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Abstract— Fluorescence microscopy is a key technology for
the development of new agents in the area of pharmaceutic
biotechnology and an important element of computer aided
diagnosis and prognosis of tumor cells. A critical component of
automatic image analysis methods for cell screening applications
is cell segmentation. That is, in order to determine any specific
cell features, the individual cells have to be segmented from
each other and the background. We propose an approach called
’maximum-intensity-linking’ for the segmentation of fluorescence
stained cells that is related to classic watershed methods. It
is simple, robust and general enough to be easily adapted to
changing segmentation requirements.

I. INTRODUCTION

The microscopic image acquisition of fluorescence stained
cells under UV-light is a key technology for the development
and evaluation of new agents in the area of pharmaceutical
biotechnology. Furthermore, it is an important element in the
context of new diagnostic methods for the early diagnosis and
prognosis of tumors, since fluorescence microscopy enables
the exact detection and localization of proteins as well as
the visualization of intra-cellular procedures. Today there is
a high demand for fast evaluation methods which allow the
determination of the expression profile of individual cells.
A similar demand exists in the area of early diagnosis and
prognosis of tumor cells using fluorescence markers. In order
to determine any specific cell features such as size, area,
circumference or mean intensity, all individual cells have to
be separated (segmented) from each other and the background
in a first step.

For the automatic segmentation of cells in micrographs,
many well-understood methods have been developed in the
past 30 years, cf. Sec. II. Nevertheless, as a required prereq-
uisite most of these methods assume distinct borders between
the cells and the image background as well as between
neighbouring cells. In contrast to pure morphological stainings
as the Papanicolaous stain or the MGG stain which enhance
morphological cell structures (plasma or nucleus), this is
not the case with fluorescence stainings, where such good-
natured preconditions cannot be found. Thus, fast and robust
segmentation of irregular shaped and bad-bordered cells in
fluorescence micrographs is still an open challenge. Hence, in
this work we propose an approach called ’maximum-intensity-
linking’ for the segmentation of fluorescence stained cells. Our
approach is simple, robust and general enough to be easily
adapted to changing segmentation requirements.

This work is organized as follows: In Sec. II, a short
summary of the state of the art will be given, whereas in
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Sec. III our new method will be described in detail. Sec. IV
describes experiments and results yielded by this method,
which will be summarized and discussed in Sec. V.

II. STATE OF THE ART

Many different approaches addressing the problem of cell
segmentation from microscopy images have been published
in the past 30 years. Most of these works concentrate on
the segmentation of morphological structures such as the cell
nuclei [1], [2] or the complete cell (nucleus and plasm) [3].

Anoraganingrum et al. [4] apply region growing and adap-
tive segmentation methods to cell localization and segmenta-
tion. Wu [5] et al. apply a two-step method for coarse and fine
segmentation using hierarchical thresholding. Pham et al. [6]
apply Otsu’s well known thresholding method and adaptive
fuzzy c-means clustering to fluorescence microscopy image
segmentation. Alternatively, watershed algorithms [7], [8], [9]
have been tested by several working groups for cell detection
and segmentation of cell plasmas and nuclei, as well as active
contours for the segmentation of nuclei [10]. Our approach is
conceptually related to these classic watershed approaches.

One of the most promising approaches to the separation
of neighbouring cells is mathematical morphology. A recent
example for this methods is the work by Metzler et al.
[11], who make efficient use of a morphological multi-scale
approach to separate touching cells in binarized images.

Fernandez et al. [1] and Jarkrans [2] both try to detect and
separate directly neighbouring cell nuclei. Fernandez et al.
propose the detection of dominant or concave points on the
binary contour of the region as points where a splitting of the
nuclei might be possible. In contrast, Jarkrans uses a contour
analysis based on a smoothed chain code, which reflects the
curvature of the nucleus contour.

Wählby [8] recently proposed a multi-step algorithm for the
segmentation of cells in fluorescence images. After an initial
segmentation using a watershed algorithm, small regions are
either merged or deleted. This method is able to split cell
aggregates into cell-like regions, but does not separate or treat
any overlaps between these cells.

Nattkemper et al. [12] use a neural network approach for the
segmentation of fluorescence lymphocyte cells in tonsil tissue.
However, their approach is specialized to a certain fluorescence
microscopy technique which emphasises the cell contours.

III. METHOD

The algorithm can be divided into three steps. A prepro-
cessing step smoothes the fluorescence microscopy image and
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separates the foreground (cells) from the background. After-
wards individual cells are segmented from each other using
our novel region segmentation algorithm called ’maximum-
intensity-linking’. Finally, oversegmentations (i.e. cells which
are spuriously split into multiple regions) are automatically
merged in a postprocessing step.

