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Abstract. We present a new method for planning the optimal next viewafor
probabilistic visual object tracking task. Our method uaegriable number of
cameras, can plan an action sequence several time stefisdrfitwure, and allows
for real-time usage due to a computation time which is lireezh in the number
of cameras and the number of time steps. The algorithm canhalsdle object
loss in one, more or all cameras, interdependencies in thereés information
contribution, and variable action costs.

We evaluate our method by comparing it to previous apprcaglith a prere-
corded sequence of real world images.

1 Introduction

This paper describes an enhanced method for selecting arsegjofoptimal sensor
actionsfor a probabilistic state estimation system. The optiméibas are those that
minimize the expected uncertainty of the state probahdlisgribution function, mea-
sured by the expected state entropy. We apply this methaddiarplanning in an object
tracking task. In this task, the sensor actions affectieg/ibw are the camera zoom set
tings. However, this method is not restricted to zoom plagnit can also handle other
camera actions, such as panning, tilting or translatiod jsaqually applicable to other
active state estimation tasks.

A large amount of research in the area of view planning efastsbject recognition
tasks [1-3], in which the active selection of views direetgluces the uncertainty in
classification. For active object tracking many works imeathe changing of zoom set-
tings [4—6]. However, these methods keep the size of thecbinjeéhe images constant,
as opposed to minimizing the uncertainty of the estimatdefbject position. Previ-
ous work in uncertainty reduction includes [7], in which dset from a set of sensors
is chosen to meet certain threshold criteria. A more gergadoach is followed in [8],
where actions are chosen which maximally reduceetkgected entropgf the object
position in space as a measure of positional uncertainty.

Previous work [9] has extended this approach to optimizejaesgce of actions for
view planning. This extension allows variable action costieh as occur due to limited
camera zoom motor speeds, to be incorporated into the agatiion. Potential object
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loss is dealt with by evaluating each possible sequencejetblisibility in avisibility
tree (see section 2 and Fig. 1). A subsequent improving work [1fd to address
several shortcomings of this method, such as the inabdligfficiently handle an object
visible in only a subset of the cameras, with the use otguential Kalman filteiBy
applying a visibility tree to each camera separately, thapatational cost is linear in
the number of cameras, and partial visibility can be handled

The main problem with the still remaining visibility treettgat its size, and therefore
the computation costs for view planning, are still exporann the number of time
steps. In this work, we propose a new method, which flatteissvikibility tree, thus
achieving linear runtime.

We test our approach with a prerecorded image sequence fiaathree cameras.
This sequence is scaled with a variable scale factor to sit®al changing focal length,
while allowing several algorithms to be compared indepetigen the same data.

This paper is organized as follows: The next section revighescurrent state of
view planning for active object tracking and describes th&ation used in this work.
Section 3 details the method of visibility tree linearipatto reduce computation time.
Section 4 covers the experiments, comparing the previotisads to our new one. The
last section summarizes and concludes this paper, angdistatial future work.

2 Kalman filter and action selection

Tracking an object in 3D is defined as a state estimation probivhich we solve with
the well-known Kalman filter [11], extended to handle serstions. To accommodate
the non-linear nature of the observation functions invd)wee use thextended Kalman
filter [12, 13], although this distinction is not relevant for thierk.

The (extended) Kalman filter estimates the state of a dis¢iete dynamic system.
At time ¢, the state is described in the state vegtpe IR". The cameras generate an
observatioro; € IR™ from the state. The state change and observation equatiens a

q; = flag;_) +w , oy=h(q,a;)+r (2)

where f(-) € R" is the state transition function arfe(-,-) € IR™ the observation
function, based on the cameras’ projection functiorandr are normal error processes
with zero mean and covariance matrid®sandR.

For active object tracking, the observation function alsntains aractionparame-
tera, € IR!, which combines all influences on the observation process, &8s zoom-
ing, panning, tilting, or translating the camera. For thiwky we focus on zoom plan-
ning as the camera action. The action is perforimeirean observation is made.

Given the noise terms, the state must be estimated eachtemeSpecifically, we
must calculate the state probability distributipfy,|(o):, (a):), given the sequences
of all observationgo); and all actionga); taken up to, and including, time Within
the Kalman filter framework, this distribution is assumedbéoa normal, or Gaussian,
distribution.

