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Abstract
Tracheoesophageal (TE) speech is a possibility to restore the
ability to speak after laryngectomy, i.e. after the removal of the
larynx. TE speech often shows low audibility and intelligibility
which makes it a challenge for the patients to communicate. In
speech rehabilitation the patient’s voice quality has to be evalu-
ated. As no objective classification means exists until now and
an automation of this procedure is desirable, we performed ini-
tial experiments for automatic evaluation using prosodic fea-
tures. Our reference were scoring results for several evaluation
criteria for TE speech from five experienced raters. Correlation
coefficients of up to 0.84 between human and automatic rating
are promising for future work.

1. Introduction
The removal of the larynx (the laryngectomy) is an operation
which is mostly necessary in severe cases of cancer of the lar-
ynx. This means that the patient’s voice and thus his or her
main means of communication is basically destroyed. Although
there were several attempts for voice restoration before, the de-
velopment of the shunt valves (or “voice prostheses”) by Singer
and Blom [1] might have been the most important step in voice
restoration surgery. This paper focuses on the automatic evalu-
ation of tracheoesophageal (TE) substitute voices which can be
established by a shunt valve.

In tracheoesophageal speech, the upper esophagus, the
pharyngoesophageal (PE) segment, serves as a sound generator
(see Fig. 1). The air stream from the lungs is deviated into the
esophagus during expiration via a shunt between the trachea and
the esophagus. In order to force the air to take its way through
the shunt into the esophagus and allow voicing, the patient usu-
ally closes the tracheostoma, which is the upper end of the tra-
chea, with a finger. Tissue vibrations of the PE segment modu-
late the streaming air and generate a substitute voice signal. In
comparison to normal voices the quality of substitute voices is
“low” [2, 3]. The change of pitch and volume is limited which
causes monotone voice. Inter-cycle frequency perturbations let
the voice sound hoarse [4]. This causes reduced ability of into-
nation or voiced-voiceless distinction [5, 6]. Another source of
distortion is the incomplete closure of the tracheostoma. If the
patient is not able to do this properly, loud “whistling” noises
causes by eluding air may occur.

In speech therapy and rehabilitation a patient’s voice has
to be evaluated. An automatically computed, objective measure
would be a very helpful support for this task. In our work we ex-
amine how well TE speech is processed by a speech recognition
system, how the recognizer can be adapted to TE voices [7] and

whether the results can be used for evaluating the quality of a
TE voice automatically, i.e. whether they correlate with experts’
ratings on criteria like “intelligibility” [8].

In this paper we present initial results on the use of prosodic
features in order to quantify the properties of TE voices. In
the VERBMOBIL project we developed prosodic features for the
use of prosodic phenomena during the linguistic analysis [9].
The “prosody module” originating from this project was now
applied to pathologic voices for the first time.

This paper is organized as follows: In Section 2 the test
data and the human evaluation criteria are introduced. Sec-
tion 3 gives an overview of the prosodic features used for the
experiments. Section 4 shows which features were found to be
suitable for distinguishing normal and TE voices and which of
them correlate with the human ratings. Finally Section 5 gives
a short outlook to future work.

2. Test data
The test files were recorded from 18 male laryngectomees
(denoted as group laryng18) with tracheoesophageal substi-
tute speech. Their average age was 64.2 years (standard dev.
8.3 years). They had undergone total laryngectomy because of
laryngeal or hypopharyngeal cancer at least one year prior to the
investigation and were provided with a Provox R© shunt valve.
Each person read the story of “North Wind and Sun”, a pho-
netically rich text with 108 words (71 disjunctive) often used
in speech therapy in German-speaking countries. The duration
of all 18 audio files together was 21 minutes, the test persons
spoke 1980 words. In addition to the words of the text 32 differ-
ent additional words were produced as reading errors. The data
are close-talking speech, quantized with 16 bit at 16 kHz sam-
pling frequency. Five experienced phoniatricians and speech
scientists evaluated the voices of the 18 test persons on crite-
ria such as roughness (“rough”)1, match of breath and sense
units (“breath-sense”), distortions by insufficient occlusion of
tracheostoma (“noise”), speech effort (“effort”) and intelligi-
bility (“intell”). The scores given by the experts were repre-
sented by integer numbers between 1 (“very high/good”) and 5
(“very low/bad”), i.e. a Likert scale [10].
The second speaker group consisted of 18 healthy men (“control
group men”, kom18) forming an age-matched group with re-
spect to the tracheoesophageal speakers. On average they were
65.4 years (± 7.6 years) old. The 18 recordings of the “North
Wind and Sun” text from this group contained 1964 words with
a total duration of 15 minutes.

