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Abstract. The Sammon Transform performs data projections in a topol-
ogy-preserving manner on the basis of an arbitrary distance measure.
We use the weights of the observation probabilities of semi-continuous
HMMs that were adapted to the current speaker as input. Experiments
on laryngectomized speakers with tracheoesophageal substitute voice,
hoarse, and normal speakers show encouraging results. Different speaker
groups are separated in 2-D space, and the projection of a new speaker
into the Sammon map allows prediction of his or her kind of voice pathol-
ogy. The method can thus be used as an objective, automated support
for the evaluation of voice disorders, and it visualizes them in a way that
is convenient for speech therapists.

1 Introduction

Today, automatic speech processing can do much more than simply recognizing
speech input. Based on speech, it is possible to find out a user’s identity, his or
her emotional state, or speech quality. This wide field of possible applications
has its basis in the high information load of natural speech that extends far
beyond the bare meaning of the spoken word. Still, a field that has been less
considered, is the possible benefit to medical or clinical purposes with respect to
diagnosis support. There are several scenarios concerning disorders or diseases
where methods from speech recognition could be applied successfully for objec-
tive analysis. The origins of voice disorders are various, ranging from injuries,
inflammation, palsy or neoplasms of the larynx to misuse of the voice or side
effects from other diseases. In the USA between 5% and 10% of the population
suffer from such disorders [1]. These numbers give an impression of the extent
of the problem and the costs connected with it and show that it might be very
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helpful for speech therapists to get some automated and objective support for
the evaluation and classification of pathologic voices or speech. If the results of
such an automatic evaluation are merely a sequence of numbers based upon cep-
stral features, for example, this will be of no help for the technically uneducated
medical personnel. Therefore, the goal of our work is to provide a graphical visu-
alization of a small number of features which are extracted from a high number
of “technical” features by some adequate dimension reduction. Another impor-
tant aspect is the ability of comparing a new speaker’s disorder to an existing
database of previous speakers.

We created an analysis framework for different kinds of voice disorders as a
front-end for traditional speech recognition techniques. The basis of the distance
measure between different speakers are the Hidden Markov model parameters of
a speech recognition system that are changed when the recognizer is adapted to
the current test speaker. Our interest does not focus on recognition or accuracy
purposes in the first place (still these can be addressed), but to gain insight into
severity and mutual relations of voice disorders. The results of the recognizer
adaptation are presented graphically. A mapping technique, the so-called Sam-

mon mapping [2], allows the graphical representation of abstract data, unveiling
underlying structures and configurations. This method of mapping data is actu-
ally not new, but it has never been applied to this concrete problem. Recordings
of hoarse speakers and laryngectomized persons were available for testing.

In Sect. 2 the underlying speech recognition system will be described, Sect. 3
defines the distance measure for HMMs needed by the Sammon mapping that
will be introduced in Sect. 4. The test data is described in Sect. 5, the results
can be viewed in Sect. 6. Section 7 gives a conclusion and a short outlook.

2 Interpolated Semi-Continuous HMMs

The features computed to express the differences between speakers are obtained
from the adaptation of a speech recognizer to the current test speaker. Our
recognizers are based on semi-continuous Hidden Markov Models (SCHMMs).
Unlike discrete HMMs, continuous HMMs represent the output probabilities of
their states by continuous probabilistic functions. This improves the recognition
results but also heavily increases the number of model parameters. SCHMMs ad-
dress this problem by sharing a common set of output densities in all states.
Each HMM state incorporates these densities by a specific vector of weights. We
use the interpolation method from [3] to adapt the output weights of an exist-
ing speaker-independent recognizer to individual speaker characteristics with a
small amount of adaption data. Unlike in usual acoustic voice evaluation, we
do not only use a single, sustained vowel, but a standard text uttered by the
respective speaker (see Sect. 5). In this way, we achieve a set of speaker-adapted
recognizers. Then we use the output weights of each recognizer for the mapping
procedure. The original recognizer was trained on 27 hours of normal laryngeal
speech.
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This method of feature extraction seems to be rather expensive, but previous
unpublished experiments at our institute showed that the features usually used
in speech recognition, like cepstral coefficients, are not suitable for this task.

3 A Distance Metric for Semi-Continuous HMMs

The Sammon mapping (Sect. 4) is a non-linear transformation preserving data
topology. This topology is represented within the matrix of respective utterance
distances. The quality and information quantity of a Sammon map is fully de-
termined by this metric and not by the mapping itself. Thus, it is extremely
important to have a suitable distance metric. On the other hand, the distance
metric can be chosen without any mathematical restrictions like linearity etc.
This is the great advantage of the Sammon Transform against other dimension
reduction operations, like PCA.
In our case, we need a good distance calculus for speaker-adapted SCHMMs
in order to get the distance between a pathologic voice and the normal voices
represented by the baseline recognizer, or between two pathologic voices. We pro-
pose a distance measure computed from the distances of the respective elemen-
tary SCHMMs of different speaker-dependent speech recognizers. The arithmetic
mean of these model distances serves as the final result. So the problem reduces
to calculating the distance of the states of two SCHMMs. Distance calculation
has to use the interpolation weights but still take into consideration the densities
from the recognizer codebook containing the Gaussian output densities. This is
due to the varying information load which can be considered higher for densities
with low and lower for those with a high variance. If a simple Euclidean distance
of the weight vectors were used, this information would get lost and the quality
of the distance metric would diminish. The codebook itself is static and common
to all speakers.
The basic distance metric is an HMM state distance which is computed in two
steps, one for the mean vector of each codebook density and a second one for its
covariance matrix.