A. Preprocessing

The intensity of a pixel in fluorescence microscopy im-
ages is proportional to the amount of fluorescence marker
that is present at the corresponding location in the observed
specimen. Even if there is no fluorescence marker at a
certain location, the corresponding pixel will not be totally
black because of scattered light and sensor noise. Hence the
foreground (cells) needs to be separated from the irrelevant
background before individual cells can be separated from
each other. We use a thresholding operation and determine
the threshold automatically based on a black-image acquired
using the same acquisit (aperture, exposure time, etc.) that
will be used for processing specimens later on. As our region
segmentation algorithm performs best on smooth images, we
apply a Gaussian low-pass filter to the thresholded image in a
second preprocessing step.

B. Maximum-Intensity-Linking

Maximum-intensity-linking is based on the idea to represent
an image as a directed graph structure. In this graph structure
each pixel is a node that is linked to the pixel in its immediate
(8-connected) neighbourhood with the largest intensity value,
larger than the intensity of the pixel itself. Pixels that do not
have neighbours larger than themselves do not link to anything.
The resulting directed graph is a set of trees, which have local
maxima as their roots. Once this graph structure is established
the algorithm assigns a region-id to each separate tree. This
approach results in one region for each local maximum. Hence
noise in the form of local peaks leads to oversegmented results,
which is the reason for the Gaussian smoothing step. Fig. 1
shows a zoomed detail of a typical fluorescence microscopy
image of L929 fibroblasts. A visualization of the maximum-
linkage directions for this image is shown in Fig. 2.

It becomes apparent why this algorithm is well suited for
segmenting the rather blurry images resulting from fluores-
cence microscopy by examining the intrinsic meaning of link-
ing each pixel to its largest neighbour (maximum-linkage). The
vector from one pixel to its maximum neighbour is, especially
after the presmoothing step, a rough discrete approximation
of the local image gradient. Therefore, the algorithm traces
the gradient until it reaches a local maximum. This discrete
approximation has the advantage that it is predictable and
deterministic which allows to build a well defined graph
structure on top of it.

Regarding maximum-linkage as an approximation of the
gradient also explains how the region boundaries are formed.
The region boundaries are strongly related to the zero cross-
ings of the (approximated) image gradient. The advantage is
that there is no need to generate closed areas based on these
zero crossings as region boundaries, as it would be necessary

Fig. 1. A zoomed detail of a typical low contrast fluorescence microscopy
image, of L929 fibroblasts.

Fig. 2. An intensity-value coded visualization of the maximum-linkage
directions for the fluorescence microscopy image shown in Fig. 1.

if the algorithm worked explicitly with the extraction of the
gradients zero crossings for segmentation.

In practice it is not necessary to explicitly build up the
complete graph structure, since the labeling can be done on
the fly during the build process. In detail, the region linking
algorithm works as follows: Regions are defined by unique
identifiers which are assigned to each pixel of the image. For
each pixel of the input image, a path of linked pixels along
the tree is found by recursively stepping in the direction of
the largest local neighbour:

• If a pixel encountered on the path does not have an
identifier yet and is not a local maximum, it is stored
in a list for later reference and the path is followed by
advancing in the maximum-linkage direction.

• If a pixel that is encountered on the path does not
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Fig. 3. Segmented regions of the fluorescence microscopy image shown in
Fig. 1 for different standard deviations (σ = 4.0 on the top and σ = 6.0 on
the bottom) of the Gaussian filter. Strong filtering results in less local intensity
maxima which ultimately results in less oversegmentation.

have an identifier yet and is a local maximum, a new
unique identifier is initialized and assigned to all pixels
encountered on the path so far, thereby defining a new
region.

• If a pixel that already has an identifier is encountered
during this operation, an already processed subtree has
been found. Hence, there is no need to follow the path all
the way up to the root of the tree. Instead, all pixels on the
path so far are assigned the identifier of the encountered
tree, therefore making this path part of the encountered
tree and its region.

Using this simple algorithm, an image can be segmented
into regions in linear time. The number of regions that are
found depends on the number of local intensity maxima, which
in turn depends on how strong the input image was smoothed
by Gaussian filtering in the preprocessing step. Fig. 3 shows
the resulting regions for varying standard deviations of the
Gaussian filter. In practice, we use rather light smoothing.

Fig. 4. Due to the discrete pixel representation of images, a boundary (gray)
between two regions consists of horizontal and vertical steps (left). Maximum-
linkage can be represented as normalized direction vectors. The x- and y-axis
components of the direction vectors read as shown on the left and on the right
respectively.