1In medical sciences a harsh voice is often called “rough”, therefore
we follow this convention.
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Figure 1: Anatomy of a person with intact larynx (left), anatomy after total laryngectomy (middle), and the substitute voice (right)
caused by vibration of the pharyngoesophageal segment (pictures from [11])

3. Prosodic features
The prosody module takes the output of our word recogni-
tion module in addition to the speech signal as input. In this
case the time-alignment of the recognizer and the information
about the underlying phoneme classes (like long vowel) can be
used by the prosody module. The speech recognizer uses semi-
continuous Hidden Markov Models (HMM), monophone mod-
els and 24 MFCC-based features per 16 ms frame at a frame
shift rate of 10 ms. For details please refer to [12] or [7]. The
vocabulary of the recognizer for the generation of the word
hypotheses graphs (WHGs) consisted of the 71 words of the
“North Wind and Sun” text only.
A fixed reference point has to be chosen for the computation
of the prosodic features. We decided in favor of the end of a
word because the word is a well–defined unit in word recog-
nition, it can be provided by any standard word recognizer, and
because this point can be more easily defined than, for example,
the middle of the syllable nucleus in word accent position. For
each reference point we extract 95 prosodic features over inter-
vals of different sizes: The current word, i.e. after which the
reference point is set, gets the number 0. The interval contain-
ing only this word is denoted by “0,0”. The interval containing
the two words before word 0 is called “-2,-1”, because it begins
at word -2 and ends at the end of word -1. In the same way
the words after the reference point get positive numbers. The
interval code is added to the name of the feature. So the fea-
ture En:Max1,2 denotes the maximum energy value in the two
words after the reference point. Table 1 shows the 28 different
features and the contexts over which they are calculated for a to-
tal of 95 prosodic features. The abbreviations can be explained
as follows:

• duration features ‘Dur’: absolute (Abs) and normal-
ized (Norm); the normalization is described in [9]; the
global value DurTauLoc is used to scale the mean dura-
tion values; AbsSyl is the absolute duration divided by
the number of syllables and represents another sort of
normalization;

• energy features ‘En’: regression coefficient (RegCoeff)
and mean square error (MseReg) of the energy curve
w.r.t. the regression curve; mean (Mean), maximum
(Max) with its position on the time axis (MaxPos), ab-
solute (Abs) and normalized (Norm) values; for the nor-
malization see [9]; the global value EnTauLoc is used to

scale the mean energy;

• F0 features ‘F0 ’: regression coefficient (RegCoeff) and
the mean square error (MseReg) of the F0 curve w.r.t. the
regression curve; mean (Mean), maximum (Max), mini-
mum (Min), onset (On), and offset (Off) values as well as
the position of Max (MaxPos), Min (MinPos), On (On-
Pos), and Off (OffPos) on the time axis; all F0 values
are not stored as absolute values, but as their logarithm,
normalized as to the mean value F0MeanG;

• length of pauses ‘Pause’: length of silent pause before
(Pause–before) and after (Pause–after) and filled pause
before (PauseFill–before) and after (PauseFill–after) the
respective word in context.

Fig. 2 shows examples of the F0 features. It is obvious
that there is a strong correlation between some of the 95 fea-
tures, e.g., between Dur:Norm for context 0,0 and for context
-1,0. In our previous work on the use of prosodic information
for linguistic analysis (for instance for finding phrase bound-
aries) the neural net classifiers were trained with some 13,000
events. Therefore we decided to be as exhaustive as possible
and use a large feature vector. Our experiments showed that it
was always the best to use all features if there are enough train-
ing data available [13]. A full description of the features used
is beyond the scope of this paper; details and further references
are given in [9]. The features proved to be effective for linguis-
tic and emotion analysis (see [14]), so we expected them to be
sufficient for the analysis of the rating criteria used in this study.