3.1 Distance of Mean Vectors

Concerning the mean value of the output densities for each HMM state, the
approach is straightforward. For each state i of a model p the mean vector mik(p)
of each codebook density k is scaled with the corresponding output weight cik(p)
as introduced in [3]:

m̂ik(p) = cik(p) · mik(p) (1)

Given two HMMs named p and q, the standard Euclidean distance can now be
computed between m̂ik(p) and m̂ik(q) which are both of dimension R:

MEANdik(p, q) =

√

√

√

√

R
∑

r=1

(m̂ik,r(p) − m̂ik,r(q))2 (2)

It represents the distance in the mean vectors of the scaled density k of state i

between the two HMMs.
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3.2 Distance of Covariance Matrices

There are various distance metrics for matrices. For the distance of covariance
matrices of two codebook densities we use the Euclidean distance of correspond-
ing weighted column vectors and interprete their arithmetic mean as covariance
distance. Analogous to (1), each vector vik,ρ(p) of column ρ of the covariance
matrix is scaled with the corresponding interpolation weight cik:

v̂ik,ρ(p) = cik(p) · vik,ρ(p) (3)

As the dimension of a codebook density is R, the covariance matrix is of the
size R×R, i.e. there are R pairs of corresponding column vectors v̂ik,ρ(p), v̂ik,ρ(q)
to be processed. For each pair the Euclidean distance is:

COVAdik,ρ(p, q) =

√

√

√

√

R
∑

r=1

(v̂ik,ρr(p) − v̂ik,ρr(q))2 (4)

In order to produce a single distance value for two corresponding densities out
of the R results COVAdik,ρ(p, q) from the column vectors, their arithmetic mean
serves as final covariance distance COVAdik(p, q) for one codebook density k:

COVAdik(p, q) =

∑R

r=1 COVAdik,ρ(p, q)

R
(5)

Finally MEANdik(p, q) and COVAdik(p, q) are combined to one density distance:

dik(p, q) =
MEANdik(p, q) + COVAdik(p, q)

2
(6)

In general, MEANdik(p, q) is much smaller than COVAdik(p, q). Therefore, the
introduction of weights for both values is subject of future work.

3.3 Single State and HMM Distance

The calculations in (1) to (6) are performed for all of the K Gaussian output
densities of a state i. In the end, the resulting set of K density distances dik(p, q)
obtained from (6) is averaged and provides a single state distance di(p, q):

di(p, q) =

∑K

k=1
dik(p, q)

K
(7)

In the same way, the HMM distance δpq between models p and q can be obtained
by normalizing the sum of all N state distances:

δpq =

∑N

i=1
di(p, q)

N
(8)

The HMM distance in (8) is computed for each pair of elementary HMMs,
thus filling up a matrix D holding the speaker distances. This matrix is sym-

metric, so for n utterances n2
−n
2

distances have to be calculated. Limiting the
amount of HMM state densities K taken into consideration to some K ′ when
calculating the state distance can reduce computation time. For K − K ′

� K

the effect on the resulting HMM distance is negligible.
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4 Sammon Mapping

The Sammon mapping performs a topology-preserving reduction of data dimen-
sion. It minimizes a stress function between the topology of the low-dimensional
Sammon map and the high-dimensional original data. The latter topology is
defined by the distances between utterances or speakers, as defined in Sect. 3.
The low-dimensional Sammon map is usually visualized as 2-D or 3-D image.
With respect to [4], we call a Sammon map a cosmos, while a mapped utterance
inside a cosmos is called a star.

The heart of Sammon’s method is its special error function E, yielding a
stress factor between the actual configuration of stars in m-dimensional target
domain and the original data in d-dimensional space (m < d):

E =
1

∑n−1

p=1

∑n

q=p+1
δpq

n−1
∑

p=1

n
∑

q=p+1

(δpq − νpq)
2

δpq

(9)

δpq denotes the distance between HMMs with number p and q, as in (8), νpq is
the distance between stars s(p) and s(q) in the cosmos map. E is within [0, 1],
where E = 0 means a lossless projection from d- to m-dimensional space. Due
to (9), utterances forming clusters in original space will tend to cluster also in
destination space. The same holds for utterances being far apart from each other.
In order to achieve the final map we apply standard steepest descent to (9).

5 Speech Data

Each test person read the German version of the “North Wind and Sun” passage
which is a phonetically rich text with 108 words (71 disjunctive). It is often used
in speech therapy in German speaking countries. Dependent on the degree of
voice pathology, a speech sample of approx. 35 sec to 3 min duration was thus
recorded and then used for the speaker-dependent adaptation of the SCHMMs
by recomputing the codebook mixture weights as described in Sect. 2.