We use the following Kalman filter notatiofg, and af are thea priori anda
posterioristate estimate means at timeP; and P are the covariance matrices for



the errors of the priori anda posterioristate estimates. The extended Kalman filter
performs the following steps for each time-step

1. Prediction of the state megf and covariancé; :
@ =f@.) . Py =FP_F'+W 0y

2. Computation of the filter gaik;:

K.=P; H, (a;) (Hi(a)P; H,"(a;) + R)_l (3)

3. State update with the observation
@ = a4, + K (o~ h(@;,a))) , Pf(ar) = (I - KHi(a)P; (4)

F; andH(a.) denote the Jacobians §{-) andh(-, -) atg,”_, andg, respectively,
to account for non-linear functions. Sind#;(a;) depends on the selected action
the a posterioristate covariancP;r does, too. If no valid observation, is made at
timet, the update step cannot be performed @hdP;" are equal taj; , P; .

Since we are interested in obtaining the most informatiauéathe state, we need to
determine the optimal actias; where the uncertainty is lowest. In [8], this is achieved
by finding the action where thentropyof the a posteriori probability distribution
p(q,|(0)+, (a);) is minimal. As this is a normal distributioN (g;", P;"), the entropy
is equal tdog (|Pj|) up to constant terms and factors. These constants can bedno
during optimization. The entropy depends on the covariddgeand therefore om,
butnotono,. This allows to determine; beforemaking an observation.

The problem of visibility in object tracking is also addredsn [8]. An observation
o, containing the position of the object being tracked in eeamera, is only valid if
the object is ineverycamera’s field of view. We refer to any € IR™ lying outside of
the field of view as aon-visible observatianThe probabilityw that the object lies in
the field of view of all cameras can be calculated from the ipted observation for
any actiona; by integrating the probability density of the observatimeicthe camera
sensor. The expected entropy for an action is then the wedgtdmbination of the
entropies for each case of visibility, or for optimizatiomrposes

a; = arggltin (w -log (|Pzr(at)|) +(1—w)-log (|P[|)) (5)

This action selection has been extended to a sequence of futtions in [9]. For
a sequencey is extended to aisibility tree, which is a binary tree in which each
branching represents a visible or non-visible outcome. 8ifteopy for each possible
sequence of visible or non-visible observations is catedland then summed up by
walking up the tree again.

An example of such a tree for two time steps is shown in Fignlhis example,
each node represents one of the two possbfmsterioricovariance matrices. Light
nodes are the predicted result of a visible observatiork, Wades of a non-visible one.
In each time step, the probabilities of visibility or norsiiility are given by thev and
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Fig. 1. The visibility tree for two time steps. The calculation s$aat the top at timeé. The nodes
represent possibla posteriori covariance matrices for subsequent time steps. Light nades
the result of a visible observation, dark nodes of a norblésone. See the text for a deeper
discussion of the visibility tree.

(1—w) terms (note that, # ws). The total expected entropy is the weighted sum of the
four entropies based on the four final covariances. The @wegs are tagged with the
visibility sequence they resulted from. For exam;ﬂé@, is obtained by first assuming

a visible observation{) followed by a non-visible one<). The final expected entropy
for this example is (ignoring constant terms):

wiws log (|P5]) + wi (1 — ws)log (| Pyizl)
+ (1 = wiwslog (P 5]) + (1 — wi)(1 — ws)log (| Prl)

This action selection can also be performed withghguential Kalman filtef12].
The sequential Kalman filter is a sequential evaluation oettf the standard Kalman
filter, in which the sensors are processed in sequence. Ttlsothis equivalent to pro-
viding each sensor with its private Kalman filter and can bedughen the observation
noise for each sensor is uncorrelated. @hmosterioridistribution of one sensor’s filter
is used as tha priori distribution for the next. Fig. 2 gives an overview of the seq+
tial state estimation process. The advantage of the seglLikatman method is that the
visibility is no longer determined by the object being in fledd of view of all cameras;
partially visible observations can also be handled by skipa camera’s filter if the
object is not visible.

The disadvantages are that the sensor noise must be uatedreketween sensors
for the sequential Kalman filter, and that the result may ddp®n the order in which
the sensors are processed. While the traditional Kalman filith linear prediction and
observation models does not depend on the order of the setiserextended Kalman
filter obtains the Jacobiank, and H,(a.) by deriving at the current state estimate.
Since this state estimate is affected by the observationsfirevious sensors, the Jaco-
bians will differ if different sensors are processed befiared. However, this difference
is comparable to the differences encountered in the Jat®bighe non-sequential ex-
tended Kalman filter, where the Taylor expansion is alsoqueréd on the current best
estimate instead of the true state, and is usually ignored.