Besides the 95 local features per word, 15 global features
were computed per utterance from jitter, shimmer and the num-
ber of voiced/unvoiced (V/UV) decisions. They cover each of
mean and standard deviation for jitter and shimmer, the number,
length and maximum length each for voiced and unvoiced sec-
tions, the ratio of the numbers of voiced and unvoiced sections,
the ratio of length of voiced sections to the length of the signal
and the same for unvoiced sections. The last global feature is
the standard deviation of the fundamental frequency F0.

4. Experiments and results
In our experiments we addressed two related questions. The
first one was to find features that can separate normal voices
from pathologic voices, in our case TE voices. The second one
was to find features that correlate with the human rating criteria



features context size
-2 -1 0 1 2

DurTauLoc; EnTauLoc; F0MeanG •
Dur: Abs, Norm, AbsSyl • • •
En: RegCoeff, MseReg, Mean, • • •

Max, MaxPos, Abs, Norm • • •
F0: RegCoeff, MseReg, Mean, • • •

Max, MaxPos, Min, MinPos • • •
Pause–before, PauseFill–before • •
F0: Off, OffPos • •
Pause–after, PauseFill–after • •
F0: On, OnPos • •
Dur: Abs, Norm, AbsSyl • •
En: RegCoeff, MseReg, Mean, • •

Abs, Norm • •
F0: RegCoeff, MseReg • •
Dur: Norm •
En: RegCoeff, MseReg •
F0: RegCoeff, MseReg •

Table 1: 95 local prosodic features and their context [9]
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Figure 2: Computation of prosodic features within one word
(after [15])

mentioned in Section 2.

4.1. Prosodic features on TE and laryngeal speakers

In the following the prosodic features of tracheoesophageal
speakers (the laryng18 group) and laryngeal speakers (the
kom18 group) are compared. Each one of the features com-
puted per word or per file was reduced to its mean value for
each speaker group to do a quick elimination of all features
which will probably not be suitable for the distinction between
laryngeal and TE speakers. Of course this is a rough reduction
that does not take into account the trajectory of the features over
time.
Table 2 contains the prosodic features that were on average
most significantly different for both speaker groups. Due to
the redundancy in different feature intervals mentioned above,
for each feature only the interval with the largest difference
between the speaker groups is presented. As expected, the
average of the pause duration before the current word Pause-
before0,0 is much higher for TE speakers than for normal
speakers (31 frames vs. 14 frames). The normalized word du-
ration Dur:Norm-1,0 is about four times as high for laryng18

feature name µlaryng18 µkom18
µlaryng18
µkom18

Pause-before0,0 31.20 14.06 2.22
En:RegCoeff0,0 -12.90 -5.64 2.29
En:Norm-2,-1 -0.29 -0.55 0.52
Dur:Norm-1,0 0.94 0.23 4.04
F0:Max0,0 0.33 0.15 2.27
F0:Min0,0 -0.37 -0.14 2.67
F0:OnPos1,1 32.01 17.77 1.80
Number UV Sections 1.71 0.74 2.30
Length UV Sections 8.43 4.04 2.09
Max Length UV Section 6.01 3.36 1.79
StandardDeviation F0 0.40 0.15 2.73

Table 2: Selection of prosodic features with significant differ-
ences between laryngeal and TE speakers; the single values
are averaged on all words of all speakers. Some values have
been transformed by normalization and/or a logarithmic func-
tion (cmp. the feature description in Section 3).

in comparison to kom18, as it does not only take into account
two words, but also the pause between them. Very important
are also the different F0 measures and the global information
on number and duration of unvoiced sections. The last column
of Table 2 shows which features have a remarkably higher or
lower mean for the substitute voices than for the normal voices.
For those the quotient is clearly different from 1.
The F0 features are suffering from the fact that it is very hard
to find a periodic signal in TE speech at all. The “F0” values
themselves were not very helpful in this study. Nevertheless
the binary decision whether a section is voiced or unvoiced and
the number and duration of such sections is still useful for the
comparison to normal voices, as the results show.

