

on
ra

te
[%

]

γ = 0.5

P−1

P0

P0.5

S

R

≈44%

Fig. 4. Recognition rate [%] after n planned actions and information fusion. The various columns
display the influence of the compared action handling methods H for invalid action demands.
The left figure (γ = 0) considers one-step returns in the Reinforcement Learning, the right one
(γ = 0.5) represents ahead looking returns.

Since results for H = S are quite close to those of H = R regarding the recogni-
tion rates, we should additionally pay attention to the pose estimation accuracy which
might turn the balance then. To evaluate this, in figure 5 we additionally depicted the
localization error of the vertical object pose after n steps of image fusion. Therefore, we
concentrated on H = S,R and again distinguished between γ = 0 and γ = 0.5. These
results explicitely show that, for pose estimation accuracy as well, the edge-reflected
method is the one to prefer. As with the classification results, we achieve obvious en-
hancements mainly within the early steps. Obviously, when using H = S, the accu-
mulation of particles at one of the critical edges for invalid camera movement demands
takes effect, resulting in an unbalanced distribution and thus a more imprecise pose
representation. Regarding the weighting γ we can postulate that its value does not af-
fect the general ranking of the three proposed action handling methods. Thus, it can be
considered a noncritical parameter for the method selection decision.

5 Summary and Future Work

The focus of this work was on object recognition tasks with predefined constraints
in valid camera positions and thus camera movements. Therefore, we emphasized the
problem of providing an immediate alternative camera movement direction when the
requested one turns out to be non-executable. For that purpose, we compared three

 3.5

 4

 4.5

 5

 5.5

 6

54321

PSfrag replacements

n =ve
rti

ca
lp

os
e

es
tim

at
io

n
er

ro
r[

◦
] γ = 0

S
R

 3.5

 4

 4.5

 5

 5.5

 6

54321

PSfrag replacements

n =ve
rti

ca
lp

os
e

es
tim

at
io

n
er

ro
r[

◦
] γ = 0.5

S
R

Fig. 5. Estimation error in the vertical object pose [◦] after n planned actions and information
fusion. Values are compared for the edge-stopping (H = S) and the edge-reflecting (H = R)
action handling methods. Again, the left figure shows results for γ = 0 and the right one for
γ = 0.5 in the Reinforcement Learning return function (2).

Manuscript



different action handling approaches and their influence on the underlying state den-
sity representation. Summing up the visualized results, the edge-reflecting version for
handling non-executable actions turned out to outperfor the others in practice, accord-
ing to our presumption. We pointed out the advantage of the edge-stopping and the
edge-reflecting methods compared to other approaches introduced in the literature. In
particular, the former explicitly support our demand of classification with a minimal
number of camera movements since they avoid replanning and thus discarding already
performed movements.

Further work on this topic will concentrate on the assignment of costs to the various
movement actions, bringing the proposed problem to a completely new dimension. One
of the main questions is whether the applied action handling methods can address cost
integration at all. In any case, adjustment should nevertheless be a complex procedure.

References
1. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A tutorial on particle filters for on-

line non-linear/non-gaussian bayesian tracking. IEEE Transactions of Signal Processing,
50:174–188, 2002.

2. K.H. Chang and M. Edhala. Execution Error Recovery for Planning Systems. In In Pro-
ceedings of the 7th Annual International Phoenix Conference on Computers and Communi-
cations, pages 492–496, Scottsdale, USA, 1988.

3. F. Deinzer, J. Denzler, and H. Niemann. On Fusion of Multiple Views for Active Object
Recognition . In Pattern Recognition – 23rd DAGM Symposium , pages 239–245, Munich,
Germany, 2001.

4. F. Deinzer, J. Denzler, and H. Niemann. Viewpoint Selection - Planning Optimal Sequences
of Views for Object Recognition . In Computer Analysis of Images and Patterns - CAIP ’03 ,
number 2756 in Lecture Notes in Computer Science , pages 65–73, Groningen, Netherlands,
2003.

5. F. Deinzer, Ch. Derichs, and H. Niemann. Aspects of optimal viewpoint selection and view-
point fusion. In Computer Vision - ACCV 2006, volume 2, pages 902–912, Hyderabad, India,
Januar 2006.

6. P. Geibel and F. Wysotzki. Risk-Sensitive Reinforcement Learning Applied to Control under
Contstraints. Journal of Artificial Intelligence Research, 24:81–108, 2005.

7. M. Isard and A. Blake. CONDENSATION — Conditional Density Propagation for Visual
Tracking. IJCV 98, 29(1):5–28, 1998.

8. R.E. Kalman. A new approach to linear filtering and prediction problems. Journal of Basic
Engineering, pages 35–44, 1960.

9. C. A. Knoblock. Planning, Executing, Sensing, and Replanning for Information Gathering.
In In Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence,
pages 1686–1693, Montreal, Canada, 1995.

10. A. Ranganathan and S. Koenig. A Reactive Robot Architecture with Planning on Demand.
In In Proceedings of the IEEE International Conference on Intelligent Robots and Systems,
volume 2, pages 1462–1468, Las Vegas, USA, 2003.

11. R.S. Sutton and A.G. Barto. Reinforcement Learning. A Bradford Book, Cambridge, Lon-
don, 1998.

12. A. Törn and A. Žilinskas. Global Optimization, volume 350 of Lecture Notes in Computer
Science. Springer, Heidelberg, 1987.

13. R. van der Krogt, M. de Weerdt, and C. Witteveen. A Resource Based Framework for Plan-
ning and Replanning. In In Proceedings of the IEEE/WIC International Conference on In-
telligent Agent Technology, pages 173–186, Halifax, Canada, 2003.

Manuscript