The sequential Kalman filter is used for multi-step actiolea#on in [10]. Each
camera action is optimized independently by the method]pbf®the assumption that
changing the zoom level in one camera will not influence therination gained in
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Fig. 2. The sequential Kalman filter. Each camera adds its observ&ti the state estimate in
sequence. Tha posterioristate estimate of the last camera is transformed ta firéri estimate
of the first camera on the next time step.

another camera. This sequential multi-step action seledtiill uses the visibility tree
from the original multi-step method. Partial visibilityn(some, but not all cameras) is
handled explicitly during tracking and implicitly in the tiymization process.

However, this gives rise to another problem. During thecactilanning step, the
predicted uncertainty is calculated by the contributioa efngle camera, disregarding
the others. In the Kalman filter's update step (equationsa(®) (4)), P, is derived
from P, using only the observation function of this single camefaisTeads to an
overestimation of tha posterioricovariance in the planning phase, which results in an
overly cautious action planning. This omission can be fiectby including the effects
of the other cameras aR;". However, to avoid another visibility dependency and keep
the visibility tree small, these other cameras must follaticans which are assumed to
guarantee an observation, which still overestimates thar@nce during planning.

3 Linearization of the visibility tree

For the multi-step multi-camera sequential Kalman filtsrsaen in Fig. 3, the output
of each individual filter during tracking (such as the onekedrin the figure) becomes
the input of the next one. This output is the probability dgnaf the state estimate at
this time, with the observation of this camera embeddedvifas visible, and skipped
if it was not. For view planning, this means that each indmatfilter hastwo possible
outputs which need to be considered, with covariance nestit;” and P, since the
expected state mean is the same in both cases.

The previous methods have handled these with a visibilég,tas detailed in the
last section. Spanning a visibility tree for the full seqtigrfilter is prohibitive, since
the size of the tree is exponential in the number of camerdgiare steps. The so-
lution which uses the sequential Kalman filter reduces tbimmexity somewhat by
optimizing actions for each camera separately. Howeveryisibility tree size is still
exponential in the number of time steps, and the expecteariance is overestimated,
as mentioned previously.

The visibility tree can be flattened by closely looking at tive probability distri-
butions that can result in one time step. The two resultistridutions are Gaussian
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Fig. 3. The sequential Kalman filter during multi-step evaluati®he output of one individual
filter becomes the input of the next filter in the same time siethe first filter in the next time
step (after the state transformation, not shown here). @kbat circle marks one individual filter.

distributions and differ only in their covariance;" and P; , but not in their means,
as the expected mean does not depend on the visibility inigieplanning step. Since
we know the probabilityw € [0, 1] that one of these two distributions will be the actual
output, we can consider them to be two components of a mixiistebution M,

M=w-N@G , PH)+ (1 —w) NG, P;), (6)

which describes the expected distribution of the state piforming actioru;. Since
this is an unimodal distribution, we can approximate it byeavrisaussian distribution
with the same covariance. As known in statistics, the cavae matrix ofM is:

P} =w-Pf+(1-w) P, (7)

Therefore, our approximating Gaussian is of the fovitg,”, PS).

This distribution can now be used as an estimate of the regudtate probabil-
ity distribution after visibility is considered. Note thtite Gaussian distribution is an
approximation of the mixture distribution, with same meawdl @ovariance, but with
different density functions.

The benefits of this approach are obvious. Since each indiVifilter in a multi-
step multi-camera now only results in a single output distionduring view planning
as wel| the effects of an action can now be calculated in linear fimte number of
cameras times the number of time steps. This can be seen 8, Migich is now equally
valid for the view planning process. Since the actions atamoped for all cameras at
the same time, this approach also fully handles dependgimcibe actions of different
cameras, unlike the previous sequential method which usegarate optimization.

Although the entropy of the final expected distribution,dshenlog (| P;, ), dif-
fers from the actual expected entropy, ehaviorof the system is close enough such
that the optimal action can be searched for. This can be setbe hext section, where
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Fig. 4. The views of the test setup from all three cameras at the same The colored bottle is
tracked as it turns on the turntable. The calibration paiteused to initially calibrate all cameras,
it is not used during tracking.

several approaches are compared on the same data. Thecwghsvisible when com-
paring the original single-step approach to the one basd@,op: both approaches are
very similar when no visibility problems are encountered.

4 Experiments

We test our new method on a recorded video sequence, shovign ih. Fhree cameras
take a high-resolution image of the scene, consisting obggcbmoved by a turntable.
The cameras are calibrated to a global coordinate systelmtiétcalibration pattern,
which is not used for the tracking process. The object ikedavith a color histogram
tracker [14].