4.2. Prosody features in correlation with human rating

Finding the prosodic features that correlate to rating criteria of
the human raters introduced in Section 2 is a statistical problem
due to the high number of measures. If a recorded paragraph
contains 108 words, like the “North Wind and Sun” text read by
the test persons of this study, then this means that per recording
95 · 108 + 15 = 10275 features are computed. They have to be
compared to one single Likert value per rating criterion given
by a human rater. For the initial experiments described here a
rather simple method was applied to quickly exclude the fea-
ture/score pairs probably least useful for automatic speech eval-
uation: First all 108 values for each single local feature in a file
were averaged. This was done for the 18 signals of the laryng18
speaker group. Then the correlation between these mean values
and the rating criteria was computed. The reference score for a
criterion from the entire group of 5 raters was also achieved by
averaging the Likert values of the single raters (cmp. [7]).
Table 3 shows a clear correlation between the criterion “match
of breath and sense units” (breath-sense) and some pause and
duration features. A very good indicator with a correlation of
r = 0.84 is the voice onset position in the word after the refer-
ence point F0:OnPos1,1. It is very likely caused by artefacts of
the word recognition process. Many filled pauses with breathing
noise are classified as initial unvoiced sections of the “follow-
ing” word and thus result in a high onset position value. The
speech effort is also well-indicated by duration values. It is in-
tuitive that tracheostoma noise is reflected by energy measures



feature name criterion and correlation
Pause-after0,0 effort -0.71; breath-sense +0.79
En:Norm-2,-1 noise -0.76
En:Abs-2,-1 rough -0.74
Dur:Norm-2,-1 breath-sense +0.71; noise -0.71
Dur:AbsSyl-2,-1 effort -0.75; breath-sense +0.81
F0:OnPos1,1 effort -0.75; breath-sense +0.84

Table 3: Correlation between selected prosodic features and
human ratings for TE speakers; the correlation was measured
using the mean value of all words per file. Presented are criteria
with a correlation of |r| ≥ 0.7.

as it is an additive distortion on the speech signal. This also ba-
sically holds for roughness. However, a more detailed look at
their trajectory in the recording should give more information
than a mean value that was computed from voiced and unvoiced
sections together. The connection between Dur:Norm-2,-1 and
the noise criterion might have its reason in a lower speaking rate
when a lot of air is getting lost through the tracheostoma.

The low number of sound files evaluated and the Likert
scheme with only 5 values to choose raised the question whether
the high correlation measured for several features occurred just
by coincidence. Therefore the experiment was repeated twice
on all the features with |r| ≥ 0.7. In the first case the file
with the experts’ original ratings was replaced by random Lik-
ert numbers between 1 and 5. The average absolute correlation
of the prosodic features to these random scores was 0.22 while
it was 0.74 for the raters’ judgments. In the second case the
original ratings were replaced by a score of 3 for each crite-
rion in order to simulate undecided raters. It is a known char-
acteristic of Likert scales that the use of extreme scales, here
1 or 5, is reduced. The average absolute correlation for these
data was 0.20. Those results confirm that the correlation values
measured on the original data reveal a real connection between
human ratings and machine-computed features and that the high
correlation is not just caused by coincidence.

5. Conclusions and outlook
The results show that it is not only possible to distinguish nor-
mal and pathologic voices by prosodic features, but the features
can also serve as automatic measures for several evaluation cri-
teria. The correlation between human raters and the prosody
module is very encouraging for further work. As the main goal
of our project is to allow evaluation of substitute voices via tele-
phone, we are currently collecting telephone speech data from
laryngectomees. We will examine whether the results described
for close-talking speech in this paper also hold for the new
database. More work has to be done on the reduction of di-
mension of the prosodic feature vectors. The simple averaging
must be replaced by statistical regression methods in order to
keep the loss of information as small as possible.

In future work out-of-vocabulary (OOV) errors during cre-
ation of the word hypotheses graphs need a special treatment, as
the vocabulary of the speech recognizer knows only the words
of the reference text. Unknown words in the utterance result in
alignment errors. By using confidence measures and language
models the sections with reading errors can be detected in the
recording. Then the remaining parts of the file will be used for
the computation of the prosodic features only.
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