C. Postprocessing

Region segmentation using maximum-intensity-linking usu-
ally results in slightly oversegmented images. In practice we
have found that approximately 15% of the cells in an image
are oversegmented on average. However, this problem can be
automatically fixed by merging regions based on a criterion
derived from the maximum-linkage directions of pixels on
the boundary of two regions. If these directions are explicitly
written as normalized vectors, the x- and y-axis components
of these vectors are defined as shown in Fig. 4.

Due to the discrete pixel representation of images, a bound-
ary between two regions consists of horizontal and vertical
steps. Considering a single horizontal boundary step and the
direction vectors l and r of the pixels left and right of
the boundary step respectively, we define the weight of the
horizontal step as (lx − rx)2/4. Equivalently the weight of
a vertical boundary step is defined considering the direction
vectors t and b of the pixels on top and below the boundary
step respectively as (ty − by)

2/4. If the average of these
weights along a boundary between two regions is higher than a
threshold (we usually use 0.1), the two regions are considered
as an oversegmentation of a single cell and are merged. Fig. 5
shows region boundaries and the intensity coded weights. Both
regions which represent an oversegmentation of a single cell
and thus should be merged and also regions which represent
different cells and therefore should not be merged are shown.
In a few cases this criterion is not sufficient and regions
which do not represent an oversegmentation of a single cell
are merged. We compensate this problem using a heuristic to
assure that two large regions which are connected by a very
short boundary are never merged. In more detail, we do not
merge regions if the length of their common boundary is less
than 10% of the length of each of their individual boundaries.

IV. EXPERIMENTS AND RESULTS

We have evaluated our region segmentation algorithm on
62 fluorescence microscopy images acquired using different
acquisition parameters and using different types of specimens
(amongst others L929 fibroblasts and HeLa cells). The images
have a resolution of 1376× 1032 pixels and contain 150 cells
on average. On a 3Ghz Pentium 4 machine, the processing
time is approximately half a second per image. Most of the
images are difficult to segment because of low contrast, noise
and touching as well as overlapping cells. A manual annotation
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Fig. 5. In a zoomed detail (left) of a segmentation result the weights of
the boundary steps for boundaries between each two regions are displayed
using intensity encoding. High boundary weights are represented by light,
low weights by dark colors. Based on the averaged weights of the boundaries
between each two regions, oversegmented regions are automatically merged
and valid boundaries are kept (right).

Fig. 6. Many of the images used for evaluation have low contrast and contain
cell clusters with poor cell boundaries (left). A semiautomatic (livewire)
segmentation done by an expert is a poor reference for the exact cell
boundaries (middle) and hence is not used for the evaluation of the boundaries
resulting from our automatic segmentation (right).

of the images done by an expert suggests that there are a
total of 9387 individual cells. Our automatic segmentation
algorithm correctly identifies 9185 individual cells which is
equivalent to 97, 8%. The 202 errors result from 42 over-
and 160 undersegmentations, which is equivalent to 0, 5% and
1, 7% respectively. These numbers suggest that our algorithm
tends to under- more often than to over-segmentations. Hence,
we plan to add an additional heuristic to solve some of the
under-segmentations in the future. The standard deviations of
the number of over- and undersegmentation errors across all
images are σ = 2, 6 and σ = 0, 7 respectively. This indicates
the robustness of our approach to different acquisition param-
eters and specimens.

Besides the correct number of cells, we are also interested in
the quality of the cell borders that are found by our algorithm.
However, many of the cells in the evaluation images are irreg-
ular shaped and bad-bordered. While the manual segmentation
results, which are used for the evaluation, are very exact with
respect to the number and location of individual cells, they
are not suitable for a qualitative evaluation of the cell borders
due to the hard to decide exact cell boundaries (see Fig. 6).
We believe that a meaningful evaluation of the segmented
cell boundaries is not possible if manually-segmented data
is used as a reference. Therefore we plan to use simulated
images based on a parametric model like the one proposed by
Lehmussola et al. [13] to generate exact reference data in the
future.

V. CONCLUSION

We have proposed a novel algorithm for the segmentation
of cells in fluorescence microscopy images. The algorithm
is based on a concept we call ’maximum-intensity-linking’,
closely related to classic watershed methods. The algorithm is
both simple and fast. All steps have linear time complexity. In
contrast to related watershed methods it is less complex and
the postprocessing step for merging of oversegmented regions
is based on an objective metric induced by the main algorithm.
The evaluation of a large number of images acquired using
different acquisition parameters and different types of spec-
imens proves the accuracy and robustness of our approach.
Our approach is general enough to be easily adapted to
changing segmentation requirements and is already employed
in a prototype system which automatically determines the
reaction kinetics and the expression profile of individual cells
in fluorescence microscopy specimens.
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