The prerecorded images allow several view planning methmti® compared on
the same data. However, this precludes the effect of the rgapo®m on these images,
unless we simulate this zoom on the original images. Theér@igmages are 640 by
480 pixels, but the tracking process uses images of size 32010 pixels. To obtain
this size reduction, and simulate the camera zoom, we sodlerap the original image
by an amount which depends on the associated zoom level. Withgmoomed in, the
transformation only crops a 320 by 240 pixel image from theteeof the original.
As the zoom level decreases, the cropped region becomes kang is subsequently
scaled to the correct size. When fully zoomed out, the oaigimages are only scaled,
no cropping occurs. Using such a reduced image size endwagseten when fully
zoomed in, no upsampling artifacts occur.

The advantages of multi-step view planning have been éetail [9] and [10]; no
detailed comparison to single-step planning will be made hafe will focus primarily
on a direct comparison between the previous planning meftfodection 2), which
used separate optimization, and the newly proposed onsgtion 3).

We test both systems on the same data, as detailed abovepacing system
recommends the next view for the tracking system in the fora et of actions. The
optimal action set is planned with the global optimizatieahnique of Adaptive Ran-
dom Search [15], evaluating a total of 400 separate actiqnesees per time frame.
Each action sequence contains the next actions for eactradoneéhe next time steps.
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Fig. 5. The entropy asog (| P;|) with three cameras plotted for image numheBhown are the
plots for no planning, planning 4 steps ahead using the olikpendently optimizing method,
and the new proposed method.

In our experiments, we planned one to four steps ahead witio tiree cameras, so
each action sequence contains up to 12 separate zoom setting

Fig. 5 shows the entropy of the object position during thelirsg process by mea-
suringlog (| P;|). Note thatP;" is the result of the actual tracking phase, and not a re-
sult from the view planning. However, the view planning iefices the tracking results
both positively (by providing zoomed in views, reducing #@ropy) and negatively
(by zooming in too far, causing object loss and raising thieogry). This experiment
uses three cameras. The plots show the results for unplaraskihg, planning 4 steps
with the independent optimization, and 4 steps with the nethiod.

Both planning methods result in an uncertainty, measuretidgntropy, which is
lower than when no zoom planning is used. But it can clearlgd®n that the orig-
inal approach with separate optimization still results inigher uncertainty than the
new approach. Since the expectedosterioricovariance is overestimated, the actions
planned by this system are not as aggressive as those tattuldh the new system.
The new system plans views which are zoomed further in, Wloieirs the entropy, in
many cases by quite a large amount. Only in a few cases (hegeimumbers 72 and
142) do these zoom levels prove overconfident, resultindiamtobject losses and a
higher entropy than the original approach.

Fig. 6 compares the new multi-step approach, looking 4 tieyessinto the future, to
the single step approach. The experiments are the same i@s $ Both plots are very
similar, showing that the behaviour of the view planningigghe combined covariance
P;_,. is very close to the original behaviour, if at times slighifprse due to the more
cautious approach of multi-step planning. The most notdbfferences occur around
image numbers 101 and 153 in the right half of the plot. Theatsgtarts moving out of
the field of view of one or even several cameras. The singfe@snning is caught off
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Fig. 6. The entropy akg (|Pt+|) with three cameras plotted for image numheFhe single-step
planning method and the new proposed multi-step method fionelsteps are compared.

Table 1. Computation time. Shown are the average computation timesvaluating a single
action sequence for one to four time steps, two and three reameith the old and the new
method. All times in ms.

Time steps planned old method new method
two cameralthree cameratvo cameraghree cameras
1 step 0.115 0.173 0.095 0.124
2 steps 0.390 0.597 0.163 0.224
3 steps 0.945 1.457 0.247 0.333
4 steps 2.055 3.022 0.293 0.431

guard by this, resulting in object loss and large spikeseénuhicertainty. The multi-step
approach is able to predict the object loss better and atoéte spikes.

Another important aspect is the comparison of running timfié® running times
per frame for several different cases are given in table e uwat while the original
algorithm required exponential time per frame (yet wasdiria the number of cameras
due to the independent treatment), the new approach is #heat in the number of
time steps as well. All times are in milliseconds on a Pentidmprocessor at 2.66 GHz.

5 Conclusion

We have presented a new approach for multi-step multi-camiew planning for object

tracking, based on the method of entropy minimization. Hgproach runs in linear
time in the number of cameras and time steps. It can incopaicion costs through
the evaluation of several time steps into the future. It sat¥e of handling a variable
number of cameras, partial visibility, and interdependeincthe camera actions. The



general nature of this approach allows it to be applied todewariety of active state
estimation problems outside of visual object tracking.

Additional work will focus on expanding the action space lspallow camera pan
and tilt motions. Another topic is the combination of vievaphing for tracking with
view planning for other tasks, such as object reconstraoaticobject recognition.
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