We applied the mapping to four different corpora. Firstly, a group of 18 male
laryngectomees was investigated. Their larynx had been removed because of
laryngeal or hypopharyngeal cancer. These speakers use tracheoesophageal sub-
stitute voice, i.e. a shunt valve between the trachea and the pharyngoesophageal
segment allows to divert the expiratory air stream into the esophagus and causes
voicing by tissue vibrations there. Additionally various voice and speech prop-
erties, such as hoarseness, intelligibility, pitch, speech effort etc., were evaluated
by five experienced raters on a five-point scale. For a more detailed description
of this data set and its recording environment see [5].
The second speaker group were 9 female and 9 male chronically hoarse speakers.
Finally, two sets of normal non-pathologic speakers were used as control groups.
The first subgroup contains 18 elderly, male persons, they were chosen in or-
der to form an age-matching control group for the laryngectomees. They were
recorded in the same environment as the pathologic voices [5]. The second sub-
group consisted of 9 young males and 7 females forming an age-matching group
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Table 1. The speaker groups

group #speakers avg. age duration

Laryngectomees 18 (18m, 0f) 64.2 21.5 min
Hoarse speakers 18 (9m, 9f) 47.6 18.4 min
Normal sp. (old) 18 (18m, 0f) 65.4 15.5 min
Normal sp. (young) 16 (9m, 7f) n/a (≈25) 12.5 min

with respect to the training speakers of the baseline recognizer.
Table 1 shows more details concerning the speaker groups.

6 Mappings of Voice Disorders

Figure 1 shows a mapping of all available speakers into a single 2-D cosmos.
It is clearly visible that the different speaker groups were almost completely
separated into different areas. In addition, the genders of the hoarse and young
reference speakers were separated. The degree of voice pathology is growing from
right to left, with the hoarse speakers located between the laryngectomees and
the normal speakers. The speakers’ pitch is growing from the top to the bottom
of the cosmos. However, which voice properties are arranged in which direction
by the Sammon Transform, is dependent on the data and not known in advance.
This phenomenon was already reported in [4] where a cosmos map was suggested
to have an unlimited number of axes. Most of them represent complex properties
of the data and are thus difficult to describe.

Figure 2 shows an example for the visualization of human and automatic
evaluation results which were mapped to a 2-D cosmos of the laryngectomized
speakers. The intensity of the stars in the left mapping represents the speech
effort rated by the human experts. On the right side the intensity reflects the
word accuracy achieved on an SCHMM recognizer (cp. [5]) for each speaker.
A strong correlation can be seen between both graphics. Speakers with high
effort values are likely to have a low recognition rate and vice versa.

Another experiment was on projecting an unknown speaker into an already
existing cosmos of well-known and previously evaluated cases of pathologic voices.
If this is possible, then a pre-computed cosmos of various voice disorders can serve
as a reference, and the new speaker’s degree or even the type of pathology can
be determined by the position where the recording is projected into the map.
We have slightly modified Sammon’s mapping method, so that the existing map
stays unchanged and only the new star’s coordinates are evaluated based on (9).
As an example, Figure 3 shows two maps of the 18 laryngectomized speakers.
The map to the left was computed all at once whereas inside the map to the
right the marked star has been projected into the cosmos of the 17 remaining
speakers. There is no visible difference between both maps. However, the rising
mapping error which cannot be reduced if the rest of the map is kept static, will
result in more incorrect projections, if a higher number of stars is projected.
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Fig. 1. Cosmos of all speaker groups and their arrangement by the Sammon Transform

Fig. 2. Cosmos of 18 laryngectomized speakers; Left: Distribution of average speech
effort rated by 5 human experts. Dark stars mark speakers with high effort. Right: Dis-
tribution of word accuracy from an automatic speech recognizer. Dark stars mark
speakers with low recognition rate. A comparison of both maps shows that recognition
performance can be a good indicator for speech effort.

7 Conclusions and Outlook

We believe that voice characteristics are present in the observation probabili-
ties of semi-continuous HMMs. The weights of these HMMs after adaptation
to a single speaker serve as input data for the Sammon Transform. It per-
forms a topology-preserving dimension reduction and allows the visualization
of high-dimensional feature spaces. Different voice disorders and their extend
were clearly separated in 2-D space, and their relations to normal speakers be-
came visible. The projection method allows to insert an unknown speaker into
an existing cosmos map with a negligible error. This can serve as an objective
and automatic diagnostic support for medical personnel, including adequate vi-
sualization of the results.
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Fig. 3. Left: A cosmos of laryngectomized speakers computed all at once. The marked
star will be removed and re-projected. Right: The star has been re-projected into the
map. Its position can be considered identical.

The method can also help to improve the automatic recognition of people
with voice disorders, e.g. in dialogue systems. The basis for this idea is a pool of
robust prototype recognizers trained on speech with different disorders. When
confronted with a new speaker, the system would project the speaker into a cos-
mos of the prototype recognizers, determine the disorder and select the “closest”
recognizer or combine a set of several close recognizers for further processing